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Foreword. Molecular epidemiology and biomarkers: Principles and practices v

Foreword

Molecular epidemiology provides 
an exciting set of opportunities to 
contribute to the evidence base for 
the prevention of chronic diseases 
in the coming decades. In the 
mid- to late-1980s, the emergence 
of the polymerase chain reaction 
resulted in a step-change in 
the ability to investigate genetic 
polymorphisms and disease risk. 
This area was further transformed 
by the Human Genome Project 
and the widespread application of 
genome-wide association studies 
to large, multicentre case–control 
studies. Nevertheless, I believe 
the best is still to come from 
molecular epidemiology. This 
assertion is based on a combination 
of advances in understanding 
molecular mechanisms underlying 
disease development, powerful 
new laboratory technologies to 
interrogate patterns of gene, protein 
and metabolite levels, and their 
potential application to biobank 
specimens associated with large-
scale population-based cohort 
studies.

There are risks to the fulfilment 
of this promise. First, the exquisite 
tools to study genetic susceptibility 

are as yet unmatched by tools 
of equal power to evaluate the 
environmental (non-genetic) basis 
of disease; without a balance 
between the genome and the 
exposome, their interplay in the 
causation of chronic diseases 
cannot be fully elucidated. Second, 
a systematic investment by research 
organizations and funders is needed 
in the type of translational research 
that draws advances in mechanistic 
knowledge and the associated 
technologies into epidemiology; 
interdisciplinary research across the 
laboratory sciences, epidemiology, 
clinical research, biostatistics and 
bioinformatics has never been more 
important.

This IARC publication, prepared 
by experts in the field, is a timely and 
valuable foundation for the future. 
It emphasizes the development 
and validation of appropriate 
methodology. It highlights the flow 
of knowledge from mechanisms 
of disease development, through 
the derivation of biomarkers, to 
their application in epidemiological 
studies. It illustrates the benefits 
of mentally crossing disease 
boundaries when considering 

the origins and consequences of 
underlying pathological processes. 
It stimulates inter-disciplinary 
thinking and orientates the 
laboratory towards public health.

The book spans great scale, 
highlighting at one end of the 
spectrum the increasing requirement 
to handle and interpret through 
computational means tens of 
millions of biomarker data points on 
tens of thousands of subjects while, 
at the other end, being attentive to 
the ethical questions affecting the 
individuals contributing to research 
through donation of their time, 
information and biological samples. 
If molecular epidemiology is to truly 
contribute to relieving the ever-
increasing burden of chronic disease 
it will need excellent communication 
not only to the scientific audience 
that is the target of this book, but 
the people worldwide who are the 
subject of its investigations and 
concerns.

Christopher P. Wild
Director, International Agency 

for Research on Cancer
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Major advances in our 
understanding of the origins 
and natural history of several 
chronic diseases have come from 
epidemiologic and laboratory 
research over the past 1–2 decades. 
While this knowledge has provided 
new opportunities for disease 
prevention and control, we are still 
limited by an incomplete grasp of 
causal mechanisms, which hold the 
key to further progress in preventive 
medicine and public health. However, 
recent conceptual breakthroughs in 
genomic and molecular sciences 
have fuelled optimism that the 
incorporation of innovative high-
throughput technologies into 
robust epidemiologic designs 
will further dissect the genetic 
and environmental components 
underpinning complex diseases 
such as cancer, and thereby inform 
new clinical and public health 
interventions.

At this critical moment in 
the evolution of molecular 
epidemiology, the editors of this 
volume have enlisted scientific 
leaders in the field to review the 
major concepts, methods and tools 
of this interdisciplinary approach. 
The chapters summarize recent 
progress that has been made for 
several diseases and traits through 
molecular epidemiology, while 
suggesting promising directions for 
further discovery. Special attention 
is given to the process of selecting, 
validating and integrating molecular 
and biochemical biomarkers that 
sharpen our measures of causal 
factors and mechanisms, as well 
as disease outcomes, through 
epidemiologic research. The 
success of molecular epidemiology 
is due in no small part to advances 
in statistical methods and 
bioinformatics, as illustrated by the 
discovery of heritable mechanisms 
for many diseases and traits 

generated recently by large-scale 
genome-wide association studies.

As a fast-breaking 
interdisciplinary approach, 
molecular epidemiology faces 
formidable challenges, but the 
dividends are likely to increase by 
an order of magnitude as the next-
generation “omics” technologies 
become available for epidemiologic 
application. With the evidence in 
this volume as a starting point, 
the stage is set for basic, clinical 
and population scientists to 
accelerate collaborative efforts 
that will contribute new biological 
insights and augment strategies for 
preventing and controlling disease 
on a global scale.

Joseph F. Fraumeni, Jr.
Director, Division of Cancer 
Epidemiology and Genetics,

National Cancer Institute
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We are pleased to present our 
textbook Molecular Epidemiology: 
Principles and Practices. As noted 
in prefaces by Christopher Wild 
and Joseph Fraumeni, Jr., this 
is an extremely exciting time in 
molecular epidemiology. Advanced 
tools and platforms have facilitated 
new efforts to be launched that 
are enabling a broad approach 
to studying the impact of a wide 
range of environmental exposures, 
broadly defined, and the inherited 
contribution to disease. These 
platforms are undergoing rapid 
evolution in the areas of exposure 
assessment and genomics and 
promise further advances in the 
near future. At the same time, 
there exist fundamental and basic 
principles of epidemiological study 
design: biologic sample collection, 
processing, and storage; and 
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analysis of biological samples to 
ensure that reliable and accurate 
data are generated. The goal of our 
book is to provide a broad overview 
of these fundamental principles 
and their application to a wide 
range of diseases to help build a 
foundation that will allow the reader 
to appreciate, interpret and utilize 
these new technologies as they 
arise in the coming years.

We envision this collection of 
chapters as an orientation to the 
exciting opportunities that exist 
in molecular epidemiology. We 
also hope it will motivate readers 
to translate this information and 
harness these tools in meaningful 
ways that have a positive impact at 
the broadest public health level as 
well as at the personalized level. As 
noted in Chapter 1, “Knowledge is 
the basis for action.”

The text is meant for graduate 
and post-graduate students in public 
health and the biologic sciences, 
as well as seasoned practitioners 
interested in the striking advances 
that have occurred in molecular 
epidemiology in recent years. The 
book represents an update and 
extension of its forerunner, by the 
same title, published in 1993 by 
Frederica Perera and Paul Schulte. 
In that ground-breaking effort, a 
broad approach was taken that 
included a discussion of the full 
range of biologic markers available 
to investigators carrying out 
molecular epidemiologic research 
and how these tools had been and 
could be applied to a wide range 
of diseases. In the current text, we 
have continued and expanded upon 
this approach.
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The book begins with providing a 
contextual framework for molecular 
epidemiology focusing on both 
historical and ethical components of 
molecular epidemiology research. 
It then discusses practical aspects 
of using biomarkers including 
collection, processing and 
storage of biologic samples; the 
major types of biologic markers 
used in molecular epidemiology 
research; and measurement error. 
Next, examples are provided of 
biomarkers used in characterizing 
exposure to environmental and 
occupational toxins and infectious 
agents, and to assessing nutritional 

and hormonal status and the 
immune response. The integration 
and analysis of biomarkers in 
a spectrum of study designs, 
including population- and family-
based studies and clinical trials, is 
presented, as well as a discussion 
of approaches to summarizing data 
across studies. Examples of the 
application of biomarkers to the 
study of several major diseases 
and conditions are given, including 
cancer, coronary heart disease, 
lung disease, neurodegenerative 
disease, infectious disease, 
reproductive disorders and obesity. 
Also discussed is the conduct of 

molecular epidemiology studies in 
children. The book concludes with 
a discussion of future directions in 
molecular epidemiologic research.

Finally, we sincerely thank the 
chapter authors and co-authors 
who made this book possible. 
Also, we would like to acknowledge 
the critical support of Jennifer 
Donaldson, the project manager and 
technical editor, without whom this 
book could not have been brought 
to fruition, and the support of IARC’s 
publication staff, in particular John 
Daniel, Nicolas Gaudin and Sylvia 
Moutinho.
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unit 1.
contextual framework for molecular epidemiology

chapter 1.  

Molecular epidemiology: 
Linking molecular scale

insights to population impacts
Paul A. Schulte, Nathaniel Rothman, Pierre Hainaut, Martyn T. Smith, Paolo Boffetta, and Frederica P. Perera

Summary

In a broad sense, molecular 
epidemiology is the axis that unites 
insights at the molecular level 
and understanding of disease at 
the population level. It is also a 
partnership between epidemiologists 
and laboratory scientists in which 
investigations are conducted using 
the principles of both disciplines. A 
key trait of molecular epidemiology 
is to evaluate and establish the 
relationship between a biomarker 
and important exogenous 
and endogenous exposures, 
susceptibility, or disease, providing 
understanding that can be used in 
future research and public health 
and clinical practice. When potential 
solutions or interventions are 
identified, molecular epidemiology 
is also useful in developing and 
conducting clinical and intervention 

trials. It can then contribute to 
the translation of biomedical 
research into practical public 
health and clinical applications 
by addressing the medical and 
population implications of molecular 
phenomena in terms of reducing 
risk of disease. This chapter 
summarizes the contributions and 
research endeavours of molecular 
epidemiology and how they link with 
public health initiatives and clinical 
practice.

Introduction

This is a unique and exciting 
period in the health sciences. 
For the first time, it is possible to 
look at both nature and nurture 
with sophisticated and molecular-
level tools (1–12). The promise 

of using these and other tools to 
prevent, control, and treat chronic 
and infectious diseases stimulates 
the imagination and creativity of 
medical and health scientists and 
practitioners. The challenge is 
to effectively apply these tools, 
and knowledge from genetics, 
exposure assessment, population 
health and medicine, to health 
problems that afflict 21st century 
people. The means of meeting 
that challenge is the widespread 
conduct of molecular epidemiologic 
research. Driven by discoveries 
of basic biological phenomena 
at the molecular and genetic 
levels, molecular epidemiology 
is able to translate discovery of 
essential scientific knowledge into 
determination and quantification 
of hazards and risks, and then to 
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investigate useful approaches for 
prevention, control, and treatment of 
disease and dysfunction (9,12–15).

To fully appreciate the potential 
contributions of molecular 
epidemiology, it is important 
to understand how it fits into 
the context of epidemiology 
and public health. Molecular 
epidemiology is a partnership 
between epidemiologists and 
laboratory scientists that conducts 
investigations using the principles 
of both laboratory and population 
research (1,2,16). This is a message 
that merits restatement as powerful 
genetic and analytic technologies 
become available to epidemiologists. 
Historically, molecular epidemiology 
was derived from those disciplines 
that made contributions to relating 
biological measurements to health 
and disease (1,2). These include 
bacteriology, immunology and 
infectious disease epidemiology; 
pathology and clinical chemistry; 
carcinogenesis and oncology; 
occupational medicine and 
toxicology; cardiovascular disease 
epidemiology; genetics, molecular 
biology, and genetic epidemiology; 
and traditional epidemiology and 
biostatistics. The term “molecular 
epidemiology” was first used in 
the infectious disease literature by 
Kilbourne to describe the “molecular 
determinants of epidemiologic 
events” (17). In 1977, Higginson used 
the term in the context of pathology 
in a paper entitled “The role of 
the pathologist in environmental 
medicine and public health” (18). 
Lower’s landmark 1979 publication 
introduced genetic effect modifiers 
and brought attention to the 
importance of external exposure, 
individual susceptibility and biologic 
markers in terms of phenotype (19). 
In a seminal paper in 1982, Perera 
and Weinstein coined the term 
“molecular cancer epidemiology” 
and first proposed a formal and 

comprehensive framework for the 
use of biomarkers of internal dose, 
biologically effective dose, early 
biologic effect and susceptibility 
within a molecular epidemiological 
framework (2). In 1987, the National 
Research Council (NRC) adopted 
this basic conceptual framework 
for molecular epidemiology and 
subsequently published a series 
of reports on biological markers 
(20–22). In the 1980s through the 
mid-1990s, a series of important 
papers and books were published 
describing the evolution and 
progress of molecular epidemiology 
(1,17,23–36). More recently, the 
changing face of epidemiology in 
the genomics and epigenetic eras 
has been described (9,12,36–39).

In the past, molecular 
epidemiology was sometimes 
viewed as one of epidemiology’s 
many subspecialties. Some 
subspecialties focus on the disease 
type (e.g. chronic, infectious, 
reproductive or cardiovascular), 
some on the origin of the hazard 
(e.g. occupational, environmental 
or nutritional), and still others 
focus on the approach to the 
disease (e.g. clinical, serological or 
analytical). Viewed in this context, 
molecular epidemiology may best 
fit into the category of subspecialty 
defined by the approach that is 
applicable to all of these areas. 
Molecular epidemiology is the use 
of all types of biological markers 
in the investigation of the cause, 
distribution, prevention and 
treatment of disease, in which 
biological markers are used to 
represent exposures, intervening 
factors, susceptibility, intermediate 
pathological events, preclinical and 
clinical disease, or prognosis.

More broadly, molecular 
epidemiology can be viewed as a hub 
that links various aspects of health 
research. Even the term molecular 
epidemiology is a linking term 

which brings together molecular-
level thinking and population-level 
understanding. These insights can 
be useful in characterizing a health 
problem, conducting mechanistic 
research (at the molecular and 
population levels), understanding 
the solutions, and contributing 
to the clinical and public health 
practice. These four functions and 
the research that supports them are 
illustrated in Figure 1.1.

Characterizing 
a public health problem

Surveillance, the sentinel activity of 
public health and clinical practice, is 
the ongoing collection, analysis and 
interpretation of data on rates and 
trends of disease, injury, death and 
hazards. Molecular epidemiology 
plays an important role in surveillance 
by identifying the frequency of 
biological markers of exposure, 
disease or susceptibility in various 
population groups and in monitoring 
trends of biomarkers over time. 
Examples are population monitoring 
of blood lead concentrations, 
neonatal screening for genetic 
disease, and molecular typing of 
viruses in a geographical area. 
The validation of those biomarkers 
and the analysis of the data involve 
molecular epidemiologic skills and 
knowledge. Increasingly, biological 
specimen banks are being used as 
public health surveillance systems 
(40) and can play an important role 
in etiologic research (41).

Mechanistic research

Establishing the relationship 
between a biomarker and exposure, 
disease or susceptibility is the 
hallmark of molecular epidemiology, 
and leads to developing the 
knowledge that will eventually be 
used in further research and in 
clinical and public health practice. 
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To achieve this progression, there 
is a need for parallel laboratory and 
population research to understand 
the mechanisms through which 
environmental exposures interact 
with host susceptibility factors to 
increase the risk of disease. The key 
mechanisms can then be blocked 
by interventions, such as exposure 
reduction, behaviour modification, 
chemoprevention or prophylaxis.

Understanding the solutions

When potential solutions or 
interventions are identified, 
molecular epidemiological 
knowledge is useful in the 
development and conduct of 
clinical and intervention trials, 
and monitoring the efficacy of 
policy interventions. Following 

Clinical 
and public health practice

Translation of biomedical research 
to useful clinical and public health 
applications is clearly a major 
challenge (15,42–44). Molecular 
epidemiologists can accept that 
challenge and contribute to the 
translation of knowledge from 
research endeavours. This entails 
a more expansive view of molecular 
epidemiology beyond a tool in 
etiologic research to a discipline 
that addresses the medical and 
population ramifications of molecular 
phenomena in terms of reducing 
risk of disease (45). Translation is a 
multifaceted process that has been 
described as involving four phases: 
1) discovery to candidate health
application; 2) health application 
to evidence-based practice 
guidelines; 3) practice guidelines to 
health practice; and 4) practice to 
population health impact (44).

At times, molecular 
epidemiology has been portrayed 
as a reductionist approach that 
merely identifies molecular 
risk factors and indicators in 
individuals. However, molecular 
epidemiology is first and foremost 
a means to gain sufficient 
biological understanding at the 
molecular and biochemical level of 
the process of disease causation 
to protect public health. From its 
outset, molecular epidemiology 
has had the vision that biological 
marker data can be used to prevent 
or reduce morbidity and mortality 
(1,2,21,22,46). Consequently, 
molecular epidemiology is the 
means to obtain molecular- and 
biochemical-level understanding in 
a population context.

The term molecular 
epidemiology is compelling. It 
inspires the scientific imagination, 
compelling thinking of incorporating 
the new resolving powers of 

Figure 1.1. Molecular epidemiology can serve as a hub for other components of 
health research and practice. Adapted from (74).

assessment in trials, there is a 
need for research on the translation 
of findings to clinical and public 
health practitioners. This involves 
identifying the potential uses of the 
findings, the plan for communicating 
and disseminating this information, 
and ways to measure the impact 
of their use. Epidemiologists have 
a long history of providing the 
evidence base for demonstrating 
the efficacy and effectiveness of 
clinical and population interventions 
moved into practice (42). Molecular 
epidemiologic knowledge can be 
used in impact assessments to 
determine changes in incidence of 
the biomarkers as surrogates for 
disease or as indicators of disease 
risk.
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molecular biology, genetics 
and analytical chemistry into 
epidemiology, and it stimulates 
hypothesis development and testing 
over a broader range of genetic 
and environmental factors. The 
term also focuses on the population 
distributions and implications of 
molecular events.

On the face of it, the fact that 
molecular epidemiology is focused 
both on biological processes in 
individuals and their distribution 
in populations makes the term 
sound contradictory (47). Yet this 
tension between identifying causal 
pathways at an individual biological 
level and understanding the causes 
of disease in populations has always 
been present in epidemiology. This 
seemingly contradictory nature 
of the molecular epidemiological 
endeavour may be most familiar 
as articulated by Geoffrey Rose, 
in that epidemiologists’ efforts are 
concerned with unraveling both the 
determinants of individual cases 
and the determinants of incidence 
rates (48). Although this tension 
may be exemplified by molecular 
epidemiology, there is nothing 
inherent in the actions of molecular 
epidemiologists per se that limits 
the utility of their activities for public 
health. Of greater importance 
is that this tension itself, this 
struggle to reconcile two seemingly 
contradictory objectives, has been 
productive and inspiring (49). In 
this vein, some have argued that 
the integration of genomics into 
epidemiology can been seen as a 
further challenge to epidemiologists 
to take seriously the contextual 
factors that bear on biological 
processes (37,50).

In short, the relevance 
and usefulness of molecular 
epidemiologic research to 
public health depends on how 
successfully practitioners address 
challenges that face epidemiology 

and research in general. These 
issues—lack of biological realism 
or theoretical basis for research, 
lack of consistency in results, and 
worse still, in some cases lack of 
scientific rigor—are threats of which 
all epidemiology, indeed all scientific 
research, must be wary (51,52). Too 
often the attempt to substantiate 
molecular epidemiologic results 
by post-hoc searching through the 
scientific literature has led to finding 
biologic information that is not truly 
corroborating but only appears to be 
so (53).

Similarly, the criticism that 
molecular epidemiologic results are 
not consistent between studies, and 
are even sometimes contradictory, 
is partly due to the media and public 
misinterpretation of the nature of 
scientific investigations, but it is also 
partly due to the failure of molecular 
epidemiologists to say loud and 
clear that their studies must be 
repeated and confirmed in various 
populations and settings before a 
causal link can be strongly inferred 
(54,55). This is especially true when 
strong causal claims are made 
following small studies.

To continue to serve as a hub 
for health research, molecular 
epidemiology will need to continue 
expanding its contribution to 
surveillance, mechanistic research, 
efficacy trials, translational 
research and health policy. 
Critical for this holistic approach 
is the ability to assemble and 
communicate information, and, 
ultimately, evidence to decision-
makers, medical and health 
professionals, and the public. This 
will involve fostering an evidence-
based approach to research and 
adopting vigorous and stringent 
criteria for systematic integration of 
confirmation from many disciplines 
(e.g. genomics, biochemistry, 
exposure assessment, pathology, 
medicine and public health)(43). 

Specifically, this expansive view 
means not only thinking of causal 
mechanisms and being problem-
oriented, but also being solution-
oriented. How can the findings of 
molecular epidemiologic research 
be used to address a problem both 
at the patient and population levels? 
It is critical to focus on credibility, 
rather than statistical significance 
of research findings; encourage 
rigorous replication, not just 
discovery; and build public trust by 
communicating results honestly and 
acknowledging the limitations of the 
evidence (43).

If molecular epidemiology is to 
make a major impact on population 
health, it must have a global focus 
as well as a local one. Too often, 
the findings of research on genetic 
biomarkers have been seen as 
leading to expensive sophisticated 
tests and treatments for a few 
rather than for the many. Molecular 
epidemiologic researchers need 
to be aware of this concern in the 
context of their work. The result 
should be research and strategies to 
help develop affordable population-
wide tools for combating common 
diseases (56).

Nomenclature, taxonomics 
and approaches

Other disciplines and terms overlap 
with molecular epidemiology. 
The terms genomics, population 
genomics, population genetics, and 
human genome epidemiology all 
can involve molecular epidemiologic 
approaches. Critical in all of these 
approaches is the use of valid 
epidemiological study designs, 
methodologies, and perspectives 
with valid and reliable indicators 
of susceptibility, genotype and 
phenotypes.

Another term that merits 
discussion and definition is 
“biomarker.” The term biologic 
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marker, or biomarker, is broadly 
defined to include any type of 
measurement made in a biologic 
sample and includes measurements 
of exogenous and endogenous 
exposures, as well as any 
phenomena in biologic systems at 
the biochemical, molecular, genetic, 
immunologic or physiologic level 
(1,20).

Historically, biomarkers have 
been used for many decades in 
etiologic and clinical research, 
beginning with seminal studies 
of infectious diseases followed 
by research on chronic diseases, 
such as cardiovascular disease 
(1,57–59). Over time, an 
appreciation of the heterogeneity 
in biomarkers developed with 
regard to the different aspects of 
the disease process reflected by 
them. Emerging from the seminal 
works in the 1980s and 1990s, 
three types of biomarkers were 
defined: biomarkers of exposure/
dose (internal and biologically 
effective dose), biomarkers of 
effect (generally indicators of 
damage, alteration in homeostatic 
mechanisms, molecular or 
biochemical dysfunction, preclinical 
effects of early disease, and clinically 
apparent disease), and biomarkers 
of susceptibility (either inherited or 
acquired) (2,20–22,29,30). These 
have been linked in a continuum 
that is applicable to many exposure-
disease relationships and have been 
further characterized with regard to 
the advantages and limitations of 
their application within the spectrum 
of epidemiologic studies (1,2,33,39).

The discovery of new biomarkers 
for medical, environmental and 
epidemiologic research is of 
growing importance. The global 
biomarkers market is projected 
to reach about $20.5 billion by 
2014 (60). Increasingly, there are 
developments in a broad range of 
areas that include: biomarkers as 

tools in decision-making, regulation, 
diagnostics, personalized medicine, 
therapeutics, pharmacology, public 
and environmental health, and 
as dependent and independent 
variables in molecular epidemiologic 
research.

Implicit in biomarker-based 
research is the collection of biological 
specimens from individuals within 
an epidemiologic framework, 
analysis of those specimens and 
the amassing of the results in 
databases. The emergence of 
large-scale networks, multicentre 
collaborations and formal consortia 
has increasingly been observed 
and has been advanced as an 
approach to complex disease 
research efforts (12,61–63). 
Although there is a strong rationale 
for using consortia for exploring the 
role of environmental exposures 
and genetic variants in disease, 
this does not mean that smaller, 
single investigative approaches 
are without merit. Such studies 
still may provide useful leads, 
hypotheses, mechanistic insights 
and identification of risk factors; 
they are also helpful for validation 
of biomarkers. Nonetheless, large-
scale consortia provide a powerful 
approach to achieve adequate 
statistical power (particularly in 
studies of individual genetic variants 
and gene-environment interactions) 
to identify effects and avoid false- 
positive reports and to address 
complex research problems (64–69). 
One unique, global collaboration, 
the Human Genome Epidemiology 
Network (HuGE Net), combines 
the traditional methodology of 
population-level investigation with 
molecular and genetic epidemiology 
data. HuGE Net is focused on the 
post-gene discovery phase and 
interpretation of epidemiologic 
information on human genes for 
the purpose of health promotion 
(70,71). This is one example of 

the convergence of classical and 
molecular epidemiology applications 
in a practical approach for disease 
prevention.

On the horizon

The great investment in biomedical 
research made in the past 50 
years could yield many benefits 
in the next 50 years if the results 
of that research can be used and 
translated into practical advances 
(see the following chapters that 
discuss these advances). The skills, 
tools and insights of molecular 
epidemiology can contribute to 
that effort. Knowledge is the basis 
of action. Serving as the linking 
hub for laboratory and population 
research, molecular epidemiology 
can help translate it to practice. 
To do this, there will be a need 
to maintain current trends in the 
discipline and establish new ones. 
Continuation of the trend towards 
large-scale networks and biobanks, 
use of bioinformatics, and attention 
to individual and collective ethical 
issues will serve to move the field 
forward. But more powerful effects 
will be achieved by incorporating 
epigenetic and biological systems 
theory in research, expanding skill 
sets and professional knowledge 
to complement translation research 
and risk communication, and by 
fostering public health perspectives 
(35,72,73). A broad population-wide 
vision for using biological markers 
is required to leverage the power 
of molecular scale insight to give 
beneficial macro-scale impacts on 
public health.

 
Disclaimer: The findings and conclusions 
in this chapter are those of the author 
and do not necessarily represent the 
views of the Centers for Disease Control 
and Prevention.
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unit 1.
contextual framework for molecular epidemiology

chapter 2.  

Ethical issues in molecular 
epidemiologic research

Paul A. Schulte and Andrea Smith

Introduction

Contemporary and future molecular 
epidemiologic research will be 
conducted against a backdrop 
of massive biological databases, 
comprehensive and longitudinal 
electronic medical records, large 
medical care expenditures, aging 
populations, emerging infectious 
diseases in some countries, and 
global climate change. These 
conditions will influence the ethical 
issues that arise in molecular 
epidemiologic research. Will these 
issues differ from epidemiologic 
or scientific research in general? 
Some of the issues will be unique to 
molecular epidemiology, and others 
will be relevant to all research. If the 
conduct of molecular epidemiology 
is to contribute to medical and 
public health research and have a 
positive impact, there is a need for 
investigators to be aware of and 

adhere to the generally accepted 
ethical principles discussed in this 
chapter. Further, it is important to 
realize that data that will be made 
available in the future from new 
genomic technology will continue 
to pose challenges to the ethical 
conduct of molecular epidemiologic 
research. Therefore, researchers 
will need to be aware of the dynamic 
nature of guidelines and regulations.

Distinctive ethical issues 
in molecular epidemiology

Three key features of molecular 
epidemiology form the basis for the 
distinctive ethical issues unique to 
the field. First and foremost is that 
molecular epidemiology relies on 
the collection of biologic specimens 
and the identification and use of 
biological markers derived from 

those specimens (1,2). The second 
feature is that many of the biological 
markers pertain to inherited genetic 
information. While similar to other 
biomedical information, genetic 
information is often perceived 
(rightly or wrongly) as being more 
powerful and sensitive, a perception 
reflected in the widespread use 
of the metaphor of genes as the 
blueprint for what makes us human 
(3). Moreover, critical in molecular 
epidemiologic research is the 
emerging capability to efficiently 
sequence nearly the entire 
genome, as well as the availability 
of information in public databases, 
most of which are restricted to 
bona fide researchers who gain 
formal permission (2,4,5). Lastly, 
molecular epidemiology continually 
involves the application of new 
technologies and methodologies 
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whose validity and reliability are in 
the process of being established. 
Together these three features 
trigger the need for molecular 
epidemiologists to consider and 
address specific ethical issues 
in addition to the more generic 
ones typical of epidemiological 
studies (2,6–13). Epidemiology, 
as a population science, 
observes the characteristics of 
individual research participants 
to understand disease at the level 
of the population. As a result, the 
ethical concerns generated in 
the field are two-fold: there are 
those that pertain to interaction 
with individual study participants, 
and those that are concerned 
with populations. This means that 
molecular epidemiologists need to 
reflect upon ethical issues beyond 
those encountered in any particular 
study. The broader issues to be 
considered include how to distribute 
the scientific and social benefits of 
molecular epidemiologic research, 
particularly research that involves 
genomic data and addresses 
various social, political and scientific 
questions related to collective, as 
well as individual, rights (14–16).

Clearly, these are questions 
not answerable by molecular 
epidemiologists alone, and require 
the input and involvement of various 
other disciplines. Yet, important for 
molecular epidemiologists to bear in 
mind is the larger context in which 
their work is situated, and to build 
dialogue across disciplines in an 
effort to contribute to these larger 
issues. A review of ethical issues 
follows, primarily as they relate to the 
molecular epidemiologic research 
process, and a discussion on how 
they arise in: 1) the development 
of the study protocol, 2) obtaining 
participation and informed consent, 
3) maintaining privacy of subjects 
and confidentiality of data, 4) 
interpreting and communicating 

test and study results, and 5) 
avoiding inappropriate inferences 
and actions (or lack of appropriate 
actions) based on study results. 
Wherever relevant, we point towards 
the broader population health ethics 
involved in molecular epidemiology, 
acknowledging that these 
discussions are merely introductory 
and far from exhaustive.

Most of the health research, 
including molecular epidemiologic 
research, conducted in the United 
States is regulated by the Common 
Rule (45 CFR Part 46, subpart A). 
The Common Rule pertains to 
individually identifiable data and 
does not apply to research conducted 
on specimens or health records that 
are not individually identifiable (12). 
Overlapping some aspects of the 
Common Rule is the Privacy Rule 
of the Health Insurance Portability 
and Accountability Act (HIPAA) (45 
CFR Parts 160, 164). They both 
cover large, academic medical 
centre institutions, but differ on such 
issues as reviews preparatory to 
research, research involving health 
records of deceased individuals, 
and revocations of consents and 
authorizations (17).

The other major regulatory 
feature of research is the Institutional 
Review Board (IRB). IRBs review 
protocols for human subject 
research as defined by the Common 
Rule. They also are charged with 
addressing the ethical aspects of 
the increasing volume and variation 
of genetic molecular epidemiologic 
studies (2,13). These boards face 
significant challenges, as currently 
in many cases there is no general 
agreement on the ethical aspects 
of issues that arise. Nonetheless, 
as described in this chapter, there 
are some established principles and 
experiences and practices that can 
fill this gap.

Development 
of the study protocol

Ethics are an intrinsic aspect of the 
framing of the research question 
and in the selection of methods to 
carry out any study. The decision 
to use or focus on molecular 
biomarkers in a study can itself 
raise ethical issues. A starting point 
for considering the appropriateness 
of molecular biomarkers is whether 
or not the research question being 
addressed is of public health 
importance (18). If the answer is no, 
then the use of scarce resources 
to develop, validate or apply a 
biological marker can be wasteful 
and inefficient, and detract from 
efforts to address other public health 
issues of greater urgency. Ethically, 
molecular epidemiologic research 
should identify driving scientific and 
public health questions that cannot 
be answered by some other more 
accessible and less costly approach. 
Given the resource-intensive 
nature of biobanking and molecular 
technologies, the use of biomarkers 
within epidemiologic research 
should be done judiciously. Like all 
research, studies that propose to 
use biomarkers must ground their 
decisions in the available empirical 
evidence and sound scientific 
reasoning. In the genomic era, 
vast amounts of biological data are 
generated using technologies that 
simultaneously process hundreds of 
genes within hundreds of samples. 
Even in a small epidemiological 
study, such as one with 100 cases 
and 100 controls, investigators 
can easily obtain genetic and 
epigenomic data involving millions 
of variables for each participant 
(although such studies are likely to 
be both underpowered and likely 
to produce large numbers of false-
positive findings unless they have 
replication efforts built into them). 
Bioinformatic approaches are 
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needed to sort through such data 
sets and the literature. Ideally, such 
approaches are first conducted in 
iterative processes using existing 
databases before the initiation of a 
new study. This detailed preparation 
provides a rationale for the study 
design and focuses the scope of the 
research question.

One set of ethical concerns 
relevant to protocol development 
involves whether the investigator has 
any interests that conflict with the 
ultimate aim or potential outcomes 
of the research. Ideally, investigators 
should be involved in research to 
seek the prevention of disease 
through free inquiry and the pursuit 
of knowledge. Conflicting interests 
may lead investigators (consciously 
or not) to make choices about study 
design that could introduce biases, 
yielding results that deviate from 
less biased approaches. To foster 
a transparent and accountable 
process through peer review and 
other mechanisms, it is important 
that investigators acknowledge 
and identify their conflict of interest 
to their collaborators, research 
participants and other stakeholders. 
Not only do conflicts of interest 
jeopardize the validity and utility of 
any particular study, they also bear 
on the health research enterprise as 
a whole, since the ramifications of 
failing to disclose them can damage 
the public’s trust in and support of 
science (20). The issue of conflict 
of interest is particularly acute in 
research using genetic material, 
due to the push by academic 
and research institutions (and 
commercial collaborators) to seek 
intellectual property rights, and 
other avenues of commercialization, 
of their research (13).

Turning to more methodological 
issues, the decision on where to 
conduct a molecular epidemiologic 
study, and on whom, should 
also be scrutinized with ethical 

considerations such as equity, justice 
and autonomy kept in mind. In light 
of these principles, many decisions 
relating to sample design that initially 
seem of little ethical consequence, 
gain stature. For example, how well 
the sample population reflects the 
target population is a matter that 
bears on both scientific validity and 
moral concerns. Within molecular 
epidemiologic research, an 
additional issue includes whether it 
is the responsibility of investigators 
to attempt to obtain ethnic, racial or 
social class diversity in studies. This 
question extends into the avoidance 
of socio-genetic marginalization, 
that is, the isolation of social groups 
and individuals as a consequence of 
discrimination on the basis of genetic 
information (22). In a similar vein, 
should one assess whether various 
ethnic groups are provided similar 
opportunities to be in a database? If 
not, characterization in a database 
can make one ethnic group appear 
more or less susceptible than another 
ethnic group lacking the same 
opportunity for characterization. 
Other questions about sample 
selection that should be taken into 
account are whether the sample is 
representative in terms of genetic 
and ethnic factors, as well as various 
other host or environmental factors 
of the study’s target population. 
However, there is a cost associated 
with representativeness—loss of 
power and the need to adjust for 
confounding factors. Small groups 
included to make samples more 
representative may be subject to 
statistical power limitations and, for 
studies on restricted budgets, may 
decrease the ability of the study 
to accomplish its primary aims. At 
the same time, power issues can 
be surmounted in part if data are 
collected in a way that is consistent 
with previous studies that have 
included multiple ethnic populations, 
and if plans for pooling data with 

other studies are made, preferably 
early in the study design phase.

Molecular epidemiologic study 
design and analysis also can affect 
whether the research contributes 
to public health. The promise of 
genome-wide association and 
other genetic susceptibility studies, 
in terms of prevention and public 
health, may not be realized if a 
study is designed to minimize 
observing the effect of environment 
and lifestyle factors. To take full 
public health advantage of such 
research, environmental exposures, 
quantified by state-of-the-art 
exposure assessment methods 
when feasible, must be considered 
in the design, particularly in the 
selection of study populations and in 
the analysis (23). Such an approach 
may involve using analytical 
techniques that do not require 
relying on either significant main 
genetic or environmental effects as 
a threshold for investigating gene-
environment interactions.

A particularly sticky issue 
relating to study design is the 
premature use of biological markers 
as variables in research before they 
have been validated (10,24); there 
are many examples of premature 
use in commerce (25). Validation is 
not an all-or-none state, but rather a 
process that is informed by continued 
research and investigation. Critical 
in any definition of validation is 
the extent to which the biomarker 
actually represents what it is 
intended to represent (1,26). The 
use of biomarkers that have not 
been validated for the purpose 
for which they are being used can 
lead to false or misleading findings, 
which may harm participants, 
groups or communities. For 
transitional studies in which the 
characteristics of a marker are 
being determined, and for which 
there are clearly no associated 
clinical findings, prognostic 
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significance, or clear meaning, the 
needs of study participants may be 
different from those in studies with 
established biomarkers. In the case 
where a biomarker has a known 
association with a disease outcome 
(or exposure or susceptibility) and 
holds implications for individual 
risk, interventions such as medical 
screening, biological monitoring, 
or diagnostic evaluation may be 
appropriate follow-up measures.

Furthermore, ethical issues may 
arise during the design phase of a 
study protocol from a researcher’s 
failure to anticipate how to respond 
to the distributional extremes 
in biomarker assay results (6). 
Possible responses may include 
repeat testing, risk communications 
counselling or clinical surveillance. 
With genetic markers of 
susceptibility, it may be important to 
consider the impact of the research 
not only on individual participants, 
but also on their families, given 
that knowing something about an 
individual’s genes possibly means 
knowing something about their past, 
present and future family’s genetic 
constitution.

Recruiting participants 
and informed consent

When recruiting potential research 
participants, a core ethical issue in 
molecular epidemiologic research 
is respect for individuals, which is 
upheld by ensuring their autonomy. 
This means that potential research 
subjects should be viewed and 
treated as self-ruling and able 
to voluntarily participate in and 
withdraw from research without 
coercion or prejudice. Autonomy 
also implies that those who are not 
capable of self-determination, such 
as children, are to be protected from 
exploitation and harm (27). Potential 
participants need to be informed of 
a broad range of information (e.g. 

purpose of the study, its duration, 
identity of the investigators and 
sponsors, ownership and other 
uses of specimens, the methods 
and procedures to be used, and 
all potential risks and benefits of 
participating in the study), some 
of which are unique to molecular 
epidemiology (6,28). The investment 
in population-based field studies 
to obtain biologic specimens and 
covariate information is generally 
quite large, making it cost-effective 
to collect and bank DNA and other 
biological materials for current 
and future research. Moreover, 
the number of biological specimen 
banks is growing, and as a result 
the nature of future research 
might not be known at the time of 
specimen collection (29). Accurately 
depicting the purpose of a molecular 
epidemiologic study can be difficult 
for the investigator, because there 
may be a multiplicity of purposes, 
some intended, others not even 
yet envisioned. At issue is how one 
should solicit consent for future 
use of specimens, and what to tell 
potential participants about this.

Future use of specimens requires 
additional procedures for obtaining 
consent (30). Some have proposed 
that informed consent for future 
use is best acquired by enabling 
participants to specify the research 
areas to which they sanction, or 
to permit them to give blanket 
approval, which informs them of 
the intention of banking specimens 
and their subsequent use for a wide 
range of research purposes (31,32). 
While such procedures clearly allow 
the maximum scientific benefit and 
potential public health impact to be 
obtained from such biobanks, they 
could be considered to deviate in 
important ways from the general 
standards of informed consent. In 
soliciting blanket consent for future 
use, investigators are generally 
unable to provide research 

participants specific and accurate 
information as to all the purposes of 
the study (as they are yet unknown); 
thus, the attendant potential harms 
and benefits of participation are 
not fully fleshed out. The resulting 
scenario is that the informed consent 
reflects a “potential” informed 
consent, not one in which research 
participants are fully informed 
and then knowingly choose to 
be involved (13). This appears to 
stand in contrast to the principles 
of informed consent as laid out in 
ethical codes of medical research, 
such as the Declaration of Helsinki 
(33). The evolution of technologies 
used in molecular epidemiologic 
research has pushed IRBs to 
consider how ethical codes apply. 
This is illustrated in the development 
of a large number of prospective 
cohort studies worldwide and the 
guidelines pertaining to them, 
such as the United Kingdom 
Biobank Ethics and Governance 
Framework and the independent 
advisory council formed to oversee 
the Biobank’s activities (34–36). 
After careful consideration and 
review by IRBs, informed consent 
procedures have been developed 
that accomplish the dual purposes 
of protecting the rights of individual 
participants while also providing the 
opportunity for the maximum public 
health benefit from the substantial 
resources needed to establish and 
maintain such prospective studies.

Molecular epidemiologic studies 
have generally used a large number 
of biological markers analysed in 
specimens collected directly from 
research participants enrolled into 
formal case-control and prospective 
cohort studies. Increasingly, though, 
the source of the specimens may not 
be from participants directly, but from 
biobanks where specimens were 
collected before the development of 
a given study, and possibly even for 
a different purpose. Given this trend, 
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it is important that the informed 
consent process address intellectual 
property rights and state who 
maintains ownership of the collected 
specimens (2). There are various 
issues that pertain to ownership 
or custodianship of biospecimens. 
Generally, however, there do not 
appear to be laws or regulations that 
directly address them. Nonetheless, 
participants have a right to know 
what future uses their specimens 
may be considered for. There also 
could be special concerns about 
future use of specimens among 
indigenous people or various 
‘island’ populations that need to 
be considered (37,38). Overall, 
molecular epidemiologists involved 
with biobanks and surveillance 
efforts should think about both 
individual and collective rights and 
interests in creating or assessing 
such databases for public health 
research.

While procedures for dealing with 
biorepositories in the future can be 
established, what about the millions 
of human specimens currently in 
storage collected from a wide variety 
of formal and less-formal study 
designs, and obtained from study 
participants over several decades 
during which standards of informed 
consent and IRB review have 
undergone continuing evolution? 
These are highly valuable resources 
but ones where procedures and 
practices may not necessarily 
conform to current standards. For 
example, can a participant whose 
specimens are in a biorepository 
decide to discontinue participation 
and not have their samples continue 
to be used? General practice 
and a recent court case ascribe 
ownership to the institution that 
maintains the repository. However, 
this interpretation excludes the 
input of the research participant. 
A stewardship model has been 
described that respects a research 

participant’s request to terminate 
participation in a DNA biorepository 
by destroying remaining DNA instead 
of continuing use of the specimen, 
as is a common response (28). The 
American College of Epidemiology 
has espoused four useful 
principles regarding the handling 
of biospecimens: (1) custodianship 
should encourage openness of 
scientific inquiry and maximize 
biospecimen use and sharing so as 
to exploit the full potential to promote 
health; (2) the privacy of participants 
must be protected and informed 
consent must provide provisions 
for unanticipated biospecimen use; 
(3) the intellectual investment of 
investigators involved in the creation 
of a biorepository is often substantial 
and should be respected; and (4) 
sharing of specimens needs to 
protect proprietary information and 
to address the concerns of third-
party funders (39). While these 
principles are a good foundation, 
they do not specifically address the 
research participant except in the 
area of privacy. There also is the 
need to consider control of human 
specimens in terms of respect for 
persons and autonomy (28).

The issue of future use of 
specimens is more complex 
with larger studies involving 
whole-genome analyses. One 
problem in obtaining consent for 
future use of specimens is the 
apparent discrepancies between 
implementation of the Common 
Rule (45 CFR Subpart A) and the 
Privacy Rule of the Health Insurance 
Portability and Accountability Act 
(HIPAA). The Common Rule allows 
patients to consent to unspecified 
future research, whereas the 
HIPAA Rule requires that each 
authorization by a patient for release 
of protected health information 
include a specific research purpose 
(2,40,41). As noted by Vaught et al. 
(2007): “Because support of future 

research is a major purpose of 
biospecimen resources, this lack of 
harmony among federal regulations 
has had a significant effect on and 
created a great deal of confusion 
within the biospecimen community.”

Until recently, there was little 
or no available guidance for 
addressing informed consent issues 
in population-based studies of low 
penetrance gene variants (42,43). 
Most existing guidance pertains to 
single genes of high penetrance 
that are investigated in family 
studies. Yet the risks and benefits of 
population-based research involving 
low penetrance gene variants are 
substantially different from those 
associated with family-based genetic 
epidemiologic research (44). When 
obtaining informed consent, these 
differences become particularly 
meaningful: “Recommendations 
developed for family-based research 
are not well suited for most 
population-based research because 
they generally fail to distinguish 
between studies expected to reveal 
clinically relevant information about 
participants and studies expected 
to have meaningful public health 
implications but involving few 
physical, psychological, or social 
risks for individual participants” 
(42). Further recommendations for 
obtaining informed consent have 
been developed by a US Centers 
for Disease Control and Prevention 
(CDC) workgroup that considered 
integrating genetic variation in 
population-based research (42). 
The workgroup provided a useful 
outline of the content, language 
and considerations for an informed 
consent document. Much of the 
language in these consent materials 
addresses the important distinction 
between genetic research expected 
to reveal clinically relevant 
information about individual 
participants, and that which is not. 
It is anticipated that the majority of 
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population-based genetic research 
will not identify clinically relevant 
information. Thus, the workgroup 
did not recommend informing 
participants of individual results in 
these types of studies. However, 
they did note that the dividing line 
between low and high penetrance 
is difficult to define, since there 
is a spectrum of genetic variants 
with differing effect sizes. They 
therefore recommended “…when 
the risks identified are both valid and 
associated with proven intervention 
for risk reduction, disclosure may 
be appropriate” (42). A broader 
discussion of communicating test 
and study results follows in the next 
section.

Maintaining privacy of 
subjects and confidentiality 
of data

Molecular epidemiologic research 
participants explicitly agree to 
cooperate in a specified study when 
they consent to provide specimens 
and corollary demographic and risk 
factor information. Such participation 
generally does not include or imply 
consent to the distribution of the 
data in any way that identifies them 
individually to any other party, such 
as government agencies, employers, 
unions, insurers, credit agencies or 
lawyers. Such confidentiality and 
anonymity is premised on the ethical 
concept of respect for persons. 
Dissemination or revelation of 
results beyond the explicit purposes 
for which specimens were collected 
intrudes on subjects’ privacy. 
Inadvertent labelling of a subject as 
“abnormal” or as “in the extremes 
of a distribution of biomarker assay 
results” could have a potentially 
deleterious impact on the person’s 
ability to obtain insurance, a job, 
or credit, and can also affect the 
person socially or psychologically. 
Thus, as Nelkin and Tancredi 

noted, some union representatives 
are concerned that workers who 
participate in genetic research or 
screening will bear a genetic “scarlet 
letter” and that they will become 
“lepers” or genetic untouchables 
(45). The psychological impact 
of such stigmatization is virtually 
unknown.

Molecular epidemiology 
investigators must maintain the 
confidentiality of biomarker data 
because of the potential for misuse 
or abuse leading to discrimination, 
labelling and stigmatization (3,6,7). 
This can be increasingly difficult 
because ownership of stored 
specimens may be in question, and 
various investigators may request 
the use of them for research, 
litigation or commercial enterprise. 
In some cases, where specimens 
are identifiable or are capable of 
being linked to databases where 
identification is possible, it may be 
difficult to assure confidentiality. 
Informatics and the ability to link 
disparate databases are progressing 
at a rapid pace. In some countries, 
there may be a need for further 
legislation to prohibit unauthorized 
access to, or use of, specimen 
results. The Genetic Information 
Nondiscrimination Act (GINA) 
of 2008 was enacted to prohibit 
the use of genetic information 
in hiring or providing insurance. 
Nonetheless, the challenge to 
investigators will be to assure the 
rights of study participants while 
providing for a broad range of 
research opportunities.

As noted earlier, the regulation 
of privacy issues in the United 
States is addressed by the Federal 
Rule on the Protection of Human 
Subjects (the Common Rule), and, 
since 2003, the Privacy Rule of 
HIPAA. The lack of harmonization 
of these rules has been reported to 
“…create confusion, frustration, and 
misunderstanding by researchers, 

research subjects, and institutional 
review boards … [Nonetheless] both 
rules seek to strike a reasonable 
balance between individuals’ 
interests in privacy, autonomy, and 
well-being with the societal interest 
in promoting ethical scientific 
research” (17). The investigators 
concluded that the two rules should 
be revised to promote consistency 
and maximize privacy protections 
while minimizing the burdens on 
researchers.

The issue of identifiability of 
biological specimens (i.e. the linking 
of a specimen with its originator’s 
identity) that arises with the advent 
of large-scale research platforms 
that assemble, organize, and store 
data and sometimes specimens, 
and make them available to 
researchers, has been thoughtfully 
addressed (46). At issue is the 
ease with which individuals can be 
identified from DNA or genomic 
data. Individual identifiability 
from a database “…should not be 
overstated, as it takes competence, 
perhaps a laboratory equipped 
for the purpose, computational 
power perhaps linking to other 
data, and determined efforts.” 
(46). Nonetheless, identification 
is increasingly possible as the 
collection of biospecimens that can 
be used for matching grows and 
becomes more widely accessible. 
It has been demonstrated that an 
individual can be uniquely identified 
with high certainty with access to 
several hundred single-nucleotide 
polymorphisms (SNP) from that 
person (4,47).

The advent of the genome-wide 
association studies (GWAS), which 
genotype thousands of SNPs in 
large populations, have generated 
a series of questions concerning 
the practice of making summary 
data publicly available. This is due 
to the development of methods 
that use genotype frequencies and 
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an individual’s genotype profile 
generated elsewhere to infer 
whether the individual or a close 
relative participated in the study set 
(48,49). For published GWAS, the 
probability of inferring membership 
in a study is substantially decreased 
when less than 5000 SNPs are 
examined. Consequently, it is 
important for researchers to 
protect subject participation while 
making data available to bona fide 
researchers who provide sufficient 
and binding institutional support for 

protecting the confidentiality of IRB-
approved research.

There is a need for proper 
balance between encouraging 
molecular epidemiologic research on 
genomic specimens and protecting 
the privacy and confidentiality of 
research participants. Figure 2.1 
illustrates the flow of data that arises 
from these platforms. Among the 
design and governance issues are 
whether, and how, to de-identify the 
data, and at what stage to conduct 
scientific and ethical reviews (46). 

The ultimate question is whether a 
completely open-access model is 
defensible when different amounts 
of genomic data are present and 
potentially unique to an individual 
to allow for identification. Clearly, in 
the spirit of medical research and 
privacy laws and ethics, there is a 
need for controlled access models 
for these types of data sets, or 
else consent documents need to 
make clear the lack of complete 
confidentiality that may arise from 
publicly accessible databases.

Interpreting and 
communicating test 
and study results

Molecular epidemiology research 
yields both individual test (assay) 
results and study results, and 
research participants may want or 
have a right to both (6,50). However, 
increasingly, the bioethics literature 
also has recognized a counter-right 
of informational privacy, that is, 
the right not to know about certain 
information about oneself (12,51). 
Providing test or study results, 
genetic or otherwise, requires 
more than merely sending results 
to participants, it also involves 
interpreting the results (52); this 
responsibility ultimately rests with 
the investigator. Some IRBs require 
investigators to provide individual 
test results to subjects as well as 
overall study results, while others 
may advise or forbid them not to 
communicate results of assays that 
have no clinical relevance (27,42). 
Even though participants are told 
that tests may be purely for research 
purposes and have no clinical value, 
they may still ultimately want to know 
if they are “all right.” Investigators 
face difficult ethical issues in 
interpreting test and study results, 
and in deciding when biomarkers 
indicate an early warning where 
preventive steps should be taken. 

Figure 2.1. Steps in the protection of the identity of research subjects in large-scale 
databases and projects (46). Reprinted with permission from AAAS.
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Prevention actions may include 
efforts to control exposures (in 
occupational or environmental 
settings), the need for subsequent 
testing, ongoing monitoring, or 
simply, and often most importantly, 
counselling and a demonstration 
of caring (6). Reporting molecular 
epidemiologic test results to study 
participants, particularly those 
involving genetic information, 
involves among other issues, 
defining the concept of clinical utility. 
Clinical utility is generally based on 
three criteria: (1) clinical validity (the 
association between the test result 
and a health condition or risk); (2) 
the likelihood of a clinical effective 
outcome; and (3) the value of the 
outcome to the individual (26,53).

The interpretation of biomarker 
data is a complex matter. For 
example, in cross-sectional studies 
of populations with occupational 
or environmental exposure and 
biomarkers of early biological effect, 
biomarkers will not be indicators 
of risk per se, but of exposure, 
susceptibility given exposure, 
or biological changes that could 
be homeostatic responses to an 
exposure (6,54). The investigator 
needs to sort out these changes 
against a background of extensive 
intraindividual and interindividual 
variability in biomarkers. It is also 
important to note that such studies 
are not usually those designed for 
the purpose of identifying risk and 
should not be construed as such. 
Current technological capabilities 
offer investigators and practitioners 
the opportunity to utilize techniques 
with heightened sensitivity for 
detecting changes at cellular and 
molecular levels and for detecting 
exposures to minute amounts of 
a xenobiotic (12). Yet at the same 
time, at these levels, inherited 
and acquired host factors and 
other confounding factors can be 
strong causes of wide variability in 

biomarker results unrelated to the 
exposure or risk factor of interest. 
Moreover, when multiple biomarkers 
are to be assessed, researchers have 
a responsibility to consider whether 
issues of multiple comparisons can 
lead to inappropriate selection of 
significance levels (6). Associations 
with biomarkers not included in 
original hypotheses should be 
evaluated at more rigorous levels 
of statistical significance with 
built-in replication strategies, and 
subsequent interpretations should 
be considered in that light. This 
is particularly the case with the 
development of “omic” platforms that 
have facilitated the use of critically 
important agnostic approaches that 
produce thousands to now millions 
of biomarker variables.

In general, the accurate 
interpretation and communication 
of genetic information is quite 
challenging due to its probabilistic 
character and the pleiotropic nature 
of genes. Moreover, the potential 
impact of genetic information on 
family relationships, reproduction, 
and personal integrity can further 
complicate its interpretation (53,55).

Using genetic and epigenetic 
information for public health 
purposes requires that variation 
in the population be accurately 
described and categorized, and 
that the concept of “abnormal” 
be thought of more in terms of 
susceptibility than deterministically; 
hence, the appropriate interpretation 
of biomarkers is one, which is 
probabilistic (56). Lloyd (1998) 
concluded that “…public and scientific 
misconceptions of susceptibility are 
probably one of the most prominent 
problems facing those interested in 
the development of genetic medicine.” 
The same can be said for molecular 
epidemiology as well. For public 
health purposes, there is a need to 
define concepts (e.g. susceptibility) 
on a population level (18).

Another area of interpretation 
that is problematic is what is 
called individual risk assessment. 
Generally speaking, epidemiological 
studies (with or without biomarkers) 
yield group results. The disease 
risk pertains to the group as a 
whole and not necessarily to 
individual members of the group, 
although it is possible to compute 
an individualistic risk using a risk 
function equation (57). However, 
if the marker being used has not 
been validated for disease, the 
calculation of an individual’s risk will 
be meaningless. Thus far, for the 
current generation of biomarkers 
used in chronic disease research, 
there are a small number of markers 
(such as a few genetic mutations 
linked to high risk of disease in 
cancer family syndromes) for which 
an individual probabilistic risk can be 
estimated based on the biomarker.

These vagaries of biomarker 
data may lead an investigator to 
conclude that a particular biomarker 
is of uncertain meaning with regard 
to risk. Nonetheless, investigators 
have an obligation to accurately 
portray the degree of uncertainty 
in test and study results. There 
is a range of opinions about 
communicating results of biomarker 
tests on individuals or groups if 
there is no clinical meaning, such 
as usually occurs in transitional 
studies to validate markers and in 
population-based genetic research. 
Some believe that autonomy of 
participants is not honoured if 
they do not receive results, while 
others believe that the information 
communicated by results has no 
meaning for participants and indeed 
could be detrimental (52). While the 
latter view has the appearance of 
being paternalistic, as it decides what 
is good for the participant without 
seeking the opinion or decision 
of the participant, it may also be 
viewed as “doing no harm” (6). Such 



  Unit 1 • Chapter 2. Ethical issues in molecular epidemiologic research 17

U
n

it
 1

C
h

a
p

te
r

 2

an interpretation is premised on the 
notion that providing results lacking 
any clinical, prognostic, or other 
use may elevate the risk of harm to 
participants by creating opportunities 
for undue anxiety, stress, alarm 
and unnecessary medical testing. 
However, recent evidence suggests 
that most research participants 
want results provided to them, and 
that the risk of anxiety may be less 
than originally estimated (58,59). 
Nonetheless, individuals may have a 
right not to know certain information 
that might be very sensitive and 
troubling to them. Increasingly, 
molecular epidemiologists may also 
be dealing with epigenetic data, 
which may be far more complex and 
difficult to interpret than biomarker 
data currently under investigation 
(60–62).

The communication of the results 
of biologic tests (particularly genetic 
tests) in molecular epidemiologic 
studies is still a difficult area. While 
generally the literature identifies 
adherence to the principles of 
autonomy (beneficence, respect for 
persons, reciprocity, and justice), 
the actual ways to do that are 
still subject to interpretation and 
opinion. It is clear that the approach 
taken concerning communicating 
results should be made explicit 
in the informed consent process. 
However, there are differing opinions 
on whether, or to what extent, test 
results should be communicated to 
study participants. On one extreme, 
some argue for full disclosure of 
genetic information, while others 
argue for balance of benefit and 
harm and that disclosure should 
be limited to certain situations. 
US federal regulations regarding 
biomedical research have been 
characterized as not providing clear 
guidance on this matter (52).

Timeliness of communication of 
results is also important to consider. 
This particularly becomes an issue 

when results indicate an action that 
could reduce exposure or risk, or 
affect timely treatment. As discussed 
above, situations exist where 
additional support to participants 
may be warranted. Evaluating 
the impact of notifying research 
participants of results may not need 
to be a routine matter, but since the 
consequences of notification cannot 
always be anticipated, it may be 
useful to provide the opportunity 
for participants to obtain more 
information or provide feedback 
about the results (6).

Avoiding inappropriate 
actions based on study 
results

Molecular epidemiologic 
investigators must concern 
themselves with how study 
results are incorporated into 
epidemiologic knowledge and 
public health practice. In some 
sense, the results of molecular 
epidemiologic studies of biomarkers 
of susceptibility are particularly 
at risk of being misunderstood or 
abused (6,45,52,55,56,63–65). 
For example, many common low 
penetrance gene variants, some of 
which require specific environmental 
exposures to increase risk of disease, 
do not provide unambiguous 
information. Yet various groups 
in society may start using such 
genotype information as if it 
represented diagnoses rather than 
risk factors (66). The consequences 
of such misinterpretation and 
application of biomarker results 
can include discrimination, labelling 
and stigmatization of subjects. 
Moreover, the deleterious effects 
of the inappropriate application 
of results can extend to family 
members, communities, ethnic 
groups, and other social groups 
as well. Unfortunately, there is 
a paucity of research about the 

negative repercussions of molecular 
epidemiologic research findings 
on participants, family members, 
communities and society. There is 
the widely expressed concern that 
genetic biomarkers can be used in 
ways that are discriminating and 
unjust, but there is little published 
evidence (22,45,67). Similarly, this 
concern has also been voiced with 
epigenetic data (68).

To facilitate the appropriate 
use of study results as much as 
possible, investigators should 
assure their quality. Methodological 
considerations in study design bear 
directly on the kind and strength of 
the inferences that can be drawn 
(e.g. increasing generalizability 
of study results through sample 
selection, and achieving appropriate 
statistical power with large enough 
sample sizes). This in turn affects 
what evidence can be provided 
from any particular study and what 
prevention or interventions can be 
envisioned. Inappropriate actions 
can thus inadvertently occur when 
interventions (or lack thereof) are 
based on results from a study 
that used biased or inappropriate 
methods. Some aspects of 
the research process provide 
investigators greater control over 
ensuring the appropriate application 
of findings; namely by strengthening 
the study’s internal and external 
validity (such as in regards to study 
design and selection of research 
participants). Other dimensions are 
less in the control of investigators, 
such as public perception, media 
coverage, and the application of 
the results in the policy arena. 
The importance of the availability 
of all relevant evidence becomes 
apparent here as well (69). Timely 
publication of negative results is 
also crucial, for they contribute to the 
evidence on a particular biomarker 
and help to define the uncertainty 
accompanying a particular finding.
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Molecular epidemiology holds 
promise for our ability to identify 
changes earlier in the natural 
history of a disease that may be 
amenable to intervention, leading 
to prevention of clinical disease or a 
better prognosis. This contribution is 
not without potential ethical issues. 
Premature marketing or use of tests 
is one problematic area that results 
from an inappropriate assessment 
of whether biomarkers or molecular 
tests have been validated for the 
specific use intended (25,26,70,71).

Inappropriate action also 
includes the lack of action, such 
as where there is some evidence 
from molecular epidemiologic 
research that indicates the need for 
preventive measures, and none are 
taken. There is increasing concern 
that public health practice has failed 
to take action on preliminary findings 
on the basis of uncertainty in the 
evidence. Delays in recognizing risks 
from past exposures, and acting on 
the findings, such as for cigarette 
smoking and exposure to asbestos 
and benzene, are failures that were 
not only scientific but ethical, since 
they resulted in preventable harm 
to exposed populations (72). One 
explanation offered for such delay 
is the absence of adequate proof or 
evidence of the certainty of a causal 
relationship. Such a position reflects 
an unwillingness to accept what 
may appear to be a preponderance 
of evidence as a trigger for public 
health actions even if there are 
some uncertainties (73).

The precautionary principle, 
a contemporary re-definition of 
Bradford Hill’s case for action, 
provides a common sense rule for 
doing good by preventing harm 
to public health from delay: when 
in doubt about the presence of a 
hazard, there should be no doubt 
about its prevention or removal (70). 
It shifts the burden of proof from 
showing presence of risk to showing 

absence of risk and aims to do good 
by preventing harm, subsuming 
the upstream strategies of the 
Driving Forces Pressure Stress 
Exposure Effect Action (DPSEEA) 
model and downstream strategies 
from molecular epidemiology for 
detection and prevention of risk 
(74). It has emerged because of 
ethical concerns about delays in 
detection of risks to human health 
and the environment, and serves 
to emphasize epidemiology’s 
classic role for early detection 
and prevention. At the same time, 
such precautionary strategies 
can have significant unintended 
consequences that also must 
be considered (71,75). Further, 
the translation of epidemiologic 
findings into public health policy 
generally involves multiple parties 
with various vested interests. 
The arena is complex: the role in 
this arena of those who carry out 
molecular epidemiologic research 
is not altogether clear, and there 
is a concern that the perception of 
an investigator’s ability to carry out 
objective research could potentially 
be compromised through advocacy.

In keeping with the wider field 
of epidemiology, it is important 
that molecular epidemiology 
strive towards disease detection 
and prevention in populations. A 
concern has been expressed that 
when a public health problem is 
reduced to the level of the individual, 
such as with molecular biomarkers, 
then so too shall the intervention 
lie at the individual level (76). 
In some instances, this may be 
perfectly appropriate, yet in others, 
it may lead to the non-individual 
level factors (such as ecological 
chemical exposures) that gave rise 
to the public health problem in the 
first place and allow it to persist 
unabated (77). Inappropriate action 
could result from appropriate 
research. While there is no clear 

path to follow to those studies that 
will be beneficial and to avoid those 
that will not, considering why and 
how a particular research question 
is being asked, and what truly is the 
best manner in which to answer it, 
may aid molecular epidemiology 
in a balancing act between a high-
risk approach and population-wide 
applicability of findings.

The results of molecular 
epidemiologic research may be 
used to support regulation or 
litigation. For regulatory agencies, 
there is a need to balance the risk 
of premature use of inadequately 
validated data with the harm from 
unduly delaying the use of relevant 
data from overly cautious policies 
(12). Critical in assessing the 
validity of molecular epidemiologic 
research for regulation or litigation 
will be whether the studies are of 
sufficient size and methodologic 
quality, and whether the 
findings have been replicated or 
corroborated. However, the ability of 
molecular epidemiologic research 
to provide evidence of toxicant-
induced injuries, long before any 
clinical symptoms emerge, could 
profoundly affect how regulation is 
conceived to protect the public from 
environmental risks (78).

Sharing the benefits 
of molecular epidemiologic 
research: Public health ethics

In addition to the scientific benefits 
of sharing genomic and molecular 
epidemiologic data, there are also 
social and ethical issues. Fourteen 
stakeholder groups (many of 
which are outside the scientific 
community) have been identified 
who have at least eight different 
perspectives on the question 
of donor privacy and scientific 
efficiency (16). The researchers 
conclude that, at present, society 
lacks the sophisticated ethical or 
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policy framework to simultaneously 
weigh multiple perspectives 
and interests. More broadly, the 
benefits of molecular epidemiologic 
research involving genes may not 
be equally shared among poorer 
people in developed countries 
or among developing countries 
(21,79–81). The responsibilities 
of molecular epidemiologists to 
share the benefits of their research 
are generally viewed as limited. 
With that said, there is a need 
for molecular epidemiologists to 
consider broader questions, such 
as under what general conditions 
genome-based knowledge in 
molecular epidemiology could be 
further used in public health.

Beyond the need for molecular 
epidemiologists to address the rights 
of individuals is the need to consider 
broader questions, such as clarifying 
the general conditions under 
which molecular epidemiological 
research findings will contribute to 
public health in a wide-ranging way. 
Population-based data on genome-
disease and genome-environment 
interactions are the primary point 
for assessing the added value of 
genome-based information for all 
health interventions in different 
health care settings. This includes 
the integration of genome-based 
information into existing population-
based surveillance systems, and 
the use of large-scale biobanks to 
quantify disease incidence in various 
populations and subpopulations, 
as well as to understand their 
natural histories of disease through 
risk factors including genome-
environment interactions (15). 
Making such potential benefits of 
molecular epidemiology manifest 
requires paying particular attention 
to the public health-specific ethical, 
legal and social implications of such 
research (15,77,82).

Whole-genome research

A core element of molecular 
epidemiologic research is the ability 
to utilize whole-genome and related 
“omic” technologies (see Chapters 6 
and 7), because of the considerable 
cost and effort directed at conducting 
large studies. The area of whole-
genome research is in its formative 
stage. The initial recommendations 
have been formulated to protect 
the confidentiality of participants 
and, at the same time, make the 
data available to researchers who 
propose projects and adhere to 
strict guidelines for protection of 
the data sets and participants. To 
this end, the US National Institutes 
of Health (NIH) has made available 
GWAS data to researchers through 
a registered access process using 
the database of genotypes and 

phenotypes (dbGaP) resource of the 
National Center for Biotechnology 
Information (NCBI) (83). The 
procedure requires institutional 
support for a faculty member 
(from a university, organization, or 
commercial entity) to access GWAS 
genotype data under agreed-
upon conditions (Table 2.1). Sign-
off by the sponsoring institution 
must guarantee the security and 
validity of the proposed analyses 
according to the precepts of the 
Trans-NIH GWAS Sharing Policy 
along with subsequent updates 
(84). The policy addresses issues 
of data sharing and availability of 
data sets. Moreover, guidelines 
have been proposed for issues of 
informed consent prospectively, 
and review of older studies for use 
in GWAS studies. This includes 
explicit assent from the overseeing 

The NIH GWAS certificate expects that a Principal Investigator (PI) and their institution 
certify the following:

The data submission is consistent with all applicable laws and regulations, as well as 
institutional policies;

The appropriate research uses of the data and the uses that are explicitly excluded by the 
informed consent documents are delineated;

The identities of research participants will not be disclosed to the NIH GWAS data repository;

An IRB and/or Privacy Board, as applicable, has reviewed and verified that:
• The submission of data to the NIH GWAS repository and subsequent sharing for 
research purposes are consistent with the informed consent of study participants 
from whom the data were obtained;
• The investigator’s plan for de-identifying data sets is consistent with the standards 
outlined in the policy;
• It has considered the risks to individuals, their families, and groups or populations 
associated with data submitted to the NIH GWAS data repository; and
• The genotype and phenotype data to be submitted were collected in a manner 
consistent with 45 C.F.R Part 46.

After publication, a full GWAS data set, stripped of all identifiers and with limited covariate 
data (e.g. case-control status, study or geographic entity, age group, sex, and broad racial and 
ethnic groups), is transferred to a Data Access Committee (DAC), according to the trans-NIH 
GWAS data posting policy of January 25, 2008 (84). All investigators, regardless of whether 
or not they are PIs on the GWAS or external to the project, who desire access to the individual 
level genotype data with limited covariate data can obtain access by submitting a secured 
application proposal to a certified DAC. Access to the data through the DAC requires the use 
of an ERA number, registration with the NIH, support of an investigator’s institution (signing 
official), IT security program including use of a controlled-access and secure site, and a Data 
Use Certificate and modified SF-424 form. Proposal application forms are completed and 
sent to the DAC, which is composed of NIH officials who make the final decision regarding 
access to the data.

 
Table 2.1. Requirements for conducting genome-wide association studies



20

IRB that the conduct and availability 
of the GWAS study are consistent 
with the informed consent signed 
by the participants. NIH and other 
large funding organizations, such 
as the Wellcome Trust in the 
United Kingdom, have mandated 
that funded GWAS studies be 
made available through the above 
described registered access 
process.
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chapter 3.  

Biological sample collection, 
processing, storage 

and information management
Jimmie B. Vaught and Marianne K. Henderson

Summary

The collection, processing and 
storage of biological samples occur 
in the larger context of organizations 
known as biological resource 
centres or biospecimen resources. 
Biological resource centres are (1,2) 
service providers and repositories 
of living cells, as well as genomes 
of organisms, archived cells and 
tissues, and information relating to 
these materials. The US National 
Cancer Institute (3) defines a 
biospecimen resource as a “…
collection of human specimens and 
associated data for research 
purposes, the physical entity 
where the collection is stored, 
and all relevant processes and 
policies.” The complexities involved 
in proper sample management 
policies and procedures are often 
underestimated. Prior to initiating a 

study that will involve the collection 
of biological samples, many 
decisions need to be made that will 
affect the quality of the samples 
and the outcome of the study. The 
appropriate sample type(s) needs to 
be chosen. The processing protocol 
that will result in samples of suitable 
quality for the intended laboratory 
analyses must be selected from 
among various possible protocols. 
Consideration must be given to 
the proper storage conditions 
to maintain sample quality until 
analyses are completed. All of these 
activities must be monitored and 
controlled by appropriate sample 
tracking and laboratory informatics 
systems. A comprehensive quality 
management system, with standard 
operating procedures and other 
appropriate controls, is necessary 

to assure that biological samples 
are of consistent quality and right 
for the intended analyses and study 
goals.

Introduction

Although biological specimens have 
been collected for use in a variety 
of molecular epidemiology, clinical 
trial and basic research studies for 
many years, it has only recently 
been recognized that the protocols 
and practices involved in collecting, 
processing and storing specimens 
actually comprise “biospecimen 
science.” As a result, many 
organizations (Appendix 3.1) have 
engaged in producing guidelines and 
best practices for these endeavours, 
now known as biological resource 
centres or biospecimen resources. 
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These terms reflect the fact that 
specimen management takes place 
in an environment that includes a 
wide range of policies concerning the 
specimens and data, as well as the 
physical structure, the biorepository. 
Biological resource centres are 
engaged in many activities beyond 
storage, such as acquiring, 
processing (e.g. aliquoting, DNA 
extraction) and distributing biological 
materials. The practices and 
policies that have been organized 
into formal documents testify to the 
importance of following proper steps 
that will result in the highest quality 
specimens for research purposes. 
The use of proper procedures to 
produce biological specimens of 
the appropriate quality, as well as 
the collection of relevant clinical, 
epidemiologic and quality control 
data, gives the biospecimens their 
value in research.

Context and public health 
significance

Biological specimens (or 
biospecimens), such as blood, 
urine, saliva, and many other 
types, are collected for a variety 
of reasons, for normal patient 
monitoring and care as well as for 
basic, clinical and epidemiologic 
research studies. Many medical 
advances, including studies of 
heart disease, AIDS and cancer, 
have resulted from preliminary 
developmental studies that have 
relied on access to and proper use 
of the appropriate biospecimens. 
The sources of biospecimens for 
these studies have been varied, as 
has their quality (1–4).

For molecular epidemiology 
studies, the ultimate success of a 
study depends on reliable laboratory 
analyses of these specimens. In 
order for laboratory analyses to be 
reliable, the collection, processing 
and storage of specimens must be 

performed under strictly controlled 
procedures. As the sensitivity and 
specificity of analytic techniques 
have increased to an extraordinary 
degree in recent years (see Chapter 
4), it has become even more important 
to assure that biospecimens are of 
the highest quality. In addition, from 
the point in time that the specimens 
are collected until laboratory results 
are analysed and reported, all of 
the relevant information concerning 
the specimen, as well as data 
concerning the study participant 
and laboratory analyses, must be 
properly stored in interoperable 
information management systems. 
This could mean multiple systems or 
multiple databases interconnected 
in a single system. All of these 
steps must be performed under 
a well-planned quality assurance 
programme, and according to 
relevant legal and ethical standards 
(discussed in Chapter 2).

Examples/case studies

Prior to initiating a study that involves 
specimen collection, several key 
points must be considered. The 
answers to these questions will be 
important in determining whether the 
appropriate materials, equipment 
and procedures are in place:

• What are the goals of the 
study?

• What laboratory analyses will 
be needed to accomplish the study 
goals?

• What type of biospecimens 
will be necessary for the intended 
laboratory analyses?

• How many specimens will 
be collected? If necessary, a 
biostatistician should be consulted 
to assist in determining the number 
required to achieve statistical 
significance.

• What volume or size will 
be required for each specimen 
to assure that it is adequate for 

the intended analyses? Will it be 
necessary to store smaller volumes 
in aliquots for future unplanned use 
to avoid thawing a larger aliquot? 
For example, it is important to 
consider that new technologies have 
resulted in more sensitive analytical 
techniques to apply to older samples 
(see also Chapters 4 and 7), or older 
samples may become sources of 
information to study the natural 
history of a seemingly ‘new’ disease.

• What quality standards do the 
specimens need to meet for valid 
laboratory analyses? Have such 
quality measures been validated?

• Have specimen collection, 
processing and storage protocols 
been standardized and validated in 
pilot studies?

• If the specimens will be stored 
for some period of time before 
analysis, has the stability of the 
intended biomarker, or other analyte, 
been determined for the planned 
storage conditions?

• Will specimens need to be 
shipped to distant locations for 
analysis? If so, have packaging and 
shipping protocols been validated to 
assure the stability and safety of the 
specimens and personnel who will 
handle them?

• Have all other logistical issues 
been resolved, such as proper 
coding, labelling and identifying the 
types of storage vessels?

• What data will be collected 
with the sample and the study, and 
is an appropriate informatics system 
available to collect and process this 
information?

• Have all appropriate informed 
consent, privacy and other ethical 
and legal rules and regulations been 
reviewed and adhered to in the 
study planning?

• Are funding and other 
resources for the proposed study’s 
specimen collection adequate? Will 
it be necessary to consider lower 
cost alternate methodologies?
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If there is a significant amount of 
uncertainty in answering the above 
questions, then additional thought 
and planning will be needed before 
beginning the study. For example, 
before initiating the collection of 
blood and urine from 500 000 
study participants in 2007, the 
United Kingdom Biobank conducted 
a series of sample processing 
validation studies (5–7). These 
studies showed the effects of 
sample processing delays, as well 
as storage conditions, on the results 
of the wide variety of assays to be 
conducted on samples that will be 
collected over a four-year period, but 
may be used for studies for 20 years 
or more. The long-term success 
of such a large and costly project 
depends on this careful approach 

to planning the most efficient 
specimen collection and processing 
to maintain the stability of the 
resulting sample aliquots, which are 
expected to number approximately 
15 000 000 (5).

Among the issues outlined 
above, cost is a major consideration, 
especially when designing a study 
that will include a large collection 
of biospecimens. Often the costs 
of collecting, processing and 
storing biospecimens are not well 
understood or estimated before 
starting a study. The design 
and operation of the physical 
biorepository also needs to be well 
thought out. Baird and Frome (8) 
have outlined the major elements 
of cost and design for a large 
biorepository. It is also important 

to plan biospecimen collections 
with careful attention to the costs of 
analyses and storage, especially if 
long-term storage will be necessary. 
For example, if a study requires 
only nanogram quantities of DNA 
for genotyping purposes, one 
should consider collecting small 
amounts of blood or saliva on filter 
cards, instead of a large volume 
of blood that will yield hundreds of 
micrograms of DNA and incur larger 
processing and storage costs. Other 
alternate processing and storage 
approaches that may result in 
cost savings are considered in the 
Specimen collection section.

As shown in Figure 3.1, specimen 
collection, processing and storage 
are components of a series of steps 
that are used in any study involving 

Figure 3.1. The lifecycle of biospecimens in biological resource centres. Used with permission from (2).
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the collection of biospecimens. 
Each of these steps is discussed in 
turn in the following sections.

Specimen collection

Specimen types

A wide variety of specimen types 
may be collected for storage, and 
in many molecular epidemiology 
studies more than one of the 
following (discussed in detail) 
may be necessary, depending on 
the study goals (2,3). Additional 
collection, processing and storage 
guidance can be found in the 
International Society for Biological 
and Environmental Repositories 
(ISBER), National Cancer Institute 
(NCI) and International Agency 
for Research on Cancer (IARC) 
documents (2–4).

• Blood and blood fractions 
(plasma, serum, buffy coat, red 
blood cells)

• Tissue (from surgery, autopsy, 
transplant)

• Urine
• Saliva/buccal cells

Many other types of specimens 
may be collected, depending on 
availability and study goals, for 
example:

• Placental tissue, meconium, 
cord blood

• Bone marrow
• Breast milk
• Bronchoalveolar lavage
• Cell lines
• Exhaled air
• Feces
• Fluids from cytology (ascites, 

pleural fluid, synovial fluid, etc.)
• Hair
• Nail clippings
• Semen
Each of these specimen types 

should be collected, processed, 
and stored under conditions that 
preserve their stability with respect 
to the intended future analyses. 

Of particular interest for molecular 
epidemiology studies are those 
specimen types that can be collected 
most conveniently and efficiently, 
and at the lowest cost for large 
population-based studies. The most 
common specimen types collected 
for these studies are discussed in 
the following sections: blood, tissue, 
urine and saliva.

Collection procedures

Collection procedures will vary 
according to specimen type and the 
intended analyses, but all procedures 
should be carefully designed 
and documented. It is normally 
a good practice to perform pilot 
studies to validate new specimen 
collection methods and protocols 
(4). The discussion in this section 
focuses on the specimens most 
commonly collected for molecular 
epidemiology studies. Additional 
information and collection protocols 
may be found in several references 
(2–4). Also see Chapter 12, Table 
12.2 for additional information 
about specimen types collected 
for epidemiologic studies, and their 
advantages and disadvantages.

Blood collection

Collection of blood specimens (9) 
should be carried out by trained 
phlebotomists to avoid causing 
study participant discomfort, or 
compromising the quality or quantity 
of the sample. Standard protocols 
recommended by well-established 
organizations should be used.

An evacuated tube system (e.g. 
Becton-Dickenson Vacutainer®) 
with interchangeable glass or 
plastic tubes is commonly used to 
collect blood. The tubes, some with 
additives appropriate to a specific 
application, are differentiated by 
their colour-coded stoppers. Blood 
collection tubes should be drawn 

in a specific order to avoid cross-
contamination of additives (10,11) 
(also see Chapter 12).

As shown in Table 3.1, blood 
is often fractionated before 
being analysed or stored (10,11). 
Fractionation of blood results in the 
following components:

• Mononuclear leukocytes 
(peripheral blood mononuclear 
cells, PBMCs) are the only cell type 
in blood that can be maintained in a 
viable state.

• Neutrophils (the most abundant 
type of granulocytes) are also 
nucleated and another source of 
DNA.

• Erythrocytes can be used to 
study adducts of haemoglobin.

• Plasma is obtained from 
an anticoagulated blood sample 
by separating out the cellular 
components.
Serum isolation requires no 
anticoagulants. To reduce 
contamination, serum should 
be separated from other blood 
components as soon as possible. 
Serum allows for improved analyses 
of antibodies, nutrients, lipids and 
lipoproteins. Either serum or plasma 
may be used for proteomic analyses, 
although according to recent Human 
Proteome Organization (HUPO) 
guidelines there are advantages and 
disadvantages in the use of either 
specimen (12). For studies intended 
to investigate the broadest array of 
proteins and peptides, plasma is 
the better choice, as the process of 
blood coagulation results in the loss 
of many proteins. Some differences 
in endogenous hormone analytical 
results have been found between 
serum and plasma, but as noted in 
Chapter 12, both are acceptable as 
specimens for such analyses.

Depending on the intended 
laboratory analyses, blood should 
be collected anticoagulated 
(consisting of plasma, buffy coat 
and red blood cells) or coagulated 
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(consisting of serum and red blood 
cell clot) (9). There are several types 
of anticoagulants which need to be 
chosen carefully to avoid problems 
with certain laboratory applications 
(9,11). Other special collection tubes 
such as Serum Separator Tubes® 
and Cell Preparation Tubes® (SST, 
CPT, Becton-Dickenson) allow 
for more convenient separation of 
blood fractions, but some problems 
have been encountered in their 
use (9). Special collection tubes 
with protease inhibitors have been 
developed, which preserve proteins 
for proteomics analyses (9,12). The 
analysis of trace metals in blood 
also requires caution, as they 
may be present in the evacuated 
collection tubes. Lot-to-lot variation 
in the quality of collection tubes is 
also a potential source of spurious 
laboratory results.

There is no fixed time period that 
can be recommended for collecting 
and processing blood. However, 
depending on the intended analyses, 
the stability of blood with respect to 
various laboratory analyses may 
be affected or controlled as follows 
(9,11):

• Anticoagulants used in blood 
collection, as described above and 
in Table 3.1.

• Stabilizing agents are 
necessary to preserve some 
analytes, and should be included 
in the collection device or added as 
soon as possible after collection.

• The time elapsed between blood 
collection or removal from a storage 
unit and subsequent processing 
may be important, depending on the 
intended analyses. See the United 
Kingdom Biobank validation study 
summary for examples of such 
effects (summarized in reference 7).

• The temperatures at which 
blood specimens are processed and 
stored may be important, depending 
on the intended analyses (13).

• Thaw/refreeze cycles should 
generally be avoided due to the 
potential for instability of some 
analytes. However, thaw/refreeze 
effects are not well documented 
for all analytes and may need to be 
evaluated through pilot tests (13).

• Enzymatic degradation 
affects many biochemical markers. 
RNA and proteins are particularly 
susceptible to this and require 
special procedures to maintain 

their integrity during collection 
and processing. The addition of 
commercially available RNase 
inhibitors preserves RNA integrity.

• Special collection systems 
(ex. PAX DNA® Blood Collection 
System by PreAnalytiX®) allow for 
the collection, shipping, and short-
term storage of blood at room 
temperature, and for subsequent 
extraction of DNA according to a 
single-tube protocol (14).

Tissue collection

The primary sources of tissues for 
research are biopsy, surgery and 
autopsy. As noted in the ISBER 
Best Practices and IARC Biological 
Resource Centre Guidelines (2,4), 
tissues must be collected under 
strict ethical and legal guidelines, 
and the collection of samples for 
research must never compromise 
the diagnostic integrity of a 
specimen. Generally it is preferable 
for a trained pathologist to be 
involved in the actual procurement 
of the tissue specimen during a 
surgical or autopsy procedure.

Other important considerations 
in collecting tissue are (adapted 

 
Table 3.1. General guidelines for blood collection and processing

Blood Fraction Collection additive Preferred uses Limitations/problems

Whole Blood Anticoagulant (ACD, heparin, 
EDTA); protease inhibitor for 
proteomics

Genomics studies; Source of DNA, 
RNA

Anticoagulant effects need to be 
considered

Buffy Coat Anticoagulant DNA extraction; source of 
lymphocytes, cell lines as unlimited 
DNA source

Limited yield if blood not properly 
processed.
As a source of DNA, whole blood 
collection is generally more 
economical

Serum None Proteomics; Source of DNA; 
Multiple analytes

DNA yield low (nanograms) but 
suitable for genomics applications

Plasma Anticoagulant, possibly protease 
inhibitor

Proteomics (preferred sample) DNA yield low (nanograms) but 
suitable for genomics applications.

Source of DNA, multiple analytes Analytical results may differ in 
serum and plasma.

Blood Clot None Source of DNA Extraction difficult, costly
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from ISBER Best Practices and 
IARC Biological Resource Centre 
Guidelines (2,4)):

• Timing. In general, it is 
important to minimize the time 
between collection and stabilization 
and processing of tissue specimens. 
This time will vary according to 
the intended use, since different 
biomolecules degrade at different 
rates. The effects of collection 
timing on tissue and macromolecule 
preservation have not been well 
studied. The best approach is 
to collect, stabilize (freezing 
or fixing) and process tissue 
specimens as rapidly as possible. 
It is recommended that surgical or 
biopsy specimens be preserved 
within 1 hour (or less if possible) of 
excision; however, tissue subject to 
a delay up to two hours should still 
be collected (15). Detailed records 
of the timing of events from excision 
to fixation or freezing should be 
kept. Tissue banking staff must be 
present in pathology to freeze or fix 
the tissue as quickly as possible. 
Tissues must be snap frozen either 
directly or enclosed in a container 
immersed in the freezing medium 
(e.g. precooled isopentane). Liquid 
nitrogen is not recommended as a 
suitable freezing medium for direct 
snap freezing, due to the potential 
formation of cryo-artefacts. When 
dry ice or liquid nitrogen are not 
readily available, tissue collection 
into RNAlater® (16) may be a 
good alternative, provided that the 
tissue is not required for diagnostic 
purposes and permission is given by 
the pathologist.

• Surgical specimens. Remnant 
samples may be collected from 
diagnostic procedures or, with 
proper IRB approval, specimens 
may be resected specifically 
for research. Depending on the 
intended use, specimens may be 
transported or frozen immediately. 
Samples requiring snap freezing 

can be frozen in a Dewar flask of 
liquid nitrogen or on dry ice at the 
time of collection. Otherwise, it is 
recommended that samples be 
transported in saline on wet ice 
to the repository or laboratory for 
additional processing.

• Autopsy specimens. It is 
important to know the time interval 
between death and collection and 
processing of the specimen, as 
specimens may degrade quickly 
after death. Autopsy procedures 
may yield “normal” tissues (i.e. 
normal lung), or large quantities 
of a specimen that would not 
otherwise be available from surgical 
procedures. Tissue specimens 
collected at autopsy should be 
appropriately labelled as to the 
organ site, tissue type, and time of 
resection, and then immediately 
placed in a container of saline on 
wet ice for transport to the tissue 
repository for processing.

• Transplant tissue and organs 
that are inappropriate for transplant 
may sometimes be made available 
for research. Often transplant tissue 
is of a higher quality than either 
surgical or autopsy specimens, 
due to the special efforts made 
to preserve the integrity of the 
transplant organs.

Tissue fixation

Formalin- or alcohol-fixation and 
paraffin embedding may be used 
to preserve tissues at relatively 
low cost when adequate freezing 
procedures and storage facilities 
are not available (2). Formalin-
fixation is also the standard practice 
for preservation of tissues collected 
during surgery or autopsy. Fixed 
paraffin blocks may be stored 
in light- and humidity-controlled 
facilities at room temperature 
(18–22°C). Formalin-fixed tissues 
may be used for DNA extraction. 
The DNA is usually fragmented but 

remains suitable for PCR-based 
analysis of short DNA fragments.

Due to degradation issues, 
formalin-fixed, paraffin-embedded 
tissues are of limited use as a source 
of RNA. However, RNAlater® (16) is 
a commercial aqueous, non-toxic 
tissue storage reagent that rapidly 
permeates tissues to stabilize and 
protect cellular RNA and eliminates 
the need to immediately freeze or 
otherwise stabilize tissue samples. 
Tissue samples can be harvested 
and submerged in RNAlater® for 
storage for specific periods without 
jeopardizing the quality or quantity of 
RNA extracted at a later time or date. 
However, specimens processed in 
RNAlater® cannot be further used for 
histomorphopathological analyses.

Alternatives to formalin fixation 
include ethanol, Optimal Cutting 
Temperature (OCT) media, 
methacarn, and Carnoy’s solution, 
among others. To achieve an 
acceptable balance between the 
preservation of tissue morphology 
and nucleic acid integrity, it may 
be necessary to alter fixation 
methodology to achieve a study’s 
goals. Several studies have explored 
the effects of the above standard 
fixatives, as well as newer ones 
for special applications (17–20). 
Although formalin-fixation remains 
the standard tissue preservation 
method, these alternatives 
should be considered for special 
research applications that require 
the preservation of particular 
macromolecules or morphological 
features.

Urine collection 
(see also Chapter 12)

Many analytes, such as steroid 
hormones, pesticides and a 
wide variety of drugs and their 
metabolites, can be measured in 
urine for molecular epidemiology 
studies (11), making it a convenient 
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specimen for a variety of studies. 
Urine collection can performed 
under several conditions, depending 
on the study design and analytical 
goals (4,11):

• First morning. Collected 
immediately upon rising in the 
morning, recommended for analytes 
requiring concentration for detection 
in laboratory assays.

• Random urine specimens are 
appropriate for drug monitoring and 
cytology studies.

• Fractional specimens. The 
study participant fasts after the 
last evening meal, and the second 
morning urine is collected. These 
specimens are used to compare 
urine analyte levels with their 
concentrations in blood.

• Timed urine collections (e.g. 
12 and 24 hour) are used to allow 
comparisons of excretion patterns.

Urine collections should be 
maintained on ice or refrigerated 
for the duration of the collection. 
Collection vessels are generally 
larger than for other liquid 
specimens, and may range from 
50 to 3000 mL. Depending on 
the analyte to be measured, a 
preservative may be needed. The 
type of preservative may differ 
according to test methodologies, 
time delay, and transport conditions. 
EDTA and sodium metabisulfite 
are examples of preservatives 
commonly used in urine collections 
(11).

Saliva/buccal cell collection

Saliva, with exfoliated buccal cells, 
is an excellent source of DNA for 
genetic studies (21). Self-collection 
of buccal cells is a safe, convenient 
method that can be used to reduce 
the cost of specimen collection and is 
often preferred over blood collection 
by study participants (discussed 
in Chapter 12). Several methods 
have been developed for collecting 

buccal cells, including swabs, 
cytobrushes and a mouthwash 
protocol. The mouthwash protocol 
has been successfully used in large 
population-based studies and has 
been shown to yield DNA of good 
quality and quantity for genetic 
analyses (21). However there are 
limitations to buccal cell DNA, as 
described below.

New methods are being 
developed for saliva collection. One 
such method has been developed 
by DNAGenotek (22). A proprietary 
reagent, Oragene, preserves saliva 
(and DNA) at room temperature. 
The method has been successfully 
used in epidemiologic studies (23). 
The yield and quality of DNA from 
the Oragene collection is similar to 
that for the mouthwash method.

Collection of blood, 
saliva on treated cards

New technologies, such as whole-
genome amplification methods 
to increase genomic DNA yields, 
and the high cost of collecting and 
processing blood or mouthwash 
samples, have led to renewed 
consideration of treated filter paper 
cards as a method to collect DNA 
from blood (24) and buccal swabs 
(25) (also discussed in Chapter 12). 
Filter paper cards have been pre-
treated to retard bacterial growth, 
inhibit nuclease activity, and release 
DNA during processing (26). The 
cards may be easier to use in 
paediatric and elderly populations to 
collect specimens, and can be mailed 
in an envelope with a desiccant at a 
nominal cost.

Blood collected on filter cards 
is well established as a source of 
DNA for genetic studies, as well as 
for a variety of other research and 
clinical applications. The US Centers 
for Disease Control and Prevention 
(CDC) uses blood spot cards in 
its nationwide neonatal screening 

programme (24). The US Armed 
Forces collect blood spot cards from 
all service members and stores 
them for possible identification 
purposes, as well as research and 
clinical purposes. DNA can be 
easily extracted from blood spots 
in amounts more than sufficient 
for genetic studies. This process 
has been automated, especially for 
forensic applications (27).

In addition to standard filter 
cards, new technologies for dry-
state specimen collection have 
been developed. GenVault (28) 
uses small elements of treated filter 
paper in 384-well plates for storage 
of blood, DNA, plasma and serum 
specimens at room temperature. 
DNA and protein can be eluted 
from the elements by relatively 
straightforward methods.

Preserving specimen stability 
during collection

As noted above for tissue 
biospecimens, the elapsed time 
for collection, and between 
collection and stabilization, should 
be minimized, and the tissue 
temperature should be reduced as 
soon as possible after collection. 
This is especially important if 
freezing is the stabilization endpoint. 
If fixation is the stabilization endpoint, 
control of processing time between 
maximum and minimum durations 
may be required. Rapid processing 
may not be as critical for other types 
of biospecimens, such as blood. 
Optimal processing times vary 
depending on the analysis method 
for which a biospecimen is used.

Biorepositories should use the 
processing method that preserves 
the greatest number of analytes. The 
best scheme to preserve analytes 
is to divide specimens into aliquots 
or fractions of appropriate size or 
volume and/or preserve them by 
multiple processing methods.
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Specimen processing

Specimens are processed according 
to the study design and the methods 
most appropriate for preserving the 
analytes of interest. For a particular 
specimen type and analysis, 
several processing methods may 
be appropriate. The IARC standards 
(2) list some of the more routine 
processing protocols. The general 
guidelines in this section outline 
some of the important considerations 
when choosing processing methods 
for specimens most commonly 
collected for molecular epidemiology 
studies. Additional issues concerning 
the processing and analyses 
of specimens for proteomic, 
metabolomic, physical, chemical, 
and immunologic applications are 
discussed in Chapters 4 and 7.

Blood – separation into 
fractions (e.g. plasma, serum, 
buffy coat, red blood cells)

The processing method used 
for blood specimens depends 
on the laboratory analyses to be 
performed. Cryopreservation is a 
cost-effective way of preserving 
viable lymphocytes for subsequent 
recovery of DNA, or for Epstein-
Barr Virus (EBV) transformation to 
create lymphoblastoid cell lines as a 
source of unlimited amounts of DNA 
(29). Cryopreservation typically 
involves the use of a cryoprotectant, 
such as dimethyl sulfoxide 
(DMSO). However, commercial 
cryoprotectants that are less toxic 
have been developed (30). Whole 
blood may also be cryopreserved 
as an efficient and cost-effective 
approach to centralized processing 
and storage of viable cells in large-
scale epidemiological studies (29).

Tissue – processing after 
surgery, autopsy

Specimens resected specifically for 
research may be either processed 
in the operating room or pathology 
suite, shortly after the time of 
collection, or may be transported 
to the repository for processing, 
depending upon the requirements 
of the specific protocol. Additional 
details are discussed above, and 
may also be found in the ISBER and 
IARC Guidelines (2,4).

Urine

Processing of urine before storage 
is fairly straightforward. The primary 
decision is the size of the aliquots 
to be stored and is based on the 
expected analyses. If the analytes 
are stable to thaw/refreeze cycles 
then larger aliquots can be stored.

Saliva/buccal cell processing 
from mouthwash protocol 
specimens

Buccal cells collected using the 
mouthwash protocol (21) are 
processed by centrifugation of 
the cell suspension, resuspension 
in a buffer, and either processed 
immediately or frozen for future 
use. Usually, additional processing 
involves DNA extraction. Note 
that a special consideration in 
processing buccal cell DNA is the 
high percentage of bacterial DNA 
present in these specimens, which 
requires special quantitation by real-
time PCR.

DNA extraction

DNA extraction methodology is well 
established for a variety of specimen 
types, including whole blood, blood 
fractions, buccal cells, fresh and 
frozen tissues, and paraffin tissue 
blocks (31). The gold standard 

for DNA extraction is generally 
considered to be phenolchloroform 
extraction, but other standard 
methods that are more efficient, less 
expensive, and that utilize less toxic 
chemicals provide similar yields and 
DNA of similar molecular weight. 
Companies such as Gentra and 
Qiagen have collected DNA stability 
data of over 12 years’ duration (32).

Techniques for measuring the 
quality and quantity of DNA range 
from absorbance at 260nm and 
280nm, to fluorescence methods, 
to real-time PCR for detection 
of less than 25 picograms DNA. 
The A260/A280 ratio is a rough 
measure of DNA purity and protein 
contamination. Additional methods 
of measuring DNA quality include 
gel electrophoresis. The accuracy 
of DNA quantitation by these 
methods can vary widely and can 
affect the quality of downstream 
genomic analyses. Genomic 
assays may be very sensitive to 
the quantity of DNA. A study by the 
US National Institute of Standards 
and Technology found a great 
deal of variability between various 
methods and among laboratories 
participating in a DNA quantitation 
study (33). Great care must be taken 
to assure that DNA concentration is 
accurately measured before use in 
any assay, especially PCR-based 
genomic applications that require 
precise quantities of DNA.

RNA is less stable than DNA 
and is more difficult to extract 
intact. However, special methods 
and reagents have been developed 
that allow for preservation of RNA 
in blood and other specimens, as 
noted in the discussion of tissue 
fixation.

Saliva or blood collected on 
treated paper cards is available, 
for example, from Whatman® for 
laboratory applications. Enough 
DNA can be obtained from a 2mm 
punch of a paper card for about 500 
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single nucleotide polymorphism 
(SNP) genotypes. The extraction of 
DNA from blood spot cards can be 
automated as noted above (27).

Table 3.2 summarizes source 
material for nucleic acid extraction, 
and some of the procedural and 
methodological issues encountered 
with each specimen type.

Aliquoting

Dividing specimens into smaller 
sample aliquots is usually 
necessary to preserve them in 
volumes useful for routine analyses. 
The aliquoting protocol should be 
designed only to store the number of 
aliquots necessary for the intended 
analyses, plus additional long-
term archival samples that will be 
available for unforeseen uses. In 
developing an aliquoting protocol, 
the consequences of repeated 
thawing and refreezing cycles 
should be considered. Although 
many analytes, such as steroid 

hormones (discussed in Chapter 
12), are stable, other analyses may 
be affected by one or more thaw-
freeze cycles (2,3).

Automated systems 
for specimen processing

Automated systems have been 
developed for specimen processing, 
and several of these systems are 
useful in processing specimens for 
molecular epidemiology studies. 
Generally automation is most 
applicable to DNA extraction and 
specimen aliquoting.

For DNA extraction several 
automated systems are available, 
depending on the specimen type 
and volume. For blood specimens, 
and other blood fractions and 
suspensions of buccal cells up 
to 10 mL, the Gentra AutoPure is 
one of the preferred systems (32). 
The AutoPure has been validated 
for use with plasma, serum, buffy 
coat, buccal cell and other cell 

suspensions. For smaller samples, 
in the volume range of 50 uL to 1 
mL, the Qiagen EZ-1 and M-48 
systems are available (32). Other 
commercial and custom systems 
have been developed for specialized 
automated applications.

The other major biorepository 
activity that is amenable to 
automation is aliquoting. DNA in 
solution, as well as for example 
serum and plasma, must be stored 
in volumes suitable for downstream 
laboratory analyses. If standard 
collection and storage vessels are 
used, and a standard aliquoting 
protocol can be developed, then 
aliquoting can be automated. An 
example of a system for automated 
aliquoting is from TECAN (34).

Storage

Depending on the intended 
laboratory analyses, and other 
considerations, specimens and 
their aliquots may be stored under 

 
Table 3.2. Common DNA sources and extraction issues

Specimen source Collection method Extraction method DNA yield Advantages Challenges

Whole Blood Evacuated tube with 
anticoagulant

Manual or automated 100s of micrograms High yield, minimal 
processing

Refusal to participate

Blood -Buffy Coat Processing of anti-
coagulated blood

Manual or automated 
(with some 
processing)

100s of micrograms High yield, minimal 
storage volume

Variable yield and 
quality of buffy coat 
cellular material

Blood - Plasma, 
Serum

Processing of blood, 
with or without 
anticoagulant

Manual or automated Nanograms Good use of samples 
collected for other 
purposes

Low yield

Saliva Mouthwash, Oragene Manual or automated 10-50 micrograms High compliance rate Bacterial DNA

Blood clot Evacuated tube, no 
anticoagulant

Manual (special 
processing 
necessary)

Variable Good use of ‘extra’ 
samples

Extractions 
expensive,

DNA fragmented None Source of DNA Extraction difficult, 
costly

Tissue – Fresh or 
Frozen

Surgery, autopsy Manual Variable Most appropriate 
sample for some 
studies

DNA fragmented, 
RNA quality low

Paraffin Embedded 
Tissue

Tissue sections from 
surgery, autopsy

Manual Variable Easily stored DNA fragmented, 
RNA quality low
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a variety of conditions as shown in 
Table 3.3. Most common specimens 
such as plasma, serum or DNA may 
be securely stored in mechanical 
freezers at −80 °C. However, 
lymphocytes, or other cellular 
specimens, should be stored in the 
vapour phase of liquid nitrogen at 
−150 °C or lower, when long-term 
cellular viability is necessary. Other 
storage conditions that are optimal 
for the preservation of specimen 
stability should be considered, for 
example for endogenous hormones, 
as discussed in Chapter 12. Although 
generally not necessary in terms of 
sample and analyte stability, storage 
in the liquid phase of a liquid nitrogen 
tank at −196 °C is an excellent 
option. Although thorough cost 
analyses have not been performed, 
it is generally accepted that over the 
long term, liquid nitrogen freezers 
are less expensive to maintain 
than mechanical freezers, due to 
lower electrical requirements for the 
equipment and less need to cool 

the equipment space. In addition, 
liquid nitrogen freezers are less 
susceptible to mechanical failure 
and can withstand power outages 
for long periods with no temperature 
deviations.

In situations where freezer 
systems may not be available, a 
lower-cost option is collection of 
saliva or blood spots on filter cards 
and storage at room temperature. 
Below are some general storage 
considerations (1,2,4):

• Adequate back-up storage 
capacity for low temperature 
units should be maintained. The 
power supply must be connected 
to a back-up generator system 
that immediately provides power 
during an electrical outage. 
Standard operating procedures and 
techniques for rapidly transferring 
material to back-up units during 
such emergencies should be 
documented.

• Where liquid nitrogen 
freezers are used, an adequate 

supply of liquid nitrogen must be 
maintained. Vapour phase liquid 
nitrogen storage is preferred over 
liquid phase storage, where cross-
contamination of specimens may 
occur. Cryovials must be capable 
of withstanding liquid nitrogen 
temperatures. Screw cap vials that 
will not leak are necessary. A good 
storage container in liquid phase 
nitrogen is the CryoBio Systems 
plastic straw (35).

• Alarm systems should be in 
place to monitor the temperature of 
mechanical freezers, or in the case 
of liquid nitrogen freezers, the liquid 
nitrogen level and temperature.

• Dry ice is frequently used 
as a refrigerant for shipping and 
emergency back-up for mechanical 
freezers.

• A system for maintenance and 
repair of storage equipment, support 
systems and facilities should be in 
place.

• All equipment should be 
validated before use, or following 

 
Table 3.3. General specimen storage guidelines

Temperature in °C Preservation method Recommended for

+18 to +20 Room temperature Slides, tissue blocks

0 to +4 Refrigerator Processing fresh specimens

−0.5 to −27 Freezer Short-term DNA stability

−27 to −40 Freezer DNA stability

−40 to −80 Freezer DNA/RNA stability

−80 to −130 Freezer Recommended for urine, blood, blood 
fractions (plasma, serum etc)

−130 to −150 Liquid nitrogen vapour Recommended for storage of tissues, 
preservation of cellular viability

−196 Liquid nitrogen liquid phase Storage of living cells

Adapted from (2).
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repairs that affect the instrument’s 
accuracy or other capabilities.

• Labels for storage vessels 
must be capable of withstanding the 
required storage conditions, i.e. the 
label material must not deteriorate 
and printing must be readable or 
scanable after long-term storage.

Automated freezer systems

Automated freezer systems are 
available for convenient storage and 
retrieval of samples. Commercial 
automated freezer systems include 
a custom system built for ARUP 
Laboratories (36) and systems 
developed by REMP (37). Generally 
automated systems are developed 
for storage at −80 °C, although some 
liquid nitrogen systems are available.

Automation is most useful for 
studies and facilities that are focused 
on one or a few specimen types that 
will be collected in large numbers 
and processed and stored in a 
systematic way. If samples can be 
stored in microplates (for example, 
96- or 384-well), then automated 
storage and retrieval systems should 
be considered. However, due to 
the wide variety of specimen types 
and processing methods used in 
molecular epidemiology studies, it 
is often difficult to justify expensive 
automated storage and retrieval 
systems.

Storage system maintenance

Freezers and other storage 
equipment should be validated 
and maintained according to the 
manufacturer’s recommendations. 
In addition, the biorepository should 
develop additional protocols to 
assure that equipment functions 
properly (3,4). A preventive 
maintenance programme should 
be in place, with maintenance 
performed at regularly established 
intervals.

Special procedures should 
be developed to assure that 
freezers are properly validated, 
in terms of maintaining their 
optimal temperatures, during 
initial installation and at regular 
intervals. As noted in the ISBER 
best practices: “…any device that 
provides a readout, data, or has a 
meter movement, is considered an 
instrument, and requires calibration.” 
(4).

Freezer temperature
monitoring

Freezer temperatures must be 
continuously monitored to assure 
proper storage conditions for 
samples. For mechanical freezers 
(−20° to −80 °C), temperatures 
are displayed on each freezer. 
For small biorepositories, regular 
(twice daily) manual logging of 
temperatures may be adequate. 
However, larger biorepositories 
should have additional automated 
systems for remote monitoring of 
temperatures to efficiently respond 
to malfunctions (4).

Liquid nitrogen freezers require 
monitoring of both temperature and 
liquid nitrogen levels. Temperature 
monitoring is performed as for 
mechanical freezers. Liquid nitrogen 
levels should be recorded manually, 
on a regular basis, with a stick to 
assure that normal levels (usually 
8–10 cm) are maintained. It is 
possible for liquid nitrogen freezers 
to overfill, which is detrimental 
to samples. Automated systems 
should be used that can detect and 
sound alarms for levels of liquid 
nitrogen that are either too low or 
too high.

Information management

Driven by advances in molecular 
technologies, including genomics 
and proteomics, information 

management is critical to the 
molecular epidemiology research 
enterprise (38). Collation and 
analysis of the data associated 
with the collected specimens that 
support biomedical research require 
robust interoperability to allow 
maximum usage of the collections 
(3,4). Information management 
and analysis tools across the 
spectrum of biomedical research 
are challenged to provide high 
performance, scalability and user-
friendly interfaces. Also, as data 
sharing and collaboration between 
global investigators increases, 
secure interfaces for data transfer 
among institutions is paramount.

To manage the vast amounts 
of data in a variety of formats and 
environments, robust, flexible and 
extensible informatics systems 
are required (38). Too often, initial 
research plans do not include a well-
thought-out approach to handle the 
results of an investigation. Deliberate 
planning for data management is 
far less costly and time consuming 
compared with ad hoc efforts that 
occur post-collection. A plan for the 
various disparate data types and 
formats should be included with 
special considerations for multisite 
collection protocols. A major part of 
the integrated informatics system for 
molecular epidemiology is support 
for biospecimen collection, shipping, 
processing, storage, inventory and 
retrieval processes.

Specimen tracking

Today, biospecimen collections are 
documented and tracked by many 
forms of data management tools, 
spanning from laboratory notebooks 
for a few hundred sample vials 
to real-time, multiuser software 
implementations, which support 
collections with millions of vials. 
Clearly, there is a need for automated 
information systems, but the level of 
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informatics sophistication needed 
for a collection is limited by the 
availability of funding. In addition, it 
is incumbent upon the custodian of 
human biospecimens to adhere to 
ethical standards to protect and use 
the samples (3,4). Documentation 
of the study protocol number and 
the informed consent for the study 
subject should be easily linked back 
to the biospecimen to guarantee that 
the specific use of the specimens 
has been verified before distribution. 
Information technology software 
for specimen tracking features 
secure, validated environments 
that adhere to ethical practices. 
As more and more collections are 
shared among investigators all over 
the world, information on patient/
subject consent, sample collection 
techniques and processes, and 
annotation of the sample must be 
easily retrievable, exportable, and 
traceable through time.

Biorepository information 
systems should support inventory 
functions by tracking all phases of 
sample acquisition, processing, 
handling, quality control and 
distribution from collection site 
(patient/subject) to utilization 
(researcher) (3,4). The inventory 
tracking should include significant 
events, such as thaws, loss, depletion 
and destruction of specimens, 
whether intentional or accidental. 
Restocking of returned, unused 
samples from the researcher, if 
allowed per protocol, must also be 
documented. Current guidelines for 
biorepository information systems 
recommend the use of electronic 
(linear or two-dimensional) labels or 
barcodes to document and associate 
a unique identification number to the 
samples. No identifying information 
about the specimen should be 
encoded as part of the identifier 
(3,4). The system should also be able 
to track any pre-existing, external 
biospecimen identifiers, such as vial 

type, and notations from hand-written 
vial labels. Standard operating 
procedures for the development of 
identifiers should be maintained with 
the system and updated to include 
all labelling paradigms used in the 
repository.

Bar code scanning technologies 
have become faster and more 
accurate in recent years. There are 
several varieties of software solutions 
to generate bar codes, from stand-
alone programs to those embedded 
within other applications. Bar code 
printing options are recommended 
based on the volume of labels 
being printed. For high-volume label 
printing, thermal transfer or direct 
thermal bar code printers are the 
instruments of choice (39). When 
choosing a device, the conditions 
under which the scanner will be 
used, the frequency of use, the type 
of bar code (linear or 2-D), and the 
distance from which the scanning will 
be performed should be considered 
(39). Cost considerations may 
influence the selection of the bar 
code scanning technology employed 
by the biospecimen resource (4).

Biorepository information 
systems can report available 
space in the repository and assign 
and reserve space for incoming 
specimens. The location of a 
specimen should be tracked, but 
should not be used as part of the 
identifier naming convention, as 
locations of specimens may change 
in time.

The user interface of the system 
must provide tools to search 
the inventory based on various 
specimen characteristics, as 
well as support the requisition of 
samples to use in research studies. 
Query interfaces should be easy 
to navigate by experienced and 
inexperienced users. Standard 
and customizable queries are 
available in all commercially 
available systems, although ease 

of use varies. Many of the currently 
available biorepository inventory 
systems include web-based access 
portals to make the systems easier 
to deploy and navigate.

Informatics system security

The size and scale of the 
informatics needs of the molecular 
epidemiology group will determine 
if the biorepository information 
system should include the subjects’ 
demographic and study annotation, 
or whether these data can be held 
within another database. Robust 
biorepository management systems 
provide controlled user access for 
system security (39). The system 
should include role-based security 
for all repository staff, study 
coordinators and scientists with a 
need to access the biospecimens 
inventory. If the study annotation is 
held within the same data system, 
security measures should be 
enacted to protect the subjects’ 
personal health information (PHI) 
from disclosure to unauthorized 
users of the data. Regulations 
governing the protection of 
individual identifying information 
vary from country to country, so 
it is important to reference the 
guidelines for the specific locations 
of study and analysis in the study 
planning process (4).

If the biospecimen inventory is 
physically separated from the study 
annotation, these systems should be 
designed to interoperate and easily 
link the full study data, to maximize 
the ability to mine and analyse the 
data. If the links between systems 
are unstructured, the result can 
be an extraordinarily challenging, 
expensive and time-consuming 
effort to produce scientific findings 
from the study.

The system security architecture 
for information systems can be 
two- or three-tiered, depending on 
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the separation of the user interface 
client (tier one) from the application 
server (tier two), and then optionally 
from the data storage (tier three). 
Three-tiered systems are more 
flexible and scalable for groups that 
have large concurrent user needs 
with heavy data load requirements 
(39).

Inventory control

“Inventory control starts with an 
understanding of the conditions 
under which errors occur and ends 
with error-resistant processes, 
intelligent use of technology, a 
well-trained and highly motivated 
workforce, and an ongoing process 
of continuous improvement” (40).

Inventory controls for 
biorepository management systems 
include the creation and storage 
of audit trails to track data history, 
data verification routines to assure 
data quality, and process tracking 
to assure the integrity of the 
sample data (39). The audit trails 
will include any changes/additions/
deletions of data identifying the 
user that made the modifications. 
The system should have the ability 
to generate configurable reports 
and data files to provide the most 
complete information on the 
specimen. Inventory controls should 
include complete documentation 
of the information management 
system, updated standard operating 
procedures for the biorepository 
processes, security measures, and 
on-going training for those who 
access the data system (4).

Specimen annotation

The recognized value of molecular 
epidemiology studies is the 
collection of appropriate amounts 
of data, that when combined with 
the study subject’s specimens and 
laboratory analyses, can be used 

to study the environmental and 
genetic causes of disease. It is 
important to be able to maintain tight 
integration of the demographic and 
clinical annotation of biospecimens, 
whether the data resides within the 
same data system or in physically 
distinct systems. Some study 
collections may include data-use 
agreements that require specimens 
to be de-identified before release 
from the biorepository for analysis. 
During the study planning process, 
the rules that govern specimen 
access are key factors when 
considering the use of pre-collected 
biospecimens in a study (41).

The goals of each molecular 
epidemiology study will determine 
the specific clinical annotation that 
should be maintained. Discussions 
are ongoing across the international 
biomedical community to provide 
guidelines for minimal clinical 
annotation for various study types 
(2–4,42), to facilitate data pooling 
of studies across common research 
areas. The cohort, case–control, 
and family-based consortia will 
benefit from the comparison and 
harmonization of their study data 
elements and definitions, and this 
will allow faster mining to detect 
underlying patterns across their 
combined data sets.

System interoperability

Epidemiologists are employing 
newer genomic technologies within 
studies, which have resulted in 
exponentially larger data sets. 
Legacy databases, however, that 
were functional with smaller data sets 
and do not communicate with other 
systems, may need to be replaced or 
modified. Large data management 
challenges require the integration of 
heterogeneous data and tools in a 
scalable, high-performance system. 
These systems can manage vast 
quantities of data, and provide tools 

for query and analysis in a secure 
collaborative environment. Efforts 
to provide interoperability across 
many institutions and tools based 
on grid computing are ongoing. 
Grid technology can be viewed as 
an extension or application of the 
internet framework to create a more 
generic resource-sharing context 
(43). Cloud computing is a newer 
delivery model for large, hosted 
datacentres which offers various 
computational and data access on an 
as-needed, “utility company” model 
over the internet. It typically involves 
the provision of dynamically scalable 
and often virtualized resources, thus 
avoiding the capital expenditure 
for purchase and maintenance of 
infrastructure at each bioresource 
centre location (44).

Whether the study data is 
housed within one central data 
system or in a federated, grid or 
cloud framework, interoperability 
is essential for the analysis of the 
data and the publishing of results. 
Efficient electronic data exchange 
or sharing between interoperable 
systems is based on shared common 
data element (CDE) definitions (45). 
When combining data from systems 
that do not share CDEs, mapping of 
the data to a shared set of elements 
is required. Often, these mapping 
efforts are labour-intensive and can 
result in a loss of information, as 
local CDEs are fit into exchangeable 
definitions. It is possible that small 
differences in the way questions 
and responses are worded or 
presented in epidemiology survey 
instruments can lead to significant 
(potentially unrecognized) 
differences in interpretation. The 
goal of developing CDEs is to 
enable semantic interoperability—
the ability to represent information 
precisely enough that it may pass 
between humans and electronic 
representations precisely without 
requiring absolute central control 
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of data systems or external 
human expertise (38). Semantic 
interoperability is a key component 
to speed data pooling efforts across 
epidemiologic studies to replicate 
and validate study findings.

Informatics at the US National 
Cancer Institute

Biomedical informatics systems are 
evolving as the technology becomes 
available to “personalize medicine” 
for each patient. Towards this end, 
the NCI Center for Bioinformatics 
has begun the development of the 
cancer Biomedical Informatics 
Grid or caBIGTM (45). This is a 
voluntary network or grid connecting 
individuals and institutions to enable 
the sharing of biomedical data and 
tools, with a goal of creating a World 
Wide Web of cancer research. 
The focus is to speed the delivery 
of innovative approaches for the 
prevention and treatment of cancer. 
The infrastructure and tools created 
by caBIGTM should have broad 
utility outside the cancer community. 
An integral part of the caBIGTM 
plan is the cancer data standards 
repository (caDSR) that will be used 
to build and maintain a repository of 
CDEs for standardization of terms 
and data storage practices. Tools 
for many aspects of biomedical 
research are becoming available on 
the caGrid.

Information management 
systems from the US National 
Cancer Institute and Centers 
for Disease Control and 
Prevention

Several organizations and 
companies around the US and 
the world are creating solutions 
to address the information 
management challenges presented 
by molecular epidemiology 
studies. Informatics activities at 

the National Cancer Institute, 
Office of Biorepository and 
Biospecimen Research (NCI, 
OBBR) have focused on creating 
recommendations for best practices 
associated with biorepository data 
systems, and the minimal clinical 
data set that should accompany all 
NCI-funded specimen collections 
(3). ISBER is focusing on the creation 
of best practices for biorepository 
management data systems. This will 
foster the development of worldwide 
standardized methods for collection, 
long-term storage, retrieval and 
distribution of specimens that will 
enable their future use (4).

There is a large variety of highly 
sophisticated, off-the-shelf, open 
source, and/or custom software 
applications for biorepository 
information management (e.g. 
http://www.isber.org/ims-products.
html). Specific needs of the 
biorepository and the available 
funding will help guide the selection 
of the system employed. One highly-
focused custom system serves 
the CASPIRTM (US Centers for 
Disease Control and Prevention-
ATSDR (Agency for Toxic 
Substances and Disease Registry) 
Specimen Packaging, Inventory, 
and Repository) biorepository 
(46). CASPIR is a central facility to 
store biological and environmental 
biospecimens that the CDC-ATSDR 
began to develop in 1995. The 
mission of this biorepository is “…
to provide storage for valuable, 
mostly human, biological samples 
that have been collected from CDC 
and ATSDR diagnostic studies, 
epidemiologic outbreaks, and 
research studies for possible future 
use.” It has a storage capacity of 
more than six million biospecimens 
and is managed through customized 
data management software called 
the Archival Specimen Tracking and 
Retrieval Operations (ASTROTM) 
system.

The custom BioSpecimen 
Inventory System-II (BSI-II) was 
initially developed on contract 
for the NCI’s Division of Cancer 
Epidemiology and Genetics to 
support their large biospecimen 
inventory from hundreds of molecular 
epidemiology studies (39). The 
BSI-II is flexible, extensible, and is 
currently storing data associated 
with more than 10 million specimens 
in storage across several contract 
repositories. The NCI’s caBIGTM 
project has developed an open-
source, modular caTissue Suite 
tool set for biospecimen inventory 
management, tracking, and 
annotation. This software permits 
users to enter and retrieve data 
concerning the collection, storage, 
quality assurance, and distribution 
of biospecimens (47).

Additional issues

Although the issues discussed in 
the previous sections are critical 
to the successful collection and 
preservation of biospecimens, there 
are other important considerations, 
concerning the control of specimen 
quality, as well as the safety and 
security of personnel and facilities, 
that are equally important.

Quality assurance 
and quality control

A Quality Management System 
(QMS) is an essential element of 
biospecimen management (3,4). 
The key to an effective QMS is the 
development and adherence to 
Standard Operating Procedures 
(SOPs). SOPs should guide the 
collection, processing, storage 
and equipment maintenance 
processes described in this chapter. 
Biorepository staff should be trained 
to adhere to all relevant quality 
systems and SOPs. Additional 
elements that are important for a 
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QMS include: appropriate security 
systems, computerized inventory and 
specimen quality tracking systems, 
and a facility disaster plan (4).

Several formal quality programs 
are appropriate for a specimen 
QMS, including current Good 
Manufacturing Practices (cGMP) 
and International Organization 
for Standardization (ISO) (48) 
certification. cGMP certification is 
used in the USA to maintain quality 
standards that are appropriate 
for Food and Drug Administration 
inspection of laboratories and 
biorepositories that process and store 
specimens for clinical applications. 
For research biorepositories, ISO 
certification, in general, is more 
appropriate for organizations that will 
be collaborating with international 
partners, and wish to assure that 
they are operating under a common 
set of recognized international 
standards. Both cGMP and ISO 
require extensive documentation of 
the sources, quality and performance 
of materials, equipment, and 
procedures.

Safety in the laboratory 
and biorepository

Laboratories and biorepositories 
should assume that all human 
biospecimens are potentially 
infective and biohazardous. A 
predictable, small percentage of 
biospecimens will pose a risk to 
the biorepository workers who 
process them. All biospecimens 
should be treated as biohazards 
(49). In addition to taking biosafety 
precautions, biorepositories should 
adhere to key principles of general 
laboratory safety.

In the United States, the 
Occupational Safety and Health 
Administration (OSHA) regulations 
(50) require that appropriate 
vaccinations be offered to all 
personnel who may be potentially 

exposed to human blood, body 
fluids and tissues, or other 
potentially infectious materials. 
Biorepository work practices 
should be based on universal 
precautions similar to those used 
in laboratories and clinical settings. 
Good general laboratory work 
practices are outlined by Grizzle and 
Fredenburgh (49). The CDC/NIH 
booklet Biosafety in Microbiological 
and Biomedical Laboratories 
(51) outlines general biosafety 
guidelines. All biorepositories that 
handle human biospecimens should 
operate under the OSHA (or similar) 
blood-borne pathogens standards 
and develop an exposure control 
plan.

In addition to biosafety, 
biorepositories should follow strict 
general safety regulations and 
procedures regarding chemical, 
electrical, fire, physical and 
radiological safety (3,4,50).

The use of liquid nitrogen poses 
unique safety problems that are 
not usually noted in laboratory 
safety documentation. With a liquid 
temperature of −196 °C, flesh 
freezes almost instantly if it comes 
in direct contact with the liquid. 
Both face and eye protections are 
required. Oxygen level sensors 
should always be employed, since 
oxygen deprivation is a serious 
hazard in the event of a liquid 
nitrogen leak.

Proper packaging and 
shipping

Depending on whether they 
are known to contain infectious 
agents, and the intended analyses, 
specimen shipments may be 
regulated as infectious substances 
or as diagnostic specimens. To 
properly classify the specimens 
to be included in a shipment, 
consult references provided in 
the ISBER Best Practices (4) and 

by the International Air Transport 
Association (52).

Specimens are often exposed 
to temperature fluctuations during 
transit. The required shipping 
temperature depends on the 
intended analyses (3,4). Packaging 
materials and equipment are 
available to preserve specimens 
under ambient, refrigerated and 
frozen conditions, including liquid 
nitrogen dry shippers that can 
preserve specimens frozen at or 
below –150 °C for up to several 
weeks (3,4). Devices are available 
to monitor temperature trends 
during shipment, either by recording 
temperatures precisely at certain 
time intervals, or by changing colour 
if a certain temperature is exceeded 
during shipment.

Security systems for 
biospecimen facilities

Due to the irreplaceable nature 
of many specimens collected for 
molecular epidemiology studies, 
it is critical to protect them from 
destruction due to electrical 
outages, equipment failures, 
and similar problems. The most 
important systems to have in place 
are electrical back-up generators 
and equipment alarms (4).

Generators should be available 
to provide electrical service to 
all freezers and any other critical 
equipment immediately upon the 
loss of general electric service to the 
facility. They should be maintained 
in good working order and started 
on a regular basis to assure that 
they are functioning properly (4). 
The appropriate fuel should be in 
adequate supply for up to three 
days of electrical outage during an 
emergency situation.

Alarm systems should be 
provided in specimen storage areas 
to alert the staff when a freezer or 
other equipment is malfunctioning. 
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They should be designed to 
automatically (for example, by cell 
phone or paging device) notify 
biorepository staff and other 
appropriate facilities maintenance 
personnel during non-working 
hours. Procedures should be in 
place to immediately respond to 
such equipment emergencies, and 
to either move the specimens to a 
functioning back-up freezer, or take 
other appropriate action to preserve 
their integrity.

In general, these measures 
should be part of a broader disaster 
response plan that is designed 
to protect personnel as well as 
specimens (4).

Future directions 
and challenges

Specimen management under 
adverse or low-resource 
conditions

In general, the methods, equipment 
and supplies described in this 
chapter are practices that should 
be adopted under the conditions 
found in developed countries. 
However, it is not always possible 
in some developing countries with 
fewer resources to have access 
to liquid nitrogen or mechanical 
ultra-low freezers, for example, or 
even electricity in some situations. 
These special circumstances need 
to be carefully considered before 
specimen collection is initiated. 
Some of the materials described in 
other sections of this chapter may 
be useful. For example, if extreme 
temperatures with little or no local 
refrigeration is an issue, then blood 
or saliva can be collected on filter 
cards and shipped and stored at 
ambient temperature. Blood can 
also be collected and shipped 
at ambient temperature using 
the PaxGene® collection tubes. 
Tissues can be fixed in formalin 

and embedded in paraffin blocks 
for low-cost storage and transport. 
If possible, given local conditions, 
“cool packs” and other supplies 
can be provided from a central 
coordinating centre and used to 
transport specimens at refrigerated 
temperatures. Note that any such 
procedures that deviate from 
documented best practices must be 
validated in a preliminary pilot study 
before full-scale adoption.

A specific example of working 
under such conditions is the Costa 
Rica HPV Vaccine Trial conducted 
by the US NCI in collaboration 
with the Fundacion Inciensa (53). 
Given the conditions under which 
specimens had to be collected in 
Costa Rica, the following factors 
were considered and accounted for:

• Bad road conditions increase 
shipment time and specimen 
shaking. Road conditions change 
from the dry to rainy season every 
year, and affect access to some 
communities.

• Liquid nitrogen may be hard 
to find in some countries, but not 
impossible. For example, Nicaragua 
does not produce any gases, but 
has hospitals and factories that 
require oxygen and liquid nitrogen, 
so oxygen is imported from Costa 
Rica.

• The cost of liquid nitrogen, 
equipment and reagents are 
generally higher in Central America 
than in developed countries, and in 
some cases, dealers for a particular 
country are regional. For example, 
a particular product produced in the 
USA may have to be acquired from 
a Mexican dealer that represents 
that product for Mexico and Central 
America.

• In some countries the power 
supply may be regulated and/or in 
poor condition. If possible, a back-
up power supply should be provided 
or alternate storage methods should 
be considered.

• High temperature and humidity 
during the day are common 
conditions that may require special 
shipping containers, such as coolers 
with cold packs.

• Permits for importation and 
exportation of human-derived 
substances and repository 
operation permits must be obtained 
before starting operations. Policies 
and procedures will vary according 
to the country of origin and the 
destination.

• Laboratory equipment and 
reagents may have to be imported, 
which will require a variable time for 
customs and regulatory issues or 
the delivery time policy of the local 
or international dealer. Because of 
this, inventory management must 
be highly coordinated to account for 
potential delays.

Alternate collection 
technologies

In addition to dry-state collection 
and storage on treated cards, other 
special collection and storage 
systems have been developed 
that are beginning to be used in 
population-based studies. These 
approaches, mentioned briefly 
in other sections of this chapter, 
may gain more widespread use in 
studies that require the collection of 
large numbers of specimens that will 
need purified DNA as the analytical 
derivative. Some examples are:

• Oragene, developed by 
DNAGenotek (22). Oragene is a 
reagent used for saliva collection. 
The reagent saliva mixture is stable 
at room temperature. DNA can be 
readily extracted either by using the 
company’s manual procedure or an 
automated procedure, such as the 
Gentra AutoPure. At least one large 
epidemiology study, performed by 
the Karolinska Institute, has had 
success with this protocol (23).
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• GenVault (28) has developed a 
small cellulose element, based on 
the Whatman treated card, that can 
be used in a 384-well microplate 
format to store DNA and other 
samples in the dry-state. DNA can 
be eluted from the elements using 
a simple protocol, and adequate 
amounts (up to 200 nanograms) of 
DNA can be extracted from each 
element, making this a convenient 
system for long-term economical 
archiving of DNA.

Biospecimen ethical, legal 
and policy issues

The ethical, legal and policy aspects 
of biospecimen collection are as 
complex, if not more so, than the 
technical matters outlined in this 
chapter. The following are some 
of the issues that have not been 
fully resolved in the international 
community:

• Informed consent. Formats 
and details vary greatly among 
institutions. Policies for handling of 
biospecimens after withdrawal of 
consent are not well defined.

• Ownership. It is often unclear 
who ‘owns’ biospecimens once they 
have been donated for research. 
Court cases in the USA have ruled 
that the study participant does not 
have any ownership rights after 
donating a specimen for research. 
The NCI Best Practices (3) uses the 
term “custodianship” to reflect the 
need for a biospecimen resource to 
develop a plan for long-term care of 
biospecimens.

• Specimen and data access. 
Biospecimen resources should 
have clear rules for outside access 
to specimens and collected data (3).

• Privacy protection. Study 
participants need to be assured 
that their identity will be protected, 
with respect to use of specimens 
they have donated and any resulting 
data. Privacy regulations are in 
place for this purpose (3). Due to 
advances in genomic technologies, 
it is becoming increasingly difficult 
to guarantee the protection of an 
individual’s identity.

• Intellectual property. Inventions 
and data arising from research 
using annotated biospecimens may 

have commercial value. Institutions 
should have clear intellectual 
property guidelines, and use 
material transfer agreements to 
assure that the sharing of specimens 
and data are well controlled. The 
final disposition of specimens and 
data should be understood before 
initiating a transfer.

In summary, the issues 
surrounding the use of biospecimens 
in research are complex and must 
be approached with attention to 
the many technical factors that may 
affect the quality of the specimens. 
In addition, it is important to 
recognize that the quality of 
biospecimens is enhanced by the 
collection and proper control of 
various types of data. Finally, many 
issues discussed in this chapter are 
subject to strict local and national 
policies and regulations concerning 
privacy and informed consent.
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Summary

Biomarkers can be used to measure 
the presence of a wide variety of 
parent compounds and metabolites 
in body fluids and excreta, and 
serve as biomarkers of internal 
dose. Chemical-macromolecular 
adducts formed in blood and 
tissue or excreted in urine serve 
as biomarkers of exposure as well, 
and in many instances reflect both 
exposure and additional relevant 
biological processes. An assortment 
of analytical techniques have been 
developed to identify and measure 
parent compounds, metabolites, 
chemical-DNA and protein 
adducts. This chapter will discuss 
many analytical techniques that 
measure biomarkers in molecular 
epidemiologic studies, including 
biological, physical, chemical and 
immunological methods.

Introduction

Over the past 25 years, the 
development, validation and 
application of molecular 
biomarkers that reflect events from 
environmental exposure to the 
formation of clinical disease (e.g. 
cancer) has rapidly expanded our 
knowledge of the mechanisms 
of pathogenesis and provided 
opportunities for devising improved 
tools for disease treatment and 
prevention. Molecular epidemiology 
and its evolving paradigm refers 
to the use of biomarkers in 
epidemiological research (i.e. 
incorporation of molecular, 
cellular and other biochemical 
measurements into epidemiological 
studies of the etiology, prevention, 
and control of health risks faced 
by human populations)(1–4) 
(Figure 4.1). The application of 

validated biomarkers to traditionally 
descriptive epidemiological studies 
helps to: delineate the continuum 
of events between an exposure and 
resulting disease; identify smaller 
exposures to specific xenobiotics; 
indicate earlier events in the natural 
history of diseases and reduce 
misclassification of dependent and 
independent variables; enhance 
individual and group risk monitoring 
and assessments; and reveal 
toxicologic mechanisms by which 
an exposure and a disease are 
related (5,6). A unique feature of 
molecular epidemiologic studies is 
the interdisciplinary collaboration 
between population and field 
scientists and laboratory scientists 
from various disciplines, such as 
epidemiology, toxicology, molecular 
biology, genetics, immunology, 
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biochemistry, pathology and 
analytical chemistry. The analytic 
measurement of biomarkers is 
critical to molecular epidemiologic 
studies and requires special 
attention to the collection, handling 
and storage of biologic specimens, 
as well as development and 
validation of analytical methods (7).

Biomarker paradigm 
and validation strategies

As adapted from Perera and 
Weinstein (1) and the Committee 
on Biological Markers of the 
National Research Council (8), the 
development of disease as a result 
of exposure to an environmental 
agent or other toxicant is multistage: 
it starts with exposure and 
progresses to internal dose (e.g. 
deposited body dose), biologically 
effective dose (e.g. dose at the 
site of toxic action), early biological 
effect (e.g. at the subcellular level), 
altered structure or function (e.g. 
subclinical changes) and finally to 

clinical disease (Figure 4.1). Any step 
in this process may be modified by 
host-susceptibility factors including 
genetic traits and effect modifiers (e.g. 
diet or environmental exposures). 
Therefore, biomarkers are indicators 
of events for physiologic, cellular, 
subcellular and molecular alterations 
in the multistage development of 
specific diseases (9).

Molecular biomarkers are 
typically used as indicators of 
exposure, effect or susceptibility. 
A biomarker of exposure refers 
to measurement of the specific 
agent of interest, its metabolite(s), 
or its specific interactive products 
in a body compartment or fluid, 
which indicates the presence 
(and magnitude) of current and 
past exposure. A biomarker of 
effect indicates the presence 
(and magnitude) of a biological 
response to exposure to an 
environmental agent. Such a 
biomarker may be an endogenous 
component, a measure of the 
functional capacity of the system, 

or an altered state recognized as 
impairment or disease. A biomarker 
of susceptibility is an indicator or a 
metric of an inherent or acquired 
ability of an organism to respond 
to the challenge of exposure to a 
specific xenobiotic substance or 
other toxicant. Such a biomarker may 
be the unusual presence or absence 
of an endogenous component, or 
an abnormal functional response 
to an administered challenge 
(9). Molecular epidemiology and 
molecular dosimetry thus have 
great utility in addressing the 
relationships between exposure 
to environmental agents and 
development of clinical diseases, 
and in identifying those individuals 
at high risk for the diseases (2,6,10). 
Collectively, these data also help to 
inform the risk assessment process, 
where regulations can be tested 
against biological measurements of 
exposure to determine the efficacy 
of policies.

The development and 
application of molecular biomarkers 

 
Figure 4.1. Molecular epidemiology paradigm



  Unit 2 • Chapter 4. Physical/chemical/immunologic analytical methods 45

U
n

it
 2

C
h

a
p

te
r

 4

for environmental chemical agents 
should be based upon specific 
knowledge of their metabolism, 
interactive product formation and 
general mechanisms of action 
(11,12). Examples in the field are 
studies on the relationships between 
tobacco smoking and lung cancer 
(13–16) and between aflatoxin 
exposure and liver cancer (17,18). 
A specific application of biomarker 
technology to human cancer is the 
study of the variation in response 
among individuals following 
exposures to tobacco. For example, 
even in heavy tobacco smokers, less 
than 15% of these exposed people 
develop lung cancer (19); thus, 
intrinsic susceptibility factors must 
affect the time course of disease 
development and eventual outcome. 
The identification of those at highest 
risk for developing cancers should 
be facilitated by biomarker studies. 

Extensive efforts have been made 
to identify these high-risk individuals 
using various genetic and metabolic 
susceptibility markers (e.g. 
measurement of polymorphism of 
genotype and phenotype of various 
enzymes involved in transformative 
metabolic reactions of certain 
known carcinogens and the DNA 
repair process)(20–23). Although 
this strategy has not yet proven to 
be broadly applicable to many other 
human diseases, progress is being 
made for many types of cancers 
(24).

The validation of any biomarker-
effect link requires sequential 
or parallel experimental and 
human studies (12). Following the 
development of the hypothesis of 
an exposure-disease linkage, there 
is the need to develop the analytical 
methodology necessary to measure 
these biological markers in human 

and experimental samples. 
Conceptually, as shown in Figure 
4.2, an appropriate animal model is 
used to determine the associative 
or causal role of the biomarker 
in the disease or effect pathway, 
and to establish relations between 
dose and response. The putative 
biomarker can then be validated 
in pilot human studies, where 
sensitivity, specificity, accuracy 
and reliability parameters can be 
established. Data obtained in these 
studies can then be used to assess 
intraindividual or interindividual 
variability, background levels, 
relationship of the biomarker to 
external dose or to disease status, 
as well as feasibility for use in larger 
population-based studies. It is 
important to establish a connection 
between the biomarker and 
exposure, effect or susceptibility. 
To fully interpret the information that 

 
Figure 4.2. Validation scheme for molecular biomarker research
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the biomarker provides, prospective 
epidemiological studies may be 
necessary to demonstrate the role 
that the biomarker plays in the 
overall pathogenesis of the disease 
or effect. To date, few biomarkers 
have been rigorously validated 
using this entire process.

Techniques and strategies for 
measuring parent compounds 
and metabolites

Many analytical techniques, including 
biological, physical, chemical, and 
immunological methods, have 
been developed and standardized 
by regulating agencies (e.g. US 
Environmental Protection Agency) 
for biohazard identification and risk 
assessment in various exogenous 
settings, such as environmental 
and occupational arenas. For 
establishment of a quantitative 
relationship with exposure, analytical 
methods have been extended to 
measure these parent compounds in 
biological samples; they could serve 
very well as a biomarker of exposure. 
A good example is the measurement 
of various heavy metals (e.g. lead, 
arsenic, cadmium and mercury) 
in human biospecimens, such 
as urine, blood, hair and tissues 
(25). In general, most heavy 
metal measurements have been 
in environmental samples and 
technologies including atomic 
absorption (AA) (26), inductively 
coupled plasma-optical emission 
spectrometer (ICP-OES) (27) and 
inductively coupled plasma-mass 
spectrometer (ICP-MS)(28). In 
addition to the measurement of 
environmental sources of heavy 
metals, methods such as X-ray 
fluorescence (XRF) permit the 
assessment of body burden of 
lead through its deposition in bone 
(29). Of importance to molecular 
epidemiology is the need to speciate 
the heavy metal compound, since 

toxicity can vary by both charge 
state (e.g. tri- and penta-valent state 
of arsenic) (30) and methylation (e.g. 
methyl mercury) (31). Measurement 
of parent organic compounds in 
biological samples, although still in 
practice, is less favoured because 
most organic toxic/carcinogenic 
compounds undergo metabolism and 
exert their toxicologic/carcinogenic 
effects through metabolic activation 
(22). Collectively, the problem 
faced in these investigations is the 
relationship between exposure 
and dose. Unlike most organic 
compounds, metals’ measurements 
often reflect both exposure and 
dose. Figure 4.3 illustrates a 
nomograph relating the increase 
in analytical sensitivity by various 
instrument methods of the past 
10–15 years. As these technologies 
have advanced, the number of non-
detects in human epidemiological 
studies has dramatically decreased.

Incorporation of biomarkers 
in molecular epidemiology can 
provide critical information on 

interindividual variation in dose–
response of environmental 
agents, the central focus in risk 
assessment. While biomarkers 
have been most widely applied in 
the area of clinical pharmacology, 
they are increasingly being used to 
document interindividual variation 
in the context of the much lower 
exposures found in the environment 
(32,33). There are many examples 
of variation in the pharmacologic 
action of drugs in people; in general, 
the response varies about 10-fold 
in the general population for most 
pharmaceutics. At issue with the 
extrapolation of these findings to 
environmentally occurring toxicants 
is the recognition that a limited 
variance in response is selected 
for during drug development, 
whereas in an environmental 
setting, there may be a much wider 
range of toxicologic outcomes. 
This is further complicated by the 
age, gender and health status 
of the general population when 
compared to people being treated 

 
Figure 4.3. Nomograph for analytical methods
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for a clinically diagnosed disease. 
Further, exposures to drugs tend 
to be of shorter duration then the 
lifetime exposures to environmental 
compounds that can have wide 
day-to-day variations in dose. 
While the ability of environmental 
exposures to reach the level 
where Km of an enzyme becomes 
limiting is debatable, the effective 
concentration of an agent might well 
exceed this level at the cellular site 
of action (34).

A very significant consideration 
in the design of the molecular 
epidemiologic investigation is the 
balance between the analytical 
sensitivity of the chosen method and 
the operational sample throughput 
per day. Our infrastructure capacity 
to collect, annotate and store large 
numbers of samples far outpaces 
the number of samples that can be 
analysed. Most environmental and 
occupational toxicants of concern 
exist at trace levels in human 
samples. Thus, while the biological 
impact may be substantial, both the 
sample size available and analytical 
technology employed conspire to 
reduce the number of tests that can 
be run in a given day. Further, as 
analytical sensitivity increases, the 
contribution of noise to an analysis 
also increases, necessitating more 
extensive clean-up methods to 
maintain an appropriate signal-to-
noise ratio. For most quantitative 
analyses, reliable measurements 
can be made only with signal-
to-noise ratios that exceed 3:1. 
Unfortunately, judgement about 
the amount of material that will be 
used for an analysis results in many 
samples being at this borderline level 
of detection. Since the background 
from a urine (or other biological) 
sample can be very heterogeneous 
from person-to-person, many 
pilot studies have inadvertently 
generated false-positives when 
they do not employ multiple 

confirmatory analytical techniques 
and other quality control methods. 
Each sample matrix poses varied 
challenges for clean-up. Thus, as 
the complexity of sample clean-up 
increases, the effective number of 
samples that can be analysed in a 
given day diminishes. The largest 
automated, robotically driven 
clean-up strategy, The National 
Report on Human Exposure to 
Environmental Chemicals (http://
www.cdc.gov/exposurereport/), is 
based upon the NHANES survey 
samples. This repository has been 
used to explore many environmental 
exposures to low molecular weight 
chemicals (35,36). However, most 
individual laboratories lack this 
type of infrastructure for large-scale 
sample preparation for chemical 
analysis; hence, these operational 
considerations impinge upon the 
size and scope of the molecular 
epidemiology study.

A variety of metabolites of 
toxicants/carcinogens found in 
body fluids and excreta (e.g. blood, 
urine, feces, hair and milk) have 
the potential for use as biomarkers 
of internal dose. These measures 
could provide information about the 
actual concentration of toxicants/
carcinogens that have been 
absorbed and distributed in the body. 
Measurement of these metabolites 
has been incorporated into several 
human epidemiologic studies. For 
example, excretion of aflatoxin M1 
(AFM1), one of the major metabolites 
of aflatoxin B1 (AFB1), has been used 
as a biomarker for the evaluation of 
human exposure to aflatoxin and 
was found to be associated with the 
risk of liver cancer (37,38). Reflecting 
its complex pharmacokinetics, this 
metabolite has also been measured 
in both human urine and milk samples 
(39). Specific metabolites of one of 
the tobacco-specific nitrosamines, 
4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone (NNK), a potent 

chemical carcinogen, have been 
detected and quantified in the urine 
of smokers; these metabolites 
were not found in the urine of non-
smokers (40). Intraindividual and 
interindividual variations in these 
metabolites of NNK in smokers’ 
urine were noted and might prove 
to be important in disease risk 
(41). Two metabolites of NNK, 
4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanol (NNAL) and NNAL-β-O-
D-glucosiduronic acid (NNAL-Gluc), 
excreted in the urine of smokeless 
tobacco users, were found to be 
associated with the presence of oral 
leukoplakia (42). Other examples of 
internal dose markers include the 
measurement of blood and serum 
levels of DDE (1,1-dichloro-2,2-
bis(p-chlorophenyl)-ethylene), the 
major metabolite of DDT (2,2-bis(p-
chlorophenyl)-1,1,1-trichloroethane), 
which have been used as biomarkers 
in breast cancer studies in women 
(43,44).

An example of the use of agent-
specific biomarkers to identify 
etiologic factors in human cancer 
is the study of aristolochic acid 
(45,46). This compound has been 
associated with Balken endemic 
nephropathy (BEN), a chronic 
renal tubulointerstitial disease that 
often is accompanied by upper 
urinary tract urothelial cancer. 
Using 32P-postlabelling/PAGE and 
authentic standards, both adenine 
and guanine aristolactam DNA 
adducts were detected in the renal 
cortex of patients with BEN, but not 
in patients with other chronic renal 
diseases. In addition, urothelial 
cancer tissue was obtained from 
residents of endemic villages with 
upper urinary tract malignancies. 
The AmpliChip p53 microarray 
was then used to sequence exons 
2–11 of the p53 gene where 19 
base substitutions were identified. 
Mutations at A:T pairs accounted for 
89% of all p53 mutations, with 78% of 
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these being A:T→T:A transversions. 
It was concluded that DNA adducts 
derived from aristolochic acid 
are present in renal tissues of 
patients with documented BEN. 
These adducts can be detected 
in transitional cell cancers, and 
A:T→T:A transversions dominate 
the p53 mutational spectrum in the 
upper urinary tract malignancies 
found in this population.

The process of toxicant/
carcinogen metabolism produces 
a variety of reactive electrophilic 
intermediates that constitute 
biologically effective forms of the 
ultimate chemicals, such as aflatoxin 
B1-8,9-epoxide, benzo(a)pyrene-
7,8-diol-9,10-epoxide (BPDE), and 
N-acetoxy-2-acetylaminofluorene 
(47–49). The actual concentration 
of the products formed by these 
ultimate forms of toxicants/
carcinogens in the human body 
or target tissues should serve as 
biomarkers for biologically effective 
dose. Great efforts have been made 
over many years to develop methods 
to identify and detect these active 
metabolic products. These ultimate 
toxicants/carcinogens can be 
directly monitored in various in vitro 
models and in vivo animal systems 
by a variety of sensitive analytical 
techniques. These approaches are 
often difficult to apply in human 
populations simply because of the 
extremely short half-lives of these 
ultimate toxicants/carcinogens, and 
the high background of interfering 
substances. Alternative methods 
for measuring the formation of DNA 
and protein adducts in human blood 
and tissues include measuring their 
further metabolites, such as diols, 
conjugates (including glucuronide 
and mercapturic acids) or nucleic 
acid base adducts in human urine.

As discussed previously, clean-
up methods are required to lower 
the noise and enhance the signal for 
the detection of any of the chemical-

specific biomarkers in biological 
samples. Many of the studies to 
measure these biomarkers employ 
single or multiple chromatographic 
step(s) to facilitate biomarker 
detection. In a preparative mode, 
this chromatography usually consists 
of high-capacity chromatographic 
columns using reverse phase, normal 
phase and ion-exchange resins. 
These columns are generally gravity 
or low-pressure devices and provide 
a crude first stage enrichment 
method. Analytical chromatography 
is used as a low-capacity, but highly-
selective, technology to separate 
many of the compounds in a complex 
mixture. Liquid chromatography 
is the most common mode for 
separation, but many compounds, if 
they are intrinsically or derivatisable 
to a volatile agent, can be used 
in gas chromatography (GC). GC 
has a much higher capacity to 
resolve different chemical species. 
All chromatography methods are 
coupled with a form of spectroscopy 
for selective detection. For example, 
GC and high performance liquid 
chromatography (HPLC) coupled 
online with UV, fluorescence and 
electron-capture detectors and mass 
spectrometry (MS), are necessary 
techniques in these studies. 
In general, modern analytical 
instrumentation can lead to a limit 
of detection of chemical biomarkers 
in the femptomole (fmol) to low 
picomole (pmol) range. As a caution, 
many studies report sensitivity and 
limits of detection using standards; 
however, the operational limits of 
detection are between 10 to 100-
fold higher when measuring real 
biological samples.

Immunoassays, such as 
radioimmunoassay (RIA), enzyme-
linked immunosorbent assay 
(ELISA) and immunoaffinity 
chromatography (IAC), are also used 
in biomarker analysis (50,51) for both 
preparative methods and analytical 

measurement. Further, several 
investigations have employed hybrid 
methods using HPLC separation with 
the collection of fractions followed by 
analysis using immunoassays (52). 
An obvious advantage of clean-
up using chromatography before 
an immunoassay is the removal of 
potential cross-reactive materials 
that contribute to a false-positive 
result. It is also important to note that 
any clean-up before an analytical 
measurement lowers the number 
of samples per day and potentially 
introduces other artefacts, such as 
cross-contamination of samples and 
stability of the biomarker.

Internal standard development 
is an area of considerable 
importance that has received far 
less attention than it should. All 
quantitative measurements require 
the use of an internal standard 
to account for sample-to-sample 
recovery variations. In the case 
of mass spectrometry, internal 
standards generally employ an 
isotopically labelled material that is 
physicochemically identical to the 
chemical that is being measured. 
Obtaining such isotopically labelled 
materials does require chemical 
synthesis (if they are not commercially 
available), which has impeded the 
application of internal standards 
in many studies. In the case of 
immunoassays internal standards 
pose a different challenge, since the 
addition of an internal standard that 
is recognized by an antibody results 
in a positive value contribution. The 
dynamic range is usually less than 
100 in immunoassays; therefore 
great care must be taken to spike a 
sample with an internal standard to 
obtain a valid result (53). In contrast, 
for example, most chromatographic 
methods result in dynamic ranges of 
analyses that can be over a 10 000-
fold range of levels.
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Techniques for measuring 
DNA adducts

The metabolically activated ultimate 
form of carcinogens can covalently 
interact with cellular DNA, which 
is a critical step in the process 
of carcinogenesis (23,54–56). 
Measurement of carcinogen-DNA 
adducts has an important role in 
human biomonitoring and molecular 
epidemiologic studies, as they are 
specific biomarkers that provide a 
way to measure human exposure to 
chemical carcinogens and provide 
information about a specific dose 
to a carcinogen target site (DNA). 
Moreover, it has been possible to 
establish a correlation between 
tumour incidence and exposure by 
measuring the level of these adducts 
(see (57) as an example).

Many different analytical 
techniques have been developed to 
identify and measure carcinogen-
DNA adducts, including: 
immunoassays: ELISA, RIA, IAC, 
and immunohistochemical staining 
assay (IHC); radiometric postlabelling 
methods: 32P-post-labelling; and 
various physicochemical methods: 
GC, HPLC, GC-MS, LC-MS, 
electrochemical detection (ECD), 
fluorescence and phosphorescence 
spectroscopy, or a combination of 
these methods (4,10,20,50,58–
63). Capillary electrophoresis and 
other new separation techniques 
have improved the sensitivity 
and specificity of these methods. 
Nuclear magnetic resonance (NMR) 
spectrometry has also been used 
to determine stereospecificity and 
three-dimensional structure (64,65).

The 32P-post-labelling assay, 
which radioactively labels adducts 
digested from sample DNA, has 
been widely applied because of its 
high sensitivity and the requirement 
for only microgram amounts of DNA. 
This assay has been especially 
useful for detection of adducts 

in single exposure experimental 
systems and as a means of 
elucidating the metabolic activation 
of previously uninvestigated 
potential carcinogens. 32P-post-
labelling can give an impression of 
total adduct burden, but it is rarely 
possible to quantify specific adducts 
accurately in human samples. 
Advances may lie in the use of better 
chemical standards, more advanced 
preparative techniques, and in 
connection with MS techniques 
(3,22). Carcinogen-DNA adduct 
detection by fluorescence has been 
applied to compounds that lead to 
either highly fluorescent products 
or adducts that can subsequently 
be derived to highly fluorescent 
chemical species. Physicochemical 
methods, including MS, offer 
the advantage of high chemical 
specificity. Major improvements 
in sensitivity have allowed the 
measurement of increasingly smaller 
amounts of adducted species in 
biological matrices. The sensitivities 
of individual methods vary and often 
depend on the amount of DNA that 
can be analysed. Detection limits for 
quantitative assays are typically in 
the range of one adduct in 107 or 109 
nucleotides. However, accelerator 
mass spectrometry (AMS), which is 
highly sophisticated and involved in 
use of low levels of 3H- or 14C-labelled 
compound, has a detection limit 
of one adduct in 1012 nucleotides 
(66,67). A recent application of 
this technology has been in the 
identification of the fate of a variety 
of alkylanilines in experimental 
models (68). In this investigation, 
the 14C-labelled 2,6-dimethyl- 
(2,6-DMA), 3,5-dimethyl- (3,5-
DMA), and 3-ethylaniline (3-EA) 
compounds, associated with 
human bladder cancer (69), were 
administered to C57BL/6 mice, 
which were subsequently sacrificed 
2, 4, 8, 16 and 24 hours post-dosing. 
Bladder, colon, kidney, liver, lung 

and pancreas were harvested from 
each animal, and DNA was isolated 
from each tissue. Adducts were 
detectable in the bladder and liver 
DNA samples from every animal 
at every time point, at levels that 
ranged from three per 109 to 1.5 
per 107 nucleotides. Adduct levels 
were highest in animals given 3,5-
DMA and lowest in those given 
3-EA. Taken together, the results 
strongly suggest that these three 
alkylanilines are metabolized in vivo 
to electrophilic intermediates that 
covalently bind to DNA, and that 
adducts are formed in the DNA of 
bladder, which is a putative target 
organ for these alkylanilines (68).

Many analytical techniques have 
been used to measure composite 
and specific DNA adducts in cellular 
DNA isolated from peripheral 
lymphocytes, bladder, breast, 
lung and colonic tissues, as well 
as excreted DNA adducts in urine 
(3,50,60). These techniques have 
also been applied in the clinical 
setting to examine carcinogen-
macromolecular adducts of people 
undergoing chemotherapy with 
alkylating agents, in an attempt to 
associate adduct levels with clinical 
outcome (70,71). Recently, these 
methods have also been applied 
to human clinical trials to validate 
various intervention tools for the 
assessment of chemopreventive 
agents in modulating various 
intermediate biomarkers (17,72).

Measurement of DNA adducts 
for studying complex 
mixtures of carcinogen 
exposure

Many studies have used DNA 
adducts to assess potential sources 
of carcinogen exposure. One classic 
study has examined a spectrum of 
molecular biomarkers to assess 
human exposure to complex mixtures 
of environmental pollution in Poland 
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(73). Measurement of genotoxic 
damage in peripheral blood samples 
from residents of high-exposure 
regions indicated that environmental 
pollution is associated with 
significant increases in carcinogen-
DNA adducts (polynuclear aromatic 
hydrocarbon (PAH)-DNA and 
other aromatic adducts), sister 
chromatic exchanges, chromosomal 
aberrations and frequency of 
increased ras oncogene expression. 
The presence of aromatic adducts 
on DNA was found to be significantly 
correlated with chromosomal 
mutation, providing a possible link 
between environmental exposure 
and genetic alterations relevant to 
disease.

Tobacco smoke, the primary 
cause of lung cancer, contains 
several types of known carcinogens. 
The most abundant of these are 
PAHs, arylamines and the tobacco-
specific nitrosamines, including 
the lung-specific carcinogen 
NNK. These carcinogens are 
metabolically activated to reactive 
species which form specific DNA 
adducts. Smokers are usually found 
to have significantly elevated levels 
of aromatic and/or hydrophobic 
adducts as compared with non-
smokers, and some studies found 
that DNA-adduct levels are linearly 
related to total smoking exposure 
(74). One investigation measured 
the level of bulky, hydrophobic 
DNA adducts in lung parenchyma 
of smokers and ex-smokers by the 
32P-postlabelling method. Smokers 
had five-fold higher levels of DNA 
adducts than did ex-smokers. A 
positive linear correlation between 
bulky adduct levels and CYP1A1 
(AHH) activity was found in smokers. 
A statistically significant correlation 
was determined comparing 
pulmonary microsomal AHH activity 
and the level of BPDE-DNA adducts 
(r = 0.91; P < 0.01) (71). Additionally, 
BPDE-DNA adducts have been 

detected in oral mucosa cells of 
smokers and non-smokers. Levels 
of DNA damage were elevated in 
each of 16 smokers compared to 16 
age-, race-, and sex-matched non-
smokers. There was about a three-
fold range between smokers and 
non-smokers (75).

Measurement of carcinogen-
DNA adducts in target tissues can 
offer useful information related to 
the mechanism of carcinogenesis; 
however, the limitation of availability 
of these specimens in humans is an 
impediment to extensive studies. 
An alternative method is to use 
the DNA isolated from peripheral 
white blood cells (WBC). One 
example is the detection of PAH-
DNA adducts in specific subsets 
of WBC. It was observed that DNA 
combined from lymphocyte and 
monocyte fractions of smokers, 
exhibited detectable levels of DNA 
adducts with a mean of 4.38 ± 4.29 
adducts/108 nucleotides, while the 
corresponding values were 1.35 ± 
0.78/108 (P < 0.001) in non-smokers 
(76). The elevated levels of PAH-
DNA adducts in DNA obtained from 
WBC of smokers compared to non-
smokers suggested that only certain 
subsets of WBC are a valid, readily 
accessible source for monitoring 
genotoxicity from cigarette smoke.

The decline of PAH-DNA and 
4 -aminobiphenyl -haemoglobin 
(4-ABP-Hb) adducts in peripheral 
blood following smoking cessation 
in serial samples from 40 heavy 
smokers (≥ 1 pack/day for ≥ 1 year) 
was described (77). The substantial 
reduction (50–75%) of PAH-DNA 
and 4-ABP-Hb adduct levels after 
quitting indicates that they are 
reflective of smoking exposure, 
which is essential information in 
the validation of biomarkers (77). 
The estimated half-life of the PAH-
DNA adducts in leukocytes was 
9–13 weeks; for 4-ABP-Hb adducts, 
it was 7–9 weeks. Women had 

higher levels of 4-ABP-Hb adducts 
at baseline and after smoking 
cessation. These results show that 
PAH-DNA and 4-ABP-Hb adducts 
can be useful as intermediate 
biomarkers by verifying smoking 
cessation and possibly identifying 
persons who are at increased 
risk of cancer from exposure to 
cigarette smoke, due to high levels 
of carcinogen binding.

In other reports, anti-BPDE-
DNA adducts were detected in four 
of seven colon mucosa samples, 
but not in any of 11 human pancreas 
samples from smokers and non-
smokers. Adduct levels in human 
colon samples varied between 
0.2–1.0 adducts/108 nucleotides 
(78). DNA adducts have also been 
detected in biopsy samples of 
human urinary bladder tissue. Total 
PAH-DNA adduct levels, and the 
average levels of several specific 
adducts, were significantly elevated 
in samples from current smokers, 
compared to never-smokers and 
ex-smokers who had abstained 
from smoking for at least five years 
(79). Putative aromatic amine 
adducts were detected, one of 
which displayed chromatographic 
behaviour identical to the 
predominant adduct induced by the 
human urinary bladder carcinogen, 
4-ABP, which is present in cigarette 
smoke. Immunohistochemical 
quantitation of 4-ABP-DNA adducts 
and p53 nuclear overexpression 
in T1 bladder cancer of smokers 
and non-smokers was described 
(80). Mean relative staining 
intensity for 4-ABP-DNA adducts 
was significantly higher in current 
smokers compared to non-smokers. 
There was a linear relationship 
between mean level of relative 
staining and number of cigarettes 
smoked, with lower levels in the 
1–19 cig/day group, compared to 
the 20–40 and the >40 cig/day 
groups. Nuclear overexpression of 
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p53 was observed in 27 (59%) of 
the 45 stage T1 tumours analysed. 
Nuclear staining of p53 was 
correlated with smoking status, cig/
day, and 4-ABP-DNA adducts. In 
another study, 4-ABP-DNA adducts 
in 11 human lung and eight urinary 
bladder mucosa specimens were 
analysed by alkaline hydrolysis and 
negative chemical ionization GC-
MS. Adduct levels were found to be 
0.32–49.5 adducts/108 nucleotides in 
the lung and 0.32–3.94 adducts/108 
nucleotides in the bladder samples 
(81).

Carcinogen-DNA adducts in 
human breast tissue samples 
have been reported (82). A total of 
31 breast tissue samples, which 
included tumour and tumour-
adjacent tissues from 15 women 
with breast cancer and normal 
tissue samples from four women 
undergoing breast reduction, 
were analysed. Among the breast 
cancer cases, the mean aromatic/
hydrophobic-DNA adduct level 
assayed was 5.3 ± 2.4 adducts/108 
nucleotides, compared to 2.3 ± 
1.5/108 nucleotides from the non-
cancer patients. Five of 15 tissues 
from the cases displayed a pattern 
of adducts associated with tobacco 
smoke exposure; all of these positive 
samples were from current smokers. 
Tissue samples from the eight 
non-smoking cases did not exhibit 
this pattern. This study indicated 
that biomarkers may be useful in 
investigating specific environmental 
exposures that could contribute to 
breast cancer. In another study, 
BPDE-DNA and other adducts were 
also found in the smooth muscle 
layer of atherosclerotic lesions in 
abdominal aorta specimens by 
various analytical methods (83).

Alkylating agents, such 
as N-nitroso compounds, are 
potential human carcinogens. 
Humans are known to be exposed 
to N-nitrosoamines from diet, 

workplace, cigarette smoke, and 
through endogenous formation. 
These compounds alkylate DNA, 
leading to formation of various types 
of DNA adducts, such as 7-alkyl-2’-
deoxyguanosine (dG) (e.g. 7-methyl-
dGp and 7-ethyl-dGp). Several 
investigations have focused on the 
levels of 7-methyl-dG adducts in 
human lung tissue, where higher 
levels have been found in smokers 
compared to non-smokers (84–87). 
Separately, 7-methyl-dG levels in 
lung tissues have been associated 
with cytochrome P4502D6 and 2E1 
genetic polymorphisms (84). One 
study analysed N7-alkylguanine 
adduct levels in DNA in a group of 
46 patients with larynx tumours by 
the 32P-postlabelling method. The 
average level of N7-alkylguanines 
was 26.2/107 nucleotides in tumour 
cells, 22.7/107 in non-tumour cells, 
and 13.1/107 in blood leukocytes. 
Males and smokers had significantly 
higher levels of adducts than females 
and non-smokers (88). In another 
study, 7-alkyl-2’-deoxyguanosine 
adducts were measured in eight 
separate lung segments of 10 
autopsy specimens (89). Levels of 
7-methyl-dGp were detected in all 
eight samples (ranging from 0.3–
11.5 adducts/107 dG; mean 2.5 ± 
2.3). In all but five of the samples, 
7-ethyl-dGp levels were detected 
(ranging from <0.1–7.1 adducts/107 

dG; mean 1.6 ± 1.7). 7-methyl-dG 
levels were approximately 1.5-fold 
higher than 7-ethyl-dG, and were 
positively correlated with each 
other in most individuals. There 
was no consistent pattern of adduct 
distribution in the different lung lobar 
segments (90).

Measurement of DNA adducts 
for studying occupational 
carcinogen exposure

Occupational exposure to many 
chemical carcinogens has been 

well documented. Since the initial 
reports in aniline dye workers, 
many laboratories have applied 
technologies for measuring these 
carcinogens and their metabolites to 
confirm exposure in the workplace 
(56). The occurrence of DNA 
adducts in exfoliated urothelial cells 
of a worker exposed to the aromatic 
amine 4,4’-methylene-bis(2-
chloroaniline) (MOCA), an agent 
that induces lung and liver tumours 
in rodents and urinary bladder 
tumours in dogs, was reported (91). 
32P-postlabelling analysis revealed 
the presence of a single, major DNA 
adduct that cochromatographed 
with the major N-hydroxy-MOCA-
DNA adduct, N-(deoxyadenosin-8-
yl)-4-amino-3-chlorobenzyl alcohol, 
formed in vitro. PAH-DNA adducts in 
WBC and 1-hydroxypyrene in urine 
were examined in a group of 105 
workers from a primary aluminum 
plant with different PAH exposures 
(92). Exposure was measured by 
personal monitoring and ranged 
from 0.4–150 fg/m3. High exposure 
to PAH in the work atmosphere 
was associated with increased 
concentration of 1-hydroxypyrene 
in the urine. PAH-DNA adducts 
were detected in 93% of the worker 
samples. Workers with a high PAH 
exposure had significantly higher 
adduct levels than did those with a low 
PAH exposure. A good correlation 
was found between PAH exposure 
and the average PAH-adduct values 
in blood. A statistically significant 
correlation was also found between 
the average adduct values and the 
concentration of 1-hydroxypyrene in 
the urine of smokers.

The lymphocyte bulky PAH-DNA 
adduct levels have been examined 
in workers exposed to ambient air 
pollution (93). A significantly higher 
adduct level was found in bus drivers 
working in central Copenhagen 
compared with those driving in 
suburban areas. The urban drivers 



52

had higher adduct levels than rural 
controls. There was no observation 
of significant influence on adduct 
level by potential confounders 
including smoking and diet, 
GSTM1, or NAT2. A separate study 
measured BPDE-DNA adducts in 
39 coke oven workers (exposed to 
PAH) and 39 non-exposed controls 
(each group consisting of smokers 
and non-smokers) (94). Adducts 
were detected in 51% of workers and 
in 18% of controls. The mean level 
in workers (15.7x108 nucleotides) 
was 15 times higher than in non-
exposed controls. Although large 
interindividual variations were noted, 
smoking workers had 3.5 times 
more adducts than non-smokers.

Measurement of DNA adducts 
in excretion for studying 
carcinogen exposure

In addition to monitoring carcinogen-
DNA adducts in situ in DNA, the 
excised products of these adducts 
can be determined in urine samples. 
These urinary biomarkers have 
been especially amenable to 
comprehensive validation studies 
(95). One example is the examination 
of the dose-dependent excretion of 
urinary aflatoxin biomarkers in the 
rat following a single exposure to 
AFB1 (96). The relationship between 
AFB1 dose and the excretion of the 
major nucleic acid adduct, AFB1-
N7-Guanine (AFB-N7-Gua), over 
the initial 24-hour period following 
exposure, showed an excellent 
linear correlation between dose 
and excretion in urine. In contrast, 
other oxidative metabolites, such 
as aflatoxin P1 (AFP1), revealed no 
linear excretion characteristic.

One approach for the 
development and validation of 
aflatoxin adduct biomarkers has 
entailed parallel experiments in 
animal models with the systematic 
evaluation of these molecular 

biomarkers in humans. The urinary 
excretion of aflatoxin metabolites 
in an area of China with a high 
incidence of liver cancer was 
studied (97). Total 24-hour urine 
samples were collected and 
analysed by an IAC-HPLC analysis 
to determine individual aflatoxins in 
the urine samples. The aflatoxins 
most commonly detected were 
AFB-N7-Gua, AFM1, AFP1 and AFB1; 
however, only AFB-N7-Gua and 
AFM1 showed a dose-dependent 
relationship between aflatoxin intake 
and urinary levels, which indicates 
that these two metabolites might 
be useful biomarkers of exposure. 
Interestingly, these studies also 
demonstrated that the kinetics of 
formation and excretion of AFB-N7-
Gua in urine is almost identical in 
the F344 rat and humans, thereby 
enhancing the value of rodent 
studies for assessing risk to humans.

Modification of N-3 at the 
position of adenine is a major 
route of DNA adduct formation for 
many alkylating carcinogens. The 
resulting 3-alkyldeoxyadenosines 
are unstable, rapidly depurinating 
to give the corresponding 
3-alkyladenines (3-alkAde) that are 
excreted in urine. These can then 
be quantitated by immunochemical 
and/or GC-MS methods. In a 
study of cancer patients receiving 
methylnitrosourea (MNU) as part 
of combination chemotherapy, 24-
hour urine samples were collected. 
An analysis of urinary 3-MeAde 
in smokers showed increased 
excretion of this biomarker. Overall, 
a dose-dependent excretion of 
3-MeAde was observed (98).

Measurement for endogenous 
DNA damage

Endogenous oxidative DNA damage 
may play an important role in the 
formation of chronic degenerative 
diseases, including cancer (99). 

Among the many oxidatively 
damaged DNA bases formed, 
8 -hydroxy-2 ’-deoxyguanosine, 
or 8-oxo-7, 8-dihydro-2’-
deoxyguanosine (oxo8dG) is a 
lesion that can be sensitively 
measured. Several techniques 
have been developed and applied 
to determine this damage product 
in biofluids and tissue samples 
from animals and humans. These 
methods include HPLC-EC, GC/
MS, immunoassay, fluorescence 
postlabelling, 3H-postlabelling and 
32P-postlabelling (100). IA column 
methods have also been described 
for the analysis of oxidative damage 
products of nucleic acids excreted 
in urine (101). Quantitative analysis 
of these adducts in the urine of rats 
fed a nucleic acid-free diet suggests 
that 8-oxo-7, 8-dihydroguanine is 
the principal repair product from 
oxo8dG in DNA. In addition to 
these reports, excretion of oxidative 
DNA damage products in urine has 
also been correlated with dietary 
antioxidant consumption in humans 
(102,103). Thus, these markers 
may eventually be used to assess 
protection status as well as risk of 
disease in people.

Malonaldehyde (MA) is the major 
reactive aldehyde resulting from the 
peroxidation of polyunsaturated 
fatty acids (PUFA) constituents 
of biological membranes, and 
is a by-product of prostaglandin 
biosynthesis (104). MA has been 
proven to be carcinogenic in rats, 
mutagenic in several bacterial and 
mammalian mutation assays, and 
readily reacts with DNA to produce 
several adducts. Relatively high 
endogenous levels of MA-DNA 
adducts have been detected in 
healthy individuals (1–10 adducts/107 
nucleotides). Thus, MA is considered 
an important endogenously 
produced genotoxic agent that may 
contribute to the development of 
some human cancers, particularly to 
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the carcinogenic effects associated 
with high dietary fat intake. Recent 
reviews on this field can be found in 
(105,106).

The effect of dietary fatty acid 
composition on the endogenous 
formation of MA-DNA adducts 
was investigated in a group of 59 
healthy men and women (107). 
They were initially fed a milk fat-
based diet (rich in saturated fatty 
acids) for two weeks to induce a 
homogeneous dietary background. 
Following this period, the subjects 
were randomly divided into two 
subgroups: 30 people were given a 
sunflower oil-based (SO) diet (rich 
in polyunsaturated fatty acid), and 
the remaining 29 people were fed a 
low erucic acid rapeseed oil-based 
(RO) diet (rich in monounsaturated 
fatty acid) for 25 days. At the end of 
the study, the fatty acid composition 
of plasma lipids and the level of 
MA-DNA adduct in total WBC were 
determined. A higher concentration 
of PUFA in plasma triglycerides and 
higher levels of MA-DNA adducts 
were found in the subjects of the SO 
diet group as compared with those 
in the RO diet group. The average 
adduct level (7.4 ± 8.7 adducts/107 

nucleotides) in the SO group was 
3.6-fold higher than that in the RO 
group, although large interindividual 
variation was noted.

Malondialdehyde (MDA)-DNA 
adducts were analysed in surgical 
specimens of normal breast tissues 
of 51 breast cancer patients, while 
normal breast tissue samples from 
28 non-cancer patients served 
as controls (108). Two previously 
characterized MDA-deoxyadenosine 
(dA) and one MDA-deoxyguanosine 
(dG) adducts were detected in all 
tissue samples examined. Normal 
breast tissues from cancer patients 
exhibited significantly higher levels 
than those found in non-cancer 
controls. Ten of the 51 cancer 
patients and one of the 28 controls 

were found to contain the MDA-
DNA adducts at the level of >1/107 

nucleotides. Age and body mass did 
not significantly influence the levels 
of these adducts. However, the 
presence of a previously detected 
BP-DNA adduct in the breast 
tissues was associated with higher 
levels of the MDA-dA adducts 
in cancer patients. Interestingly, 
the level of MA-dA adducts was 
significantly lower in smokers and 
ex-smokers compared to non-
smokers. Tumor tissues (n = 11) 
also displayed significantly lower 
levels of MA adducts than their 
corresponding normal adjacent 
tissues. These results suggest that 
lipid peroxidation products can 
accumulate in human breast tissues 
and reach relatively high levels in 
the breast tissues of women with 
breast cancer.

Estrogen is also known to be a 
major risk factor in breast cancer, and 
its biological effects are mediated by 
both receptor and metabolism (109). 
Estrogen can form DNA adducts, 
which have been measured in 
human samples (110). Formation of 
the 4-hydroxyestradiol-N7-guanine 
(4-OHE2-N7-guanine) adduct from 
the reaction of estradiol-3,4-quinone 
with DNA and its detection in vivo, 
has been established. Therefore, 
the development and application 
of methods to measure estrogen-
guanine adducts will, in the future, 
explore the biological implications of 
these compounds to determine their 
contribution to estrogen toxicology.

Techniques for measuring 
carcinogen-protein adducts

Formation of carcinogen-protein 
adducts is considered to be a 
valuable surrogate for DNA adducts, 
since many chemical carcinogens 
bind to both DNA and protein in 
blood with similar dose–response 
kinetics (3,111). Haemoglobin and 

serum albumin are the proteins 
of choice, although efforts have 
been made to validate histone 
and collagen adducts, because 
they are readily accessible, more 
abundant than DNA, and have 
known rates of turnover. The 
lifespan of haemoglobin is ~60 
days in rodents and 120 days in 
humans, and the half-life of serum 
albumin in humans is 23 days. 
Because protein adducts are stable 
and are not removed by active 
repair processes, they constitute 
a much more precise dosimetry 
tool when compared with DNA 
adducts. Interaction of a carcinogen 
with a protein typically occurs by 
substitution at a nucleophilic amino 
acid. For alkylating agents, the most 
commonly substituted amino acid is 
cysteine, but modifications for other 
carcinogens have been reported 
at lysine, aspartate, glutamate, 
tryptophan, histidine and valine 
(3,112).

Formation of haemoglobin or 
serum albumin adducts has been 
reported in experimental animals 
and humans for many categories 
of carcinogens, including AFB1, 
aromatic amines, B(a)P, benzene, 
dimethylnitrosamine, ethylene oxide, 
2-amino-3-methylimidazo(4,5-f )
quinoline, methylmethane sulfonate, 
NNK, propylene oxide, styrene, and 
workplace and medicinal (psoriasis) 
PAHs (3,50,113). Techniques for 
measuring carcinogen-protein 
adducts include immunoassays 
(ELISA, RIA, and IAC) and 
analytical chemical methods (GC, 
GC-MS, HPLC, LC-MS, and AMS). 
Several combinative methods, 
such as IAC-HPLC with fluorescent 
detection and isotope dilution MS, 
have been applied to measure 
protein adducts (114). Sensitivity 
of these methods typically can be 
within the pmol and fmol range. For 
detection of haemoglobin or albumin 
adducts in humans, samples must 
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be enriched for adducts, or adducts 
must be removed from the protein, 
before analysis (3,60,111). This is 
accomplished by either chemical 
or enzymatic release of the adduct 
or carcinogen from the protein or 
digestion of the protein into peptides 
and amino acids. Solvent extraction 
or IAC purification may then be 
used for partial purification before 
undergoing analysis with GC-MS, 
HPLC, or LC-MS.

Measurement of haemoglobin 
adducts for studying 
carcinogen exposure

A wide variety of aromatic amines 
and PAHs have been found to 
bind at high levels to haemoglobin 
(115). A brief summary showing 
the range of the different chemical 
haemoglobin adducts that have 
been detected in human non-
smokers is found in Table 4.1. One 
carcinogen-Hb adduct that has been 
well characterized is formed by the 
potent urinary bladder carcinogen 
4-ABP, and has been reported in 
human blood specimens (113). It 
has been concluded that 4-ABP-
Hb adduct is closely associated 
with three major risk factors for 
bladder cancer: cigarette smoking, 
the type of tobacco smoked and 
acetylator phenotype. The relation 
between exposure to environmental 
tobacco smoke (ETS) and levels of 
4-ABP-Hb adducts in non-smoking 
pregnant women compared to 
adduct levels in those women who 
smoked during pregnancy has been 
reported (116). A questionnaire on 
smoking and exposure to ETS was 
administered to pregnant women. 
Samples of maternal blood and cord 
blood were collected during delivery 
and analysed for 4-ABP-Hb adducts 
by GC-MS. The mean adduct level 
in smokers was approximately nine-
fold higher than that in non-smokers. 
Among non-smokers, the levels 

of 4-ABP-Hb adducts increased 
with increasing ETS level. This 
relationship between ETS exposure 
and 4-ABP-Hb adduct levels 
supports the concept that ETS is a 
probable hazard during pregnancy.

Metabolic polymorphism, both 
in NAT and in CYP1A2, is also 
expected to affect the formation 
of 4-ABP-DNA- and Hb-adducts. 
Levels of DNA adducts in bladder 
cells and 4-ABP-Hb adducts in 
79 individuals, together with the 
acetylator phenotype and genotype, 
were determined (117). Among the 
slow acetylators, levels of 4-ABP-
Hb adducts were significantly higher 
compared to those present in rapid 
acetylators. This study indicated that 
clearance of low-dose carcinogens 
is decreased in the slow acetylator 
phenotype. Since the highest 
levels of adducts were found in 
individuals with rapid N-oxidation 
(CYP1A2) and slow N-acetylation 
(NAT2) phenotype, determination 
of phenotypes and genotypes may 

provide a better prediction and 
assessment of human cancer risk.

It was found that mean 3- 
and 4-ABP-Hb adduct levels in 
151 subjects were statistically 
significantly higher in cigarette 
smokers compared to non-smokers, 
and that the level increased with 
increasing number of cigarettes 
smoked per day (118). Again, 
slow acetylators consistently 
exhibited higher mean levels of 
ABP-Hb adducts compared to 
rapid acetylators. The mean level 
of 4-ABP-Hb adduct was higher in 
subjects possessing the GSTM1-
null versus GSTM1-non-null 
genotype (46.5 versus 36.0 pg/g 
Hb; P = 0.037). In another study, 
a polymorphic distribution of the 
CYP1A2 and NAT2 phenotypes 
was examined in relation to ABP-Hb 
adduct formation in 97 healthy males 
(119). Rapid oxidizers and subjects 
with the combined slow acetylator-
rapid oxidizer phenotype showed 
the highest ABP-Hb adduct levels at 

Table 4.1. Haemoglobin adducts in human non-smokers

Compound fmole/g Haemoglobin

HPB from NNK 29.3 ± 25.9

2-Aminonapthalene 40 ± 20

4-ethylaniline 99 ± 10

2,6-dimethylaniline 157 ± 50

4-Aminobiphenyl 166 ± 77

3,5-dimethylaniline 220 ± 20

o-Toluidine 320 ± 90

p-Toluidine 640 ± 370

m-Toluidine 6400 ± 1900

N-(2-carbamoylethyl)valine 19000 ± 12000

Aniline 41000 ± 22000

N-(2-Hydroxyethyl)valine 58000 ± 25000

Table compiled from (69,115,120).
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a low smoking dose. However, in a 
subset of 45 available samples, no 
association was seen between the 
ABP-Hb adduct levels and GSTM1 
genotype.

A wide variety of aromatic 
amines and PAHs have been found 
to bind at high levels to haemoglobin 
(115). Tobacco-specific nitrosamine 
binding to haemoglobin from 
pyridyloxobutylation has been
detected at 29.3 ± 25.9 fmole/g
haemoglobin (54). 2-Aminonapthalene, 
4-ethylaniline, 2,6-dimethylaniline, 
4-Aminobiphenyl, 3,5-dimethylaniline, 
o-Toluidine, p-Toluidine, m-Toluidine, 
N-(2-carbamoylethyl)valine, Aniline, 
and N-(2-Hydroxyethyl)valine have 
been measured at 40 ± 20, 99 ± 10, 
157 ± 50, 166 ± 77, 220 ± 20, 320 ± 
90, 640 ± 370, 6400 ± 1900, 19 000 
± 12 000, 41 000 ± 22 000, and 58 
000 ± 25 000 fmole/g haemoglobin, 
respectively (69,115,120). One of 
the carcinogen-Hb adducts that has 
been well characterized is formed 
by 4-ABP, the potent urinary bladder 
carcinogen; 4-ABP-Hb adducts in 
human blood specimens have been 
reported (113). The results indicate 
that the 4-ABP-Hb adduct is closely 
associated with three major risk 
factors for bladder cancer: cigarette 
smoking, the type of tobacco 
smoked, and acetylator phenotype.

The role of aromatic amines in 
the development of bladder cancer 
in non-smokers in Los Angeles, 
USA was explored in a population-
based case–control study involving 
298 case subjects with bladder 
cancer and 308 controls. To assess 
arylamine exposure, levels of 
arylamine-haemoglobin adducts 
of nine selected alkylanilines 
(2,3-dimethylaniline (2,3-DMA), 
2,4-DMA, 2,5-DMA, 2,6-DMA, 
3,4-DMA, 3,5-DMA, 2-ethylaniline 
(2-EA), 3-EA, and 4-EA) were 
measured in peripheral blood 
collected from study subjects. 
Levels of all arylamine-haemoglobin 

adducts, with the exception of 2,6-
DMA, were higher in smokers than 
in non-smokers, and levels of all 
arylamine-haemoglobin adducts 
were higher in cases than in controls. 
Arylamine-haemoglobin adducts 
of 2,6-DMA, 3,5-DMA, and 3-EA 
were all independently statistically 
significantly (all P < 0.001) associated 
with bladder cancer risk after 
adjusting for cigarette smoking at 
the time of blood collection, lifetime 
smoking history and other potential 
risk factors. These adducts were 
also independently associated with 
bladder cancer risk when only non-
smokers at the time of blood draw 
were considered (highest quartile 
versus lowest quartile: 2,6-DMA, 
relative risk (RR) of bladder cancer 
= 8.1, 95% confidence interval (CI) 
= 3.6–18.0; 3,5-DMA, RR = 2.7, 
95% CI = 1.2–6.0; 3-EA, RR = 4.3, 
95% CI = 1.6–11.6). Thus, diverse 
arylamine exposures are strongly 
associated with bladder cancer risk 
among non-smokers (69).

Measurement of albumin 
adducts for studying 
carcinogen exposure

In addition to carcinogen-Hb 
adducts, carcinogen-albumin 
adducts have also been investigated, 
particularly for AFB1 exposure 
(113,121). There are four analytical 
techniques currently available for 
measuring AFB1-albumin adducts 
in human blood: ELISA, RIA, IAC-
HPLC with fluorescence detection, 
and isotope dilution MS (IDMS) 
(50,114). Using RIA, levels of 
aflatoxin-serum albumin adducts 
in serum samples from residents 
of Guangxi, China were monitored; 
a highly significant association 
between AFB1-albumin adduct level 
and AFB1 intake was found (122). 
Further, it was calculated that about 
2% of the ingested AFB1 became 
covalently bound to serum albumin, 

a value very similar to that observed 
when rats were administered 
AFB1. When the data for AFB-N7-
Gua adduct excretion in urine and 
serum albumin were compared, a 
statistically significant relationship 
was seen with a correlation 
coefficient of 0.73 (123). Using 
ELISA, AFB1-albumin adducts in 
human sera from several regions 
of the world were investigated 
(124). It was found that 12–100% of 
serum samples from children and 
adults of various African countries 
contained AFB1-albumin adducts, 
with levels up to 350 pg AFB1-lysine 
equivalent/mg albumin. In studies 
conducted in the Gambia, West 
Africa, a strong dose–response 
relationship between aflatoxin 
exposure and AFB1-albumin 
adducts was also seen (125), similar 
to that previously reported in China 
(122). From a practical perspective 
pertinent to epidemiologic studies, 
the measurement of serum AFB1-
albumin adduct offers a rapid, facile 
approach that can be used to screen 
very large numbers of people (17).

Three methods for AFB1-
albumin adduct measurement were 
compared using serum samples 
from highly exposed residents of 
Qidong (n=88), Fushui (n=65), and 
Chongming Island (n=115), China, 
and The Gambia (n=29). Although 
the average levels of AFB1-albumin 
adducts were similar among these 
regions, great individual variations 
were found, as evidenced by the 
detectable level ranging from 0.124–
25.925 pmol aflatoxin/mg albumin in 
the 297 samples. High correlations 
across the methods (r = 0.80–
0.90) were obtained by comparing 
samples with each of the different 
analytical methods. Moreover, some 
of these samples can be stored 
for over 10 years with insignificant 
losses of albumin adduct levels (126). 
The ELISA and IDMS methods were 
compared in measurement of 20 
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human serum samples collected in 
Guinea, West Africa; high correlation 
between these two methods was 
found (r = 0.856, P < 0.0001) (127). 
In an experimental study, the level 
of AFB1-albumin adducts formed as 
a function of a single dose of AFB1 

in rodents was compared to data 
from humans exposed to AFB1. 
This comparison yielded a value 
for the three rat strains (Fischer 
344, Wistar, and Sprague-Dawley) 
of between 0.3–0.51 pg AFB1-
lysine/mg albumin/1 µg AFB1/kg 
body weight and a value for the 
mouse (C57BL) of <0.025. The 
best estimate for people from the 
Gambia and southern China was 
1.56 pg/mg albumin for the same 
exposure. These data suggest that 
humans exposed to AFB1 form 
amounts of albumin adducts closer 
to those observed in AFB1-sensitive 
species and 1–2 orders of magnitude 
higher levels than the AFB1-resistant 
species (128).

Measurement of DNA and 
protein adducts for studying 
cancer risk

DNA and protein adducts not only 
serve as biomarkers for exposure, 
but as biomarkers for cancer risk. A 
nested case-control study initiated 
in 1986 in Shanghai, examined the 
relationship between biomarkers for 
aflatoxin and hepatitis B virus (HBV) 
and the development of liver cancer 
(129,130). In this study, over 18 000 
urine samples were collected from 
healthy males between the ages 
of 45 and 64. In the subsequent 
seven years, 50 of these individuals 
developed liver cancer. The urine 
samples for cases were age-
matched and residence-matched 
with controls and analysed for both 
aflatoxin biomarkers and HBsAg 
status. A highly significant increase 
in the RR of 3.5 was observed for 
those liver cancer cases where 

urinary aflatoxin biomarkers (AFB-
N7-Gua and other AFB1 metabolites) 
were detected. The RR for people 
who tested positive for the HBsAg 
was about eight, but individuals with 
both urinary aflatoxin biomarkers 
and positive HBsAg status had a 
RR for developing liver cancer of 57. 
These results show, for the first time, 
a relationship between the presence 
of carcinogen-specific biomarkers 
and cancer risk. Moreover, 
these findings provided the first 
demonstration of a multiplicative 
interaction between these two major 
risk factors for liver cancer. Further, 
when individual aflatoxin metabolites 
were stratified for liver cancer 
outcome, the presence of the AFB-
N7-Gua in urine always resulted in a 
two- to three-fold elevation in risk of 
developing liver cancer (130).

A case–control study measured 
BPDE-DNA adducts in DNA 
samples from WBC of lung cancer 
patients and healthy controls. High 
levels of adducts were found in 
WBC from lung cancer patients, 
with a range of 65–533 adducts/108 

nucleotides. In WBC-DNA samples 
from healthy controls (smokers, non-
smokers), the presence of adducts 
was detected only in smokers, but 
at a lower level than in lung cancer 
patients (74). PAH-DNA adducts 
in peripheral leukocytes were 
investigated from 119 non-small cell 
lung cancer patients and 98 controls 
(131). Among them, 31 cases had 
adduct measurements in leukocytes, 
lung tumour and non-tumour 
specimens collected at surgery, 
and 34 had paired leukocyte and 
tumour specimens. After adjustment 
for age, gender, ethnicity, season 
and smoking, DNA adducts in 
leukocytes were significantly higher 
in cases than controls; the odds ratio 
was 7.7 (95% CI = 1.7–34; P<0.01). 
DNA adducts in leukocytes were 
increased significantly in smokers 
and ex-smokers compared to non-

smokers among cases and controls 
(separately and combined) after 
adjusting for age, gender, ethnicity, 
and season.

Aflatoxin-albumin adducts have 
been used as biomarkers for liver 
cancer risk. A nested case-control 
study carried out in Taiwan, China, 
followed a cohort of 8068 men for 
three years (132,133). Twenty-seven 
cases of hepatocellular carcinoma 
(HCC) were identified and matched 
with 120 healthy controls. Serum 
samples were analysed for AFB1-
albumin adducts by ELISA. The 
proportion of subjects with a 
detectable serum AFB1-albumin 
adduct level was higher for HCC 
cases (74%) than matched controls 
(66%), giving an odds ratio of 1.5. 
There was a statistically significant 
association between detectable 
level of AFB1-albumin adduct and 
HCC risk among men younger than 
52 years old, showing a multivariate-
adjusted odds ratio of 5.3, although 
no association was observed 
between AFB1-albumin adduct 
level and HBsAg carrier status. 
Another prospective, nested case–
control study (134) was carried out 
in Qidong, China in 1991. Serum 
samples from 804 healthy HBsAg-
positive individuals (728 male, 76 
female) aged 30–65 were obtained 
and stored frozen. Between the 
years 1993–95, 38 individuals 
developed liver cancer. The serum 
samples for 34 of these cases were 
matched by age, gender, residence 
and time of sampling to 170 controls. 
Serum AFB1-albumin adduct levels 
were determined by RIA. The RR for 
HCC among AFB1-albumin positive 
individuals was 2.4 (95% CI = 1.2–
4.7).

Summary and perspectives 
for the future

Over the past 25 years, the 
development and application of 
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molecular biomarkers reflecting 
events from exposure to formation 
of clinical disease has rapidly 
expanded our knowledge of 
the mechanisms of disease 
pathogenesis. These biomarkers will 
have increasing potential for early 
detection, treatment, interventions 
and prevention. Biomarkers 
derived from toxicant/carcinogen 
metabolism include a variety of 
parent compounds and metabolites 
in body fluids and excreta, which 
serve as biomarkers of internal 
dose. Carcinogen-macromolecular 
adducts, such as DNA and protein 
adducts formed in blood and 
tissue or excreted in urine, serve 
as biomarkers for: exposure to the 
complex mixture of occupational 
carcinogens; biologically effective 
dose or early biological effect, to 
measure the actual dose to the 
carcinogen target site; and for risk 
assessment between carcinogen 
exposure and eventual cancer 
formation.

Many different analytical 
techniques have been developed 
to identify and measure parent 
compounds, metabolites, 
carcinogen-DNA and -protein 
adducts. These include 
immunoassays (ELISA, RIA, IHC, 
and IA), radiometric postlabelling 

methods (32P-post-labelling) 
and various physicochemical 
methods (GC, HPLC, GC-MS, 
LC-MS, ECD, fluorescence and 
phosphorescence spectroscopy, or 
a combination of these methods). 
Capillary electrophoresis and 
other new separation techniques 
have improved sensitivity and 
specificity of these strategies. 
NMR spectrometry has also been 
used to determine stereospecificity 
and three-dimensional structure. 
Molecular epidemiologic studies that 
employ carcinogen-macromolecular 
adduct measurements are likely 
to be widely applied in the future. 
They have the potential to generate 
hypotheses regarding underlying 
basic biologic mechanisms that 
subsequently can be tested in the 
laboratory. The complex nature of 
gene–environment and chemical–
biological interactions will be better 
understood through the use of 
advanced techniques, such as 
rapidly developing metabolomics 
and proteomics, which include 
NMR-MS and matrix-assisted laser 
desorption/ionization (MALDI)-
MS, and incorporation of validated 
biomarkers into large-scale studies. 
In the future, integration of data 
for these biomarkers, together 
with other environmental and host 

susceptibility factors in molecular 
epidemiologic studies of human 
cancer, will assist in the elucidation 
of human cancer risk.

The molecular epidemiology 
investigations of aflatoxins probably 
represent one of the most extensive 
data sets in the field, and may serve 
as a template for future studies of 
other environmental agents. The 
development of aflatoxin biomarkers 
has been based upon the knowledge 
of their biochemistry and toxicology 
gleaned from both experimental and 
human studies. These biomarkers 
have subsequently been used in 
experimental models to provide 
data on the modulation of these 
markers under different situations 
of disease risk. This systematic 
approach provides encouragement 
for preventive interventions and 
should serve as a template for 
the development, validation and 
application of other biomarkers to 
cancer or other chronic diseases.
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chapter 5.  

Assessment of genetic damage
in healthy and diseased tissue

Joe Shuga, Pierre Hainaut, and Martyn T. Smith

Summary

DNA, along with other cellular 
components, is under constant 
attack by chemical, physical, and 
infectious agents present in the 
human environment, as well as by 
reactive metabolites generated by 
physiological processes. Mutations 
occur as the consequence of this 
damage, but may also be caused by 
improper DNA repair of alterations 
occurring during normal DNA 
replication and transcription. Genetic 
damage can occur at the level of 
the gene (e.g. point mutations, 
insertions, and deletions) or at 
the level of the chromosome (e.g. 
aneuploidy, translocations). Further, 
mutations can also take place in 
mitochondrial DNA. Another form 
of DNA modification is epigenetic 
methylation of CpG islands, which 
affects the dynamics of chromatin 

as well as the expression of a large 
panel of genes.

Recent technical advances 
have improved the capacity to 
detect and quantify genetic and 
epigenetic changes. This chapter 
summarizes current knowledge 
on mechanisms of DNA damage 
and mutagenesis, laying out the 
concepts for interpreting mutations 
as biomarkers in investigating 
the causes and consequences 
of cancer. It also outlines both 
established and novel methods for 
detecting genetic and epigenetic 
changes in normal and diseased 
tissues, and then discusses their 
application in the realm of molecular 
epidemiology.

Introduction

The sequencing of the human 
genome has established the 
existence of about 22 000 protein-
coding genes (1,2). Together 
these protein-coding genes only 
comprise 2–3% of the total genome, 
which amounts to approximately 
3.25x109 nucleotide base pairs. The 
great majority of DNA is actually 
not protein-coding and instead 
consists of regulatory sequences, 
sequences encoding regulatory 
and metabolic RNAs, and repetitive 
sequences. All sequences are 
assembled and replicated according 
to specific base pairing to form the 
double helix, which is packed with 
proteins into a structure called 
chromatin that forms chromosomes. 
Cells also contain non-genomic 
DNA: the mitochondrial genome, 
which is circular and composed of 
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16.6x103 base pairs, is present in 
the cytoplasm at a copy number 
of ~102-104 per cell. Both genomic 
and mitochondrial DNA undergo 
structural alterations associated 
with disease (3–9).

Structural alterations in DNA 
occur through changes in DNA 
base pairing, as well as in its 
supra-molecular chromatin and 
chromosome organization (Figure 
5.1). Base pairing changes are known 
as ‘mutations,’ while changes that do 
not modify the base pairing content 
of DNA but affect its expression, 
processing, metabolism, and 
stability are known as ‘epigenetic 
changes.’ The nature and type 
of mutations can vary by several 
orders of magnitude, from single 
base pair mutations to deletions or 
duplications encompassing whole 
chromosomes. Such changes 
are the causal defects of many 
diseases. Cancers, in particular, 
develop as the consequence of 
accumulated genetic and epigenetic 

changes that affect the expression 
and activity of selected sets of 
genes, providing cells with selective 
growth advantages on the path to 
malignancy (10–12).

In recent years, technical 
advances have improved the 
capacity to detect and quantify 
genetic changes, paving the 
way for novel methods for early 
detection of mutations and for better 
understanding the mechanisms 
that have caused their formation. 
This chapter outlines several of 
these methods and examines their 
application in the area of molecular 
epidemiology and early detection of 
disease (Figure 5.2). It also provides 
a brief presentation of the more 
established methods available for 
detecting and measuring mutations 
in normal and diseased tissues. 
This information is presented in the 
context of current knowledge on 
mechanisms of mutagenesis, laying 
out the key concepts for interpreting 
the significance of mutations as 

biomarkers in investigating the 
causes and consequences of 
cancer.

Mechanisms of mutagenesis

Mutations as biomarkers 
of early effects of 
carcinogens

In their seminal 1953 paper, Watson 
and Crick made one of the most 
famous understatements in biology: 
“It has not escaped our notice that the 
specific pairing we have postulated 
immediately suggests a possible 
copying mechanism for the genetic 
material.” Since then, DNA replication 
mechanisms and their associated 
repair systems have developed into 
a prolific field of research. Many 
human diseases, such as cancer, 
neurodegenerative, inflammatory, 
or autoimmune diseases, can 
be described as a disruption in 
the balance between correct and 
incorrect DNA synthesis (13).

Figure 5.1. DNA, chromatin structures, and chromosomes. The architecture of the genetic material, from DNA double-helix 
to packed chromosomes, is represented in relation with the level at which different forms of genetic modifications may occur 
(mutations, epigenetic changes, chromosomal aberrations)
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DNA, along with other cellular 
components, is under constant attack 
by reactive metabolites generated 
by physiological processes, as 
well as by chemical, physical, or 
infectious agents present in the 
human environment. It is estimated 
that each individual human cell can 
undergo damage to its DNA at a rate 
of up to 106 molecular lesions per day 
(14). This extensive DNA damage 
is compensated for and corrected 
by DNA repair systems. Thus, 
contrary to common perception, 
DNA is far from being carved in 
stone for eternity: its structure is 
highly variable, ever changing, and 
stabilized only by active biological 
processes that maintain the fidelity 
of DNA replication. Failure to detect, 
process, or repair DNA damage in an 
appropriate way leads to mutations.

Mutations occurring in the 
germline may be passed from one 
generation to the other and may form 
the underlying cause of inherited 
diseases. These germline mutations 

are present in the genome of every 
cell of the resulting offspring, even 
those cells and tissues that do not 
express a phenotypic defect caused 
by mutation. Genetic changes can 
also be acquired by a somatic cell 
after conception; such mutations are 
not transmitted from one generation 
to the other. However, these acquired 
mutations are transmitted to all cells 
descended from the original cell 
that underwent the mutation, giving 
rise to a clone (colony) of cells 
carrying the mutation as a marker 
and possibly as a phenotypic trait. 
This is particularly spectacular in 
the case of cancer, which results 
from the proliferation of a single 
or a small number of clone(s) 
having acquired a selective growth 
advantage as the result of mutation. 
Cancer involves deep modifications 
of the cell genome through multiple 
steps of somatic mutations (15,16).

Genetic damage can occur at 
the level of the gene (e.g. point 
mutations, insertions, and deletions) 

or at the level of the chromosome 
(e.g. aneuploidy, translocations). 
Historically, studies on genetic and 
genomic damage have tended to 
measure mutations in surrogate 
genes, such as hypoxanthine 
phosphoribosyltransferase (HPRT) 
and glycophorin A (GPA) (17), 
or to use cytogenetics to assess 
changes in chromosome structure 
and number, such as classical and 
banded chromosomal aberrations, 
sister chromatid exchanges, and 
micronucleus formation (18–21). 
These biomarkers have been 
shown to be associated with a wide 
range of carcinogenic exposures 
(22–26). However, mutations in 
surrogate genes are of limited value 
as biomarkers of early effect, since 
they are not on the causal pathway 
of disease.

During the past three decades, 
several hundred genes have been 
identified as recurrent sites for 
genetic or genomic damage in 
cancer cells. These genes provide 

Figure 5.2. Scope of the chapter: biomarkers of early effects. This scheme shows sequential steps in the processes by which 
environmental exposures may deregulate genetic programmes, thus leading to cancer. This chapter focuses on the detection of 
genetic changes that are biomarkers of early effects of DNA damaging processes, and, in particular, on those biomarkers that 
are parts of the molecular pathways of disease causation. These biomarkers include DNA damage, mutations in genomic and 
mitochondrial DNA, chromosomal aberrations, epigenetic changes, and formation of micronuclei
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a wide spectrum of biomarkers 
to detect early mutational and 
chromosomal effects of carcinogenic 
exposure in humans (27). These 
novel biomarkers measure changes 
frequently observed among cancer 
patients, including point mutations in 
genes such as TP53, ras, BRCA1/2, 
HER1/2, altered gene methylation, 
aneuploidy (chromosome loss 
or gain – including monosomy 
7 and trisomy 8), and specific 
chromosome rearrangements such 
as translocations. Such changes 
are readily detectable in cancer 
cells. However, to exploit their 
value as biomarkers of early effect, 
they must be applicable to study 
individuals who may be at risk, but 
who do not yet have cancer. Such 
studies require detecting genetic 
changes that occur in single cells 
or a small number of cells that are 
morphologically undistinguishable 
from ‘normal’ cells. This is now 
feasible using cutting edge 
technologies such as real-time 
quantitative polymerase chain 
reaction (PCR), fluorescence in situ 
hybridization (FISH) analysis, and 
genotypic selection methods which 
introduce new levels of sensitivity 
and specificity. Such biomarkers are 
useful in epidemiological studies of 
environmentally induced cancers 
which have long latency periods, as 
well as providing early detection for 
those individuals at risk.

Sources of DNA damage

The elucidation of the human 
genome sequence has made 
it possible to identify genetic 
alterations in cancers on 
an unprecedented scale. 
Comprehensive analysis of 
the coding sequence of 13 023 
genes in breast and colorectal 
cancers revealed that individual 
tumours accumulate, on average, 
approximately 90 mutant genes. 

However, only a subset (about 11 per 
tumour on average) appears to be 
mutated at a significant frequency 
and may be considered as potential 
‘drivers’ of the neoplastic process. 
Most other mutations appear to 
be ‘passengers,’ occurring as 
a consequence of the genetic 
instability of cancer cells (28,29). 
Currently, the list of genes affected 
by potential driver mutations 
includes about 300 candidates. 
An exhaustive discussion of each 
mutation known to be associated with 
cancer is beyond the scope of this 
chapter. The Human Gene Mutation 
Database (HGMD) compiles a list 
of mutations in the coding regions 

of genes that are known to cause 
genetic defects (30–35) (http://www.
hgmd.cf.ac.uk/ac/index.php). Single 
base pair substitutions account 
for about 50% of all mutations in 
the HGMD and include different 
subtypes (e.g. transitions or 
transversions) depending upon the 
nature of the base change. Other 
common changes include deletions, 
insertions, duplications, inversions, 
and alterations of unstable repeated 
sequences (Figure 5.3).

Epidemiological studies have 
demonstrated the links between 
carcinogen exposure and cancer 
in human populations. The type, 
route, and amount of exposure can 

Figure 5.3. Distribution of mutation types in the HGMD database. The proportion of 
different types of mutations in the HGMD database is shown. A: Types of mutations. 
Indels: combined insertions and deletions. B: Types of base changes among 
missense mutations. Note that the two types of transitions are more common than 
the four types of transversions. Mutations at CpG sites represent about 65% of all 
G:C to A:T transitions. Source: http://lisntweb.swan.ac.uk/cmgt/index.htm
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determine the type of cancer. It 
also influences the type of genetic, 
genomic, and epigenetic alterations, 
leading in some instances 
to genetic changes that are 
‘signature’ of specific environmental 
carcinogens. A typical example 
of such a ‘carcinogen fingerprint’ 
is C to T transition mutations at 
hotspot dipyrimidines sites in TP53 
caused by ultraviolet radiation (36). 
However, such an unequivocal 
mutation pattern is the exception. In 
most instances, mutation patterns 
are complex, reflecting the diversity 
of exposures and mechanisms 
involved in carcinogenesis (37).

Many factors and agents can 
produce DNA damage leading 
to mutations. Highly reactive 
molecules, such as oxygen and 
nitrogen radicals, are produced 

as by-products of physiological 
and pathological processes. DNA 
binding compounds can also form 
as the result of the enzymatic 
transformation of exogenous 
compounds, a process called 
carcinogen activation. These 
reactive products can induce 
covalent or non-covalent anomalies 
in DNA, resulting in various forms 
of base damage, single- or double-
strand cuts, nicks, and gaps, and 
crosslinks (both intrastrand and 
interstrand) (38). Different forms of 
damage elicit distinct DNA repair 
reactions. The main forms of base 
damage are oxidized, reduced, 
and fragmented bases, as well as 
covalent adducts of small chemical 
groups (e.g. alkyl adducts) or large 
compounds (the so-called ‘bulky 
adducts’ induced by metabolites of 

polycyclic aromatic hydrocarbons, 
arylamines, or mycotoxins). 
Imperfect repair of these lesions 
induces irreversible changes in the 
DNA base pairing. Carcinogen DNA 
fingerprints arise when a particular 
type of base pair change is frequently 
observed following exposure to a 
specific type of carcinogen. Table 
5.1 shows a list of some chemicals 
that induce defined types of DNA 
lesions and describes the major 
types of mutations that result from 
these lesions in experimental 
systems.

Mutagenesis induced by 
exposure to carcinogens

Many carcinogens are lipophilic 
compounds that cross plasma 
membranes to accumulate in the 

Table 5.1. DNA fingerprints of some exogenous and endogenous DNA-damaging agents

Site of pre-mutagenic lesion Mutagen Main mutations Possible TP53 fingerprint in:

N7-G AFB1 GC > TA Hepatocellular carcinoma

N2-G B[a]P-7,8-diol-9,10-epoxide (BPDE) GC > TA Lung cancer, smokers

O6-G N-Methyl-N-nitrosourea GC > AT Oral, esophageal cancer?

O6-G NNK GC > AT Lung cancer?

C8-G 1-Nitrosopyrene GC > AT, GC > TA ?

C8-G 4-Aminobiphenyl GC > TA Bladder cancer

C8-G 2-AAF GC > TA Bladder cancer?

C8-G PhIP GC > TA ?

8-oxo-G Oxidative agents GC > TA Many cancers, including lung

1,N2-G Malondialdehyde GC > TA, GC > AT ?

N6-A Stryene oxide AT > CG ?

N6-A Benzo[c]phenanthrene diol epoxides AT > TA, AT > GC Lung, esophageal cancer?

N6-A BPDE AT > GC Lung cancer

3,N4-C Vinyl chloride GC > AT Angiosarcoma of the liver

5-OH-C, 5-OH-U, uridine glycol Oxidative agents GC > AT ?

N3-U Propylene oxide GC > AT ?

Pyrimidine dimers UV CC > TT tandem,

GC > AT Non-melanoma skin cancer

Apurinic Depurinating agents GC > TA, AT > TA ?

? – No clear mutation fingerprint identified so far
Table compiled from (235) and (236)
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cytoplasm and the nucleus. To 
neutralize their immediate, toxic 
effects, cells mobilize complex 
enzymatic machineries acting as 
a first line of defence against DNA 
damage. Cytochrome P (CYP) 
450 enzymes initiate a cascade of 
metabolic detoxification reactions 
by catalysing the addition of an 
oxygen atom to the carcinogen, 
increasing its solubility in water 
(Figure 5.4) (39,40). This process is 
amplified by conjugation enzymes, 
such as glutathione S-transferase, 
converting the oxygenated 
carcinogen to a soluble compound 
which is eliminated from the cell. 
These efficient detoxification 
reactions provide a first line of 
protection against the toxicity 
of chemicals (41). However, the 
reactive, water-soluble compounds 

formed during this process often 
contain an electrophilic (electron-
deficient) centre that can react with 
DNA bases at specific N and O 
positions resulting in the formation 
of covalent DNA adducts (Figure 
5.4) (42–45).

The second line of defence is to 
remove damage through DNA repair 
proteins and pathways (46–48). The 
nucleotide excision repair pathway 
eliminates intra- and interstrand 
DNA crosslinks as well as bulky 
DNA adducts. Base excision repair 
(BER) eliminates and corrects bases 
damaged by small chemical groups 
(oxidized or methylated bases) 
or those fragmented by ionizing 
radiation or chemical oxidation. The 
frequent, miscoding, methylated 
base O6-methylguanine is repaired 
through a specialized mechanism 

using the enzyme O6-methylguanine 
DNA methyltransferase (49–51). 
Repair mechanisms involve steps 
of damage removal (e.g. by DNA 
glycosylases in BER) followed 
by base incorporation reactions 
mediated by polymerases. 
Furthermore, some DNA lesions 
are not repaired at the same rate on 
both strands of the double helix. The 
transcribed strand is preferentially 
repaired during transcription-coupled 
repair, generating strand asymmetry 
in the distribution of some mutations 
induced by exogenous carcinogens, 
such as in cigarette smoke (Figure 
5.5). In addition, repair is dependent 
upon sequence context. For 
example, in TP53, there is evidence 
that repair is slower at some of the 
major mutation hotspots than at 
other positions (52,53).

Figure 5.4. Carcinogen metabolism, DNA damage, and mutations: the example of aflatoxins. Aflatoxin is a widespread 
contaminant of the staple diet in tropical areas. This mycotoxin is metabolized in the liver to form epoxides that bind covalently 
to guanine at codon 249 in TP53. There is a synergistic effect between aflatoxin and chronic HBV infection in inducing a specific 
mutation which is found in about 50% of hepatocellular carcinomas in large regions of Africa and South-East Asia
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A third line of defence against 
DNA damage is provided by the 
cellular response to incomplete 
or imperfect DNA repair, which 
triggers suppressive mechanisms 
that prevent DNA replication. A 
key response in this process is 
stabilization and activation of 
the p53 protein, which induces 
either apoptosis or cell-cycle 
arrest, terminal differentiation, 
and senescence (54), thereby 

permanently deleting damaged 
cells from the pool of cells capable 
of replicating their DNA. Cells 
that escape these mechanisms 
and proceed through replication 
undergo a replicative block due to 
the stalling of DNA polymerases 
at the site of a persistent lesion. 
To bypass this block, cells have 
evolved low-fidelity polymerases 
which resolve the lesion but are also 
error prone, often incorporating the 

wrong base at the site of damage 
(13,55). Mutations arise when DNA 
adducts are bypassed incorrectly by 
these low-fidelity DNA polymerases. 
The variable fidelity of DNA copying 
mechanisms is one of the main 
molecular mechanisms of evolution: 
high-fidelity DNA synthesis prevents 
mutations and maintains stable 
genetic information over many 
generations, while low-fidelity 
DNA synthesis serves to generate 
diversity, leading to advantages for 
some individuals in a population 
subjected to selection pressures.

Spontaneous mutations

Many mutations occur without the 
involvement of exogenous DNA 
damaging agents. There are four 
main types of damage to DNA due 
to endogenous cellular processes: 
(1) base oxidation (e.g. 8-oxo-
7,8-dihydroguanine (8-oxoG) and 
generation of single or double DNA 
strand breaks by reactive oxygen 
species); (2) base alkylation (e.g. 
methylation, such as formation of 
methylguanine); (3) hydrolysis (e.g. 
deamination, depurination, and 
depyrimidination); and (4) mismatch 
(due to DNA replication in which the 
wrong DNA base is incorporated into 
a newly synthesized DNA strand). 
It is estimated that spontaneous 
mutations occur in the coding regions 
of mammalian genomes at a rate of 
about 2.2x10−9 per base pair per 
year (56). This rate is similar among 
different genes, but is extremely 
variable at different base pairs. In 
particular, the CpG dinucleotides 
can mutate at a rate 10 times higher 
than other nucleotides, generating 
transitions (57,58). About 3–5% 
of cytosines at CpG dinucleotides 
in the human genome are 
methylated at position 5ʹ by a post-
replicative mechanism catalysed 
by DNA methyltransferase. The 
5-methylcytosine (5mC) is less 

Figure 5.5. Distribution and strand bias of TP53 mutations in lung cancers in relation 
with tobacco smoke. The proportion of each base change in lung cancers is shown 
for smokers and non-smokers. Differences between two symmetric base changes 
demonstrate a strand bias (e.g. G:T versus C:A). Note the strand bias for transversions 
(G:C to T:A and A:T to C:G) in smokers. In non-smokers, these mutations are less 
frequent and do not show a strand bias. Strand bias is indicative of DNA damage by 
bulky adducts that stall polymerase and trigger transcription-coupled repair on the 
transcribed strand. Source: (54) with permission of Oxford University Press.
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stable than cytosine and undergoes 
spontaneous deamination into 
thymine at a rate five times higher 
than the unmethylated base. The 
instability of CpG dinucleotides has 
led to their negative selection and 
subsequent loss during evolution. 
CpG dinucleotides represent less 
than 1% of the genome, one-
seventh of their expected frequency 
assuming an equal proportion of 
all dinucleotide motifs, yet they are 
the site of roughly 25% of all known 
mutations in human disease that 
are listed in the HGMD database. 
In TP53’s DNA binding domain, 
which is a major site for mutations 
linked to cancer, there are 22 CpG 
dinucleotides located within 600 bp 
of coding sequence. Transitions at 
these CpG dinucleotides represent 
about 25% of all reported mutations, 
with a range from about 15% in 
lung cancers of smokers (in which 
many mutations are caused by 
tobacco carcinogens rather than 
by spontaneous mechanisms) to 
close to 50% in adenocarcinomas 
of the gastro-digestive tract (Figure 
5.6) (59). Deamination of 5mC is 
enhanced by oxygen and nitrogen 
radicals, leading to a higher load of 
these mutations in cancers occurring 

within the context of inflammatory 
precursor lesions, such as Barrett’s 
mucosa or ulcerative colitis (60,61).

Small insertions and deletions 
arise during replication through a 
mechanism known as the slipped-
mispairing model (32). In this 
model, nucleotide skipping and/
or misincorporation results from 
transient misalignment of the primer 
to the template due to the looping 
out of a base (or a short stretch 
of bases) from the template. This 
phenomenon preferentially occurs 
within runs of identical bases or in 
regions containing repetitive DNA 
sequences. Increased length of 
monotonic runs correlates with 
increased frequency of insertion/
deletion events (62).

Mutation patterns in relation 
to cancer risk factors

The ‘mutation pattern’ concept is of 
central importance in assessing the 
value of mutations as biomarkers 
of early effects of carcinogens. 
Assessing a mutation pattern relies 
on six critical points: (1) type of 
mutation; (2) nucleotide change(s); 
(3) sequence context; (4) strand 
distribution; (5) occurrence of the 

mutation at a position of known 
structure or function (e.g. mutations 
in exons, introns, at mRNA splice 
junctions, or other structures 
involved in mRNA processing, 
within promoter regions, etc.); and 
(6) consequence of the mutation on 
the gene structure and its coding 
potential (e.g. silent, missense, 
nonsense, mutations affecting 
exon processing, or expression 
levels) (63). A mutation pattern 
occurs when there is a significant 
difference in any of these elements, 
or combination thereof, between 
a set of ‘test’ mutations (e.g. 
mutations identified in a particular 
type of disease and exposure, such 
as lung cancers of smokers) and a 
set of ‘reference’ mutations (e.g. 
lung cancers of never-smokers).

The formation of a mutation 
pattern can be seen as the result 
of a complex process of mutation 
selection through a succession 
of filters (Table 5.2). The first filter 
consists of the chemical properties 
of the carcinogen and of its cellular 
activation process. Carcinogens 
can damage DNA in specific ways, 
generating lesions that reflect the 
chemistry of DNA damage (64). 
Base position, accessibility, and 

Figure 5.6. Patterns of TP53 mutations in lung cancers of smokers, colorectal cancer, and adenocarcinoma of the oesophagus. 
The proportion of different mutation types is shown in lung cancers of smokers and in two cancers which commonly develop in an 
inflammatory context (e.g. colitis in colon cancer, Barrett’s mucosa in oesophagus). CpG transitions are more frequent in colon 
and esophageal ADC as compared to lung/smokers. In contrast, transversions are more common in lung/smokers than in colon 
and esophageal ADC. Data from IARC TP53 database, release R12 (http://www-p53.iarc.fr)
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sequence context are important 
factors that determine the type of 
DNA damage, forming a second 
filter (63). The third filter consists 
of DNA repair, which removes the 
majority of lesions, but does so in a 
selective manner such that all types 
of lesions are not eliminated with 
the same efficiency (46). A strand 
bias towards preferential repair of 
the transcribed strand is suggestive 
of selective removal of bulky, 
polymerase-blocking lesions during 
transcription (65). DNA replication 
and polymerase fidelity constitute 
the fourth filter (13). The final filter is 
the biological selection process that 
chooses cells with mutations that 
confer a selective advantage on the 
path to neoplastic transformation 
(66,67).

Until recently, most of our 
knowledge on mutation patterns in 
cancer was based on studies of a 
handful of genes frequently mutated 
in human cancers, including 
members of the ras family and 
TP53. Mutations in K-ras occur in 
up to 20–40% of common cancers, 
such as breast, colon, and pancreas 
and adenocarcinoma of the lung. 
The most common mutation is at 
codon 12, effectively limiting the 
spectrum of the mutation pattern 
to three different bases. TP53 in 
contrast, offers a wider target for 
assessing mutation patterns since 
most mutations fall within a domain 
that spans about 600 nucleotides. 
Moreover, over 75% of all mutations 
are point mutations, providing a good 
representation of many different 
types of base changes. Figure 

5.7 summarizes some of the most 
characteristic mutation patterns 
identified by sequencing TP53. 
Current efforts aimed at large-scale, 
high-throughput sequencing of 
tumour DNA are producing a wealth 
of mutation data that essentially 
recapitulate the mutation patterns 
observed in TP53. An interesting 
difference is the higher prevalence 
of the rare G to C transversions in 
breast cancer, identified by large-
scale sequencing, as compared to 
TP53 sequencing. This observation 
suggests that some unidentified 
carcinogen causing such mutations 
may be involved in mutagenesis 
leading to breast cancer (68).

Mutation databases provide 
a repository and quick access 
for published mutation data, with 
annotations that allow users to select 

Table 5.2. Formation of a mutation pattern through a succession of ‘filters:’*
The example of benzo(a)pyrene from tobacco smoke

Exposure Tobacco smoke contains over 60 substances classified as carcinogenic to humans by IARC, 
including 1 to 40 ng Benzo[a]Pyrene (B[a]P)/cigarette

Filter Example Type of Lesion

Filter 1 Chemistry of DNA damage B[a]P is metabolized by CYP450 
to generate BPDE that binds on 
the N2 position of guanine

BPDE-N2-dG adduct

Filter 2 Base position and sequence 
context

Adducts preferentially form at G 
adjacent to methylated cytosines 
at mCpG sites

Major adducts at codons 156, 
157, 245, 248, 273

Filter 3 DNA repair Transcription-coupled repair 
preferentially removes lesions 
on the TS

Strand bias with persistence of 
adducts on G on the NTS

Filter 4 DNA replication Lesion bypass of an 
adducted template by Pol η 
mis-incorporates A instead 
of C; replication results in 
substitution of G to T opposite to 
misincorporated A

Formation of G to T transversions

Filter 5 Protein filter Only mutations that inactivate 
p53 protein contribute to the 
clonal expansion of cancer cells 
and are detectable in cancer 
lesions

Selection of mutations at codons 
157, 245, 248, 273; counter-
selection of mutation at codon 
156, which is silent.

Mutation pattern in cancer Excess of G to T transversions on the NTS at specific codons in lung cancers of smokers

*Refers to specific criteria that can influence mutation pattern formation.
BPDE, B[a]P-7,8-diol-9,10-epoxide; TS, transcribed DNA strand; NTS, non-transcribed strand
Table compiled from (235)
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reference data sets and compare 
mutation patterns. Examples of 
such databases are given in Table 
5.3. However, these databases 
are subject to many biases since 
they compile data from studies that 
differ in size, methods, design, case 
selection criteria, and annotations, 
and are prone to publication bias 
(reviewed in (69)).

Multistep carcinogenesis

Neoplasia is a multistep 
process. Experimental studies 
have demonstrated that the 
tumorigenic conversion of normal 
human fibroblasts requires 
the concerted disruption of 
several signalling pathways. The 
number and sequence of genetic 
changes required for neoplastic 
transformations varies according 
to species and according to cell 
type within species (70). Moreover, 
particular genes, chromosomal 

regions, and entire chromosomes 
are vulnerable to mutation at variable 
points in carcinogenesis (16). This 
suggests that certain mutations 
play a role in the ability of a cell to 
survive and continue to the next 
step of this multistep process and 
determine what the next mutation 
will be. These mutations, particularly 
early events, may provide markers 
indicative of genetic damage and 
potential cancer risk.

Since much of cancer research 
depends on backtracking from 
tumour tissue, it is difficult to 
assess the time point at which one 
mutation arose relative to another. 
Comparison between ‘early stage’ 
versus ‘late stage’ lesions does 
not entirely eliminate this difficulty, 
because lesions deemed ‘early 
stage’ are not necessarily the 
temporal predecessors of those 
deemed ‘late stage.’ However, 
models of temporal sequence 
of genetic events have been 

developed and have provided 
valuable information on the clonal 
and genetic progression of cancer. 
The archetype of these models 
was developed for colon cancer 
(16) (Figure 5.8). This model takes 
advantage of the fact that colon 
cancer has distinct morphological 
stages that define a pathological 
progression sequence, from 
polyp to adenoma and then 
carcinoma. By assessing the 
predominant mutations in each 
morphological stage, it has been 
possible to identify sequential 
genetic changes that underpin 
the morphological changes. From 
normal tissue, the model proposes 
that cells acquire one mutation 
after another, beginning with the 
loss of a key gene involved in cell 
proliferation (activated protein C 
(APC), detectable in benign polyps), 
aberrant methylation, further 
mutation of oncogenes (K-ras, 
detectable in many adenomas), and 

Figure 5.7. Examples of mutation patterns and carcinogen fingerprints in TP53. Three well described ‘carcinogen fingerprints’ 
are represented. Solar UV induces a characteristic DNA lesion, dipyrimidine dimer, leading to CC to TT transitions at adjacent 
cytosines in non-melanoma skin cancer. Aflatoxin metabolites form adducts on the N7 position of guanine at the third base of 
codon 249 in TP53, leading to AGG to AGT transversion mutations at that codon in hepatocellular carcinoma. Polycyclic aromatic 
hydrocarbons from tobacco smoke induce adduct formation on N2 position of several guanines, leading to frequent transversions 
at several codons in lung cancers of smokers. Source: (70) with kind permission from Springer.
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finally loss of DCC and TP53, which 
are frequent events in carcinomas 
and may push the cell over the 
malignant cancer threshold. This 
concept has been expanded to 
other cancer types (Figure 5.8). It 
is important to note the differences 
in occurrence of mutations in each 
cancer type. For example, TP53 
mutations are believed to be early or 
predisposing events in astrocytoma 
and breast cancers, but are 
proposed to be later events in colon 
carcinogenesis. However, this order 
is not invariant and accumulation 
of mutations is the key factor in 
progression towards malignancy.

Mutations in mitochondrial 
DNA

The mitochondrial genome is 
~16.6x103 base pairs in length, 
exists at a copy number of ~102-
104 per cell, and is densely packed 
in protein coding sequence (~93% 

is used to encode 37 genes). 
Functional changes in mitochondria 
were associated with cancer as early 
as 1956, when Warburg proposed 
that irreversible damage to the 
respiration was a necessary first step 
in carcinogenesis (71–73). Changes 
in mitochondrial DNA (mtDNA), 
specifically, were associated with 
cancer as early as 1967, when a 
series of reports showed that the 
frequency of aberrations (in this 
case, multiple copy-length circular 
molecules) in mtDNA was increased 
in the leukocytes of granulocytic 
leukaemia patients (9,74–76). The 
presence of mtDNA mutations was 
reported in seven out of 10 colorectal 
cancer cell lines examined, with 
a predominance of mitochondria 
containing multiple copies of the 
mtDNA (7). It was then demonstrated 
that the mtDNA mutations were 
somatic, since they were found in 
the primary tumours from which 
the cell lines were derived, but not 

in normal tissues from the donors. 
In many cases, the mutations 
were homoplasmic, meaning that 
a single mutated mitochondrion 
had selectively proliferated over all 
others in a single cell (7).

Recent reports have 
documented somatic mtDNA 
mutations in tumours of the bladder, 
breast, prostate, head and neck, 
lung, liver, kidney, brain, stomach, 
pancreas and in the haematologic 
malignancies leukaemia and 
lymphoma. These findings support 
the notion that mtDNA mutations 
contribute to tumour growth (4,5,77–
88). Furthermore, the copy number 
for mtDNA was recently found to be 
significantly increased in workers 
exposed to high levels (> 10ppm) 
of benzene, a carcinogen that 
causes leukaemia (89,90). It is not 
yet understood how mutations in 
mtDNA accumulate within tumours, 
but both theoretical and empirical 
approaches have suggested that 

Table 5.3. List and web links of selected mutation databases

Database Name Content and Scope Web Link

Catalogue of Somatic Mutations in Cancer 
(COSMIC)

Global catalogue of somatic mutations 
in 4773 cancer related genes; 
contains over 70 000 mutations

http://www.sanger.ac.uk/genetics/CGP/cosmic/

IARC TP53 mutation database Comprehensive database of TP53 
mutations in human tissues; contains 
over 25 000 entries

http://www-p53.iarc.fr/

The Human Genome Variation Society (HGVS) The most comprehensive list of 
single-locus mutation databases and 
a portal to access them

http://www.hgvs.org/dblist/dblist.html

Mitochondrial Mutations (MITOMAP) Compendium of polymorphisms and 
mutations of the human mitochondrial 
DNA

http://www.mitomap.org/

Mitelman Database of Chromosome Aberrations 
in Cancer

Chromosomal aberrations in relation 
to tumor characteristics, based either 
on individual cases or associations

http://cgap.nci.nih.gov/Chromosomes/Mitelman

The Mammalian Gene Mutation database 
(MGMD)

Searchable database of published 
mutagen-induced gene mutations in 
mammalian tissues

http://lisntweb.swan.ac.uk/cmgt/index.htm

Genetic Alterations in Cancer (GAC) Comprehensive collection of data 
compiled from studies reported in 
the published literature on genetic 
alterations in tumors associated 
with exposure to specific chemical, 
physical, or biological agents that can 
be linked to genes implicated in the 
development of cancers

http://www.niehs.nih.gov/research/resources/
databases/gac/index.cfm
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they accumulate without selection 
(91,92).

A recent study used cytoplasmic 
hybrid technology to demonstrate 
that the metastatic potential of 
tumour cells was enhanced by 
mtDNA mutations associated with 
the overproduction of reactive 
oxygen species (3). However, 
many of the mutations reported 
so far are not associated with a 
detectable mitochondrial defect 
(7). Although it is still unclear how 
mutations in mtDNA contribute to 

carcinogenesis, these mutations are 
significant biomarkers in detecting 
tumour recurrence and in assessing 
genotoxic damage (5,93).

Detection of mutations

Many standard methods are 
available for detecting mutations in 
normal or diseased tissue samples; 
reviewing them is beyond the 
scope of this chapter. They differ 
by their sensitivity, scope (one or 
multiple genes), and by whether 

the detection aims to identify 
mutations at specific base positions 
or to screen large DNA fragments 
to detect mutations at any possible 
position within that fragment (Table 
5.4). Independent of the technique 
used, the modern methodological 
cornerstones of mutation detection 
are PCR and DNA sequencing. This 
section briefly discusses the basic 
requirements for detecting somatic 
mutations, focusing on detecting 
low levels of mutant DNA in non-
diseased or surrogate samples.

Figure 5.8. Four multistep models of carcinogenesis. A: Vogelstein and Kinzler model of mutation accumulation pattern in colon 
cancer (16). B: Cavanee and White model of astrocytoma progressing to secondary glioblastoma (73). C: Theoretical model 
of therapy-induced leukaemia. D: A simplified version of the Beckmann and Niederacher model of multistep carcinogenesis 
in breast cancer (74). These models are only intended to provide a rough overview of how these cancers may progress during 
typical carcinogenesis, and it should be kept in mind that these cancers may arise via different paths in individuals
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Obtaining high-quality DNA

DNA is a robust molecule retrievable 
from biological materials stored in a 
wide range of conditions. However, 
DNA is sensitive to modifications by 
oxidation from prolonged contact 
with air, exposure to light (UV, 
in particular), enzymes, and by 
reaction with fixatives used in 
pathology. RNA may also be used 
as starting material for mutation 
detection. It is the recommended 
source for screening based on 
functional assays in which RNA is 
used to generate cDNA and express 
the protein in vitro, or when mutation 
detection is specifically aimed at 
identifying mutants with splicing 
defects. However, RNA is much 
more labile and unstable than DNA 
and is extremely sensitive to RNase 
present in biological materials.

The first challenge is to process 
and preserve specimens in a way 
that is compatible with obtaining 
good quality nucleic acids. Fresh 
frozen material is the best source 
and is mandatory for RNA. However, 
in many studies, the most routinely 
available material is tissue fixed in 
buffered formalin or alcohol and 
embedded in paraffin. Alcohol is 

preferable to formalin, as the latter 
induces the formation of covalent 
protein and DNA adducts. Other 
fixatives, such as alcoholic Bouin’s, 
should be avoided since they 
contain chemicals that inhibit PCR. 
Fixed and embedded material 
yields DNA that is generally 
degraded by fragmentation and 
chemical modification. Though 
damage increases with overfixation, 
underfixation is also a problem as 
DNA may become degraded by 
chemical or enzymatic reactions. 
DNA fragmentation effectively 
limits the length of PCR-amplifiable 
fragments to 300–500 bp and DNA 
base modifications increase the risk 
of mutation artefacts during PCR. 
Despite these limitations, formalin-
fixed tissue has been routinely used 
to detect mutations by PCR-based 
assays (94). The risk of artefactual 
mutation detection may be kept low 
by using strict laboratory protocols 
and mutation confirmation strategies 
(see below).

The second problem is to extract 
DNA from cells relevant for mutation 
detection analysis. Many tissue 
specimens obtained by resection or 
biopsy contain cells other than those 
suspected to contain mutations 

(e.g. stromal cells, blood vessels, 
infiltrated inflammatory cells, etc.) 
that are present in solid tumours. 
Tumors are heterogeneous in their 
cellular composition and contain 
areas of different stage, grade, 
or morphological differentiation. 
Surrogate specimens used as a 
source of cancer cells, such as 
sputum or exfoliated cells, may 
contain significant amounts of 
DNA of bacterial origin. The use 
of methods to enrich the specimen 
for DNA extraction in DNA from the 
appropriate source is recommended. 
With tissue sections, this may be 
achieved by prior assessment by 
a pathologist and delineation of 
areas of material to extract, either 
by marking segments of tissues on 
companion histological slides, or by 
using laser-guided microdissection 
to retrieve specific groups of cells 
from a histological section. In the 
case of haematologic malignancies, 
knowledge of cell surface protein 
characteristics can often be used 
along with antibodies and selection 
techniques (e.g. immunomagnetic 
or flow cytometric) to separate 
cancerous cells from normal blood 
cells.

PCR sensitivity and specificity

DNA extraction is easy to perform 
using standard protocols and 
commercially available kits. 
Controlling DNA quality by physical 
methods (spectrometry, fluorimetry, 
or gel analysis) is not mandatory 
since the ‘gold standard’ is suitability 
for PCR. The quality, amount, and 
specificity of PCR products should 
be systematically checked before 
analysis by sequencing or other 
mutation detection method.

It should be kept in mind that PCR 
generates miscoding artefacts. First, 
commercial polymerases used in 
PCR generate random incorporation 
errors at rates between less than 

Table 5.4. Comparison of sensitivity of selected mutation detection methods

RFLP, restriction fragment length polymorphism; mEPCR, membrane expression of endothelial protein C receptor; 
SOMA, short oligonucleotide mass analysis; APEX, arrayed primer extension; DHPLC, denaturing high performance 
liquid chromatography; TTGE, temporal temperature gradient gel electrophoresis
Table compiled from (111) and (104)

Technology Detection limit (% mutant DNA)

RFLP 3-6

mEPCR 0.1

SOMA <1

APEX* 3-6

DHPLC* 3-12

TTGE 10

Direct Sequencing 25
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2x10−6 and 8.4x10−5 (95). Second, 
PCR is prone to contamination by 
adventitious material. In laboratories 
where the same gene(s) are 
routinely analysed, contamination 
by aerosols of PCR products is 
a serious problem which can be 
overcome with rigorous laboratory 
procedures (96), as well as the use 
of dUTP and uracil glycosylase 
in PCR reactions to prevent 
carryover contamination. The best 
practice is to compartmentalize 
the various steps of the protocol 
in different laboratory locations 
(DNA extraction, assembly of PCR 
reactions, and performance of PCR 
itself) with one-way circulation 
patterns to make sure those final 
PCR products never come into 
contact with biological materials for 
extraction.

The sensitivity of mutation 
detection depends on the PCR 
strategy (see below), the sequence 
context, and the methodology for 
mutation detection. In principle, the 
sensitivity of mutation detection 
is expressed as the minimal 
percentage of mutant material 
detectable in a background of 
wild-type material (Table 5.4). It 
is mandatory to confirm detected 
mutations in a second analysis 
performed using a batch of DNA 
independently extracted from the 
same specimen (not a second 
aliquot from the same extraction). 
It should be noted that up to 10% 
of mutations included in mutation 
databases may be false mutations 
resulting from fixation and/or PCR 
artefacts. The need for replication 
has a bearing on the cost of mutation 
detection studies.

Detection of point mutations 
in non-diseased tissues

Mutations occur in non-cancer 
cells at rates that are increased by 
exposure to carcinogens. They can 

also be detected in bodily fluids 
or exfoliated cells that contain 
only a small fraction of tumour-
derived material, thus providing a 
means for detection of subclinical 
disease. The proportion of mutant 
DNA in such samples is too low 
for detection using conventional 
methods. However, mutations may 
be detectable using methods that 
are several orders of magnitude 
more sensitive than conventional 
ones.

The most remarkable studies on 
mutation detection in non-diseased 
tissues have been conducted on 
TP53 mutations in skin (97,98) and 
on TP53 mutations in non-cancerous 
liver, colon, and lung (99–101). In 
normal skin, detection is facilitated 
by the fact that the epithelium 
is made of juxtaposed patches 
of cells originating from single 
progenitors. Since many missense 
TP53 mutations induce protein 
stabilization, immunohistochemistry 
can be used to detect patches 
of cells with p53 accumulation, 
which are then microdissected 
and analysed by PCR/sequencing 
(97,98). Mutational signatures of 
solar UV have been detected in 
the DNA of normal skin of sun-
exposed subjects (102). Studies in 
the liver, colon, and lung have used 
a sensitive genotypic assay (103). 
This method is based on the cloning 
of PCR products of the mutant allele 
into phage lambda followed by 
plaque assay and oligonucleotide 
hybridization to quantitate mutant 
PCR products. Its sensitivity is 
of one mutant DNA copy cell in 
about 10 million cells. Results have 
demonstrated increased mutation 
loads in the liver of patients with 
Wilson disease, in the colon of 
patients with ulcerative colitis 
(two oxyradical overload cancer 
precursor diseases) (99,101), and in 
the normal lung of heavy smokers 
without clinical evidence of cancer 

(100). However, these methods are 
labour-intensive and expensive, 
limiting their application in molecular 
epidemiology.

Detection of mutations 
in surrogate samples

Identifying cancer-related mutations 
in tissues other than cancer is a major 
goal for studies aimed at assessing 
the impact of environmental 
exposures, as well as developing 
molecular-based methods for early 
detection of cancer. This has led 
to the development of methods 
to detect mutations in exfoliated 
cells or DNA retrieved from bodily 
fluids or secretions (Table 5.5). 
Recent developments on the use 
of circulating free DNA (CFDNA) 
isolated from plasma or serum, 
provide a good example of the 
problems and challenges posed by 
mutation assessment in surrogate 
samples (104). The plasma of all 
subjects contains minute amounts 
of free DNA that occurs as a by-
product of normal cell turnover in 
solid tissues. This DNA is unstable 
and does not accumulate at levels 
above one to 10 ng per ml. In 
patients with various cancers, 
inflammatory or autoimmune 
diseases, however, increased tissue 
destruction and cell turnover in the 
lesion results in abnormally high 
levels of CFDNA in the plasma/
serum. It was estimated that for a 
patient with a tumour load of 100 g 
in size (~3x1010 cancer cells), up to 
3.3% of the tumour DNA entered the 
circulation every day (105). Various 
types of DNA alterations have been 
reported in CFDNA, including point 
mutations, DNA hypermethylation, 
microsatellite instability, and losses 
of heterozygosity (LOH) in patients 
with many different types of cancer. 
In most cases, these alterations 
were identical to the ones detected 
in the patient’s tumour tissue, 
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supporting the tumoural origin of 
altered CFDNA. Thus, CFDNA may 
provide a very valuable source of 
genetic material as a surrogate for 
molecular analysis of cancer and 
pre-cancer patients, for detecting 
somatic alterations when biopsies 
are not available, and for accessing 
small amounts of tumour DNA when 
the exact position of a suspected 
primary lesion is not clearly defined. 
The fact that CFDNA can be 
obtained without invasive or painful 
procedures makes it particularly 
suitable for studies in a population-
based context.

High-sensitivity detection 
of point mutations

The main problem for detecting 
mutation in non-diseased tissues 
or in surrogate samples is that the 
mutation is present in only a small 
fraction of the total DNA, a level too 
low for detection by conventional 
sequencing.

This section briefly describes 
recent high-throughput assays 
suitable for detection of low levels 
of mutant DNA in a background 

of wild-type DNA. The first four of 
these methods all have the same 
limitation: they require the prior 
knowledge of the exact position 
and type of the mutation, and are 
therefore limited to the detection 
of mutation hotspots. For detection 
of mutations at unselected sites, 
most studies have used pre-
screening methods, such as single 
strand conformation polymorphism 
(SSCP), denaturing high 
performance liquid chromatography 
(DHPLC), denaturing gradient gel 
electrophoresis (DGGE), or related 
techniques (106–108). Several 
protocols are available to retrieve 
and re-amplify mutant DNA after 
pre-screening (either by excision 
of shifted bands detected by 
temporal temperature gradient gel 
electrophoresis (TTGE) or SSCP, 
or by collection of shifted peaks in 
DHPLC). This re-amplified, mutant-
enriched material can then be 
analysed by direct sequencing. This 
approach has been successfully 
used to detect mutant TP53 DNA 
in the plasma of healthy subjects 
recruited in a prospective study 
(Figure 5.9) (109). A new method, 

arrayed primer extension (APEX), 
allows the detection of ‘unknown’ 
mutations within a given sequence 
(110–112). However, this assay is 
still in development and its suitability 
for large-scale studies remains to be 
demonstrated. Finally, this section 
concludes with a brief description of 
current high-throughput sequencing 
efforts and their perspectives 
for application in molecular 
epidemiology.

Mutation-enriched PCR

Mutation-enriched PCR (ME-PCR) 
is the most widely used procedure 
for genotypic selection of mutant 
DNA. It is based on restriction 
digestion using enzymes that cleave 
DNA at sites that are modified by 
mutations. This method selectively 
cleaves wild-type sequences, thus 
providing enrichment in mutant 
sequences. Two versions of this 
type of assay have been commonly 
used: restriction site mutation (RSM) 
is based on digestion before PCR 
amplification (113), and restriction 
fragment length polymorphism 
(RFLP) is based on restriction 

Table 5.5. Genetic and epigenetic changes both in tumors and matched CFDNA detected with different methods

Type of alteration Cancer site Method Tumor CFDNA Reference

Point Mutation

TP53 HNSCC AS-PCR 11 (18%) 2/11 (18%)  (237)

K-ras2 Colorectal PCR 35/135 29/35 (83%)  (238)

Hypermethylation

CDKN2a Esophagus MSP 31/38 (82%) 7/31 (23%)  (239)

APC Lung RT-MSP 95/99 (96%) 42/89 (47%)  (240)

Genomic Instability

LOH Melanoma Fluorescent PCR 34/40 (85%) 21/34 (62%)  (241)

CFDNA, circulating free DNA; CDKN2a, cyclin-dependent kinase inhibitor 2A;
APC, adenomatous polyposis coli; RT-MSP, real-time methylated-specific PCR
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digestion after PCR (114). In both 
instances, mutations are identified 
by sequencing of digestion-resistant 
PCR products. A modified assay 
has been developed to detect 
mutations at DNA positions that 
do not fall within restriction sites. 
This assay uses two consecutive 
rounds of PCR to introduce a 
synthetic restriction site in the wild-
type allele, thus generating a PCR 
product amenable to restriction. 
This method has been successfully 

applied to detect K-ras mutations 
in CFDNA present in the plasma of 
healthy subjects before diagnosis of 
cancer (Figure 5.9) (109).

Allele-specific PCR

Allele-specific PCR (AS-PCR) is 
based on the use of PCR primers 
that preferentially anneal with 
mutant DNA. The PCR products are 
then analysed using conventional 
methods (e.g. SSCP plus 

sequencing). The use of AS-PCR 
results in considerable improvement 
in sensitivity over conventional 
methods. AS-PCR analysis of TP53 
mutations resulted in the detection 
of mutated cells accounting for 
0.01–1% of cells, sensitive enough 
to detect rare TP53 mutations as 
early biomarkers of relapse in acute 
myelogenous leukaemia (AML) 
and acute lymphocytic leukaemia 
(ALL) (115,116). AS-PCR may be 
combined with PCR methods using 
fluorescent probes (the so-called 
‘Taqman’ method) to detect rare 
mutations in a semiquantitative 
manner. A variant of AS-PCR that 
targets mutational hotspots in the 
TP53 gene has been developed 
(117). This method combines PCR-
SSCP with sequence-specific 
clamping by peptide nucleic acids 
(PNAs). PNAs are designed to 
preferentially bind to wild-type DNA, 
and not extend, thereby blocking 
amplification of wild-type DNA to 
yield a mutant enriched sample.

Combined Mut-Ex and allele-
specific competitive blocker 
PCR

By combining two previously 
published methods (118,119), the 
Mut-Ex + allele-specific competitive 
blocker PCR (ACB-PCR technique 
provides one of the most sensitive 
genotypic selection methods 
(120). This assay begins with the 
denaturation of a heterogeneous 
sample of mutant and wild-type 
double stranded DNA. When 
reannealing, four types of DNA 
duplexes may be formed: the two 
homoduplexes of either wild-type 
or mutant DNA, and two types of 
heteroduplexes containing a mutant 
strand annealed to a wild-type 
strand. The proportion of each duplex 
depends upon the ratio of mutant to 
wild-type DNA in the sample. MutS, 
a thermostable mismatch repair 

Figure 5.9. Detection of low levels of KRAS (codon 12) mutation or of TP53 mutation 
in circulating free plasma DNA (CFDNA) of healthy subjects. KRAS2 (A) and 
TP53 (B) mutation detection in CFDNA. A: Detection of mutations in codon 12 of 
KRAS2 by ME-PCR (involving two consecutive RFLP analyses for enrichment of 
the mutant DNA). After MvaI digestion, the mutant PCR product (MT; white arrow) 
is excised, amplified, and sequenced. Black arrow – wild-type PCR product (WT). 
B: Detection of TP53 mutation at codon 282. Mutations in exons 5 to 9 are analysed 
by DHPLC. Samples with abnormal DHPLC chromatograms are sequenced from an 
independent PCR product. If the mutation is not detected by sequencing, a new PCR 
product is analysed by TTGE. Homoduplex products are excised from the TTGE gel, 
reamplified, and sequenced. Gray arrow – mutant-wild-type heteroduplexes; white 
arrow – mutant homoduplexes; black arrow – wild-type homoduplexes; white star 
– mutant control heteroduplexes (top two bands) and homoduplexes. Source: (113).

Figure not available
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protein, binds to the mispaired 
sequence of the heteroduplex 
and protects a short sequence of 
mutant DNA from digestion by the 
3ʹ-5ʹ exonuclease activity of T7 DNA 
polymerase, whereas the wild-type 
DNA is digested. This Mut-Ex step 
results in a 103-fold enrichment of 
mutant alleles. The next step utilizes 
an additional selection technique, 
allele specific competitive blocking. 
This genotypic selection uses 
allele-specific primers to amplify 

mutant DNA, combined with 
blocker primer which preferentially 
anneals to the wild-type sequence. 
The blocker primer is modified 
with a 3ʹ-dideoxyguanosine 
residue preventing extension. The 
combination of Mut-Ex and ACB-
PCR results in the preferential 
amplification of the mutant allele, 
with a sensitivity of as few as one 
mutant allele per 107 copies of the 
wild-type allele.

Short-oligonucleotide mass 
analysis

Short oligonucleotide mass analysis 
(SOMA) is a technique by which 
small sequences of mutated and 
wild-type DNA, produced by 
PCR amplification and restriction 
digestion, are characterized by high 
performance liquid chromatography 
(HPLC)-electrospray ionization 
tandem mass spectrometry (ESI-
MS/MS) (121–123). DNA is amplified 
using primers that introduce 
restriction sites for enzymes that 
cleave DNA at positions away from 
their binding sites, such as BpmI. 
Short DNA fragments spanning the 
mutation site (seven to 15 base pair 
oligomers) are then produced by 
restriction digestion and separated 
by HPLC before ESI-MS/MS. The 
first MS analysis distinguishes 
the four single-stranded 
oligonucleotides corresponding to 
sense and antisense, wild-type, 
and mutant DNA. The second 
MS analyses oligonucleotide 
fragmentation products and detects 
mass fragments characterizing 
the mutated base (Figure 5.10). 
The use of an internal standard 
plasmid alongside test DNA allows 
the precise quantitation of mutant 
and wild-type sequences, which 
can be expressed in absolute copy 
numbers. This method has been 
applied to detection of K-ras and 
TP53 mutations in the plasma DNA 
and tissues of healthy subjects 
and cancer patients (124,125). 
Quantitation of mutant CFDNA by 
SOMA in a case-control study of 
liver cancer in The Gambia (West 
Africa), has shown that TP53 gene 
serine 249 mutation median levels 
were higher in hepatocellular 
carcinoma cases (2.8x103 copies/
mL, range: 5x102-1.1x104) compared 
with median levels in cirrhotic 
patients and healthy controls (5x102 

copies/mL, range: 5x102-2.6x103 

Figure 5.10. Short oligonucleotide mass analysis (SOMA) of TP53 R249S mutations. 
A: Principle of SOMA. DNA is amplified by PCR using primers that introduce a site 
for BpmI, a restriction enzyme that cleaves DNA away from its recognition site. 
Short oligonucleotides (8-mers) are generated by digestion, purified by HPLC, 
and analysed by electrospray mass spectrometry. B: Mass spectrum of the sense 
strand of the wild-type 8-mer (top spectrum) and of its breakdown products (bottom 
spectrum). Inset: expected mass of breakdown products. Presence of a specific 
species (framed) identifies the wild-type sequence (with G at third position of codon 
249)
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and 5x102 copies/mL, range: 
5x102-2x103 respectively) (124). 
This highly powerful method is 
rapid and amenable to scaling-up, 
making it one of the most powerful 
approaches for mutation detection 
in a large series of specimens.

BEAMing

BEAMing is an original method 
aimed at one-to-one conversion 
of a population of DNA fragments 
into a population of beads that can 
be counted. It derives its name 
from its principal components: 
beads, emulsion, amplification, and 
magnetics (Figure 5.11). First, PCR 
is used to amplify target DNA using 
primers that contain a sequence 
tag. Second, PCR products are 
mixed with beads coupled to an 
oligonucleotide that anneals with 
the tag. This mixture is emulsified 
to facilitate the reaction of individual 
PCR products with individual beads. 
Third, the DNA immobilized on the 
beads is denatured, hybridized with 
primers that anneal just upstream of 
the mutation site, and then a single 
nucleotide primer extension reaction 
is carried out using four fluorescently 
labelled nucleotide terminators. 
Flow cytometry is next used to 
rapidly measure the fluorescence 
of individual beads. The nature of 

the base changes is given by the 
fluorescence of the incorporated 
nucleotide. Counting fluorescent 
beads provides a precise estimate 
of the number of wild-type or mutant 
DNA copies, and allows quantitation 
of mutant and wild-type frequencies 
even when they are present at ratios 
less than 1:10 000. This method 
has been used to quantify mutant 
APC in the circulating plasma 
DNA of patients with colorectal 
cancer (105,126,127). Quantitation 
of mutant APC in the plasma of 
patients with advanced colorectal 
cancer detected on average 5.3x103 
(11.1%) copies/mL of mutant APC 
(range: 9.08x102 (1.9%)-1.2x104 

(27%)) (105).

Arrayed primer extension

Arrayed primer extension (APEX) 
is a genotyping and resequencing 
technology that allows the scanning 
of mutations over large regions of 
DNA. It combines the advantages 
of Sanger dideoxy sequencing 
with the high-throughput potential 
of the microarray format (Figure 
5.12). A DNA sample is amplified, 
fragmented enzymatically, 
and annealed to arrayed 25-
mer oligonucleotides that cover 
the sequence of interest. Each 
oligonucleotide hybridizes one base 

downstream of the preceding one, 
with their 3ʹ ends one base upstream 
of the base to be identified. Once 
hybridized, they serve as primers 
for template-dependent DNA 
polymerase extension reactions 
by using four fluorescently labelled 
dideoxynucleotides. Each base 
is probed with two primers: one 
for the sense and another for the 
antisense strand. Image analysis 
and interpretation of fluorescence 
signals at each position provides 
a read-out of the sequence. This 
method has been adapted for the 
detection of TP53 mutations in 
DNA isolated from plasma or from 
solid tumours, with a sensitivity 
of 0.1–5%, depending upon the 
sequence context and the nature 
of the mutation (which is higher 
than sequencing or conventional 
oligonucleotide hybridization 
arrays). Whether this method will 
prove robust enough for large-scale 
studies using non-diseased tissues 
or surrogate samples remains to be 
assessed.

High-throughput sequencing

The rapid development of long-range 
sequencing technologies makes 
it possible to comprehensively 
sequence the coding regions of the 
human genome. The cost and time 

Figure 5.11. High-sensitivity, single DNA template mutation detection using BEAMing: APC mutations in circulating free plasma 
DNA. A: Extended beads were prepared attaching single PCR products to single beads in an emulsion mixture. B: Single 
base extensions were performed on the extended beads using four different fluorescent nucleotides. Normal DNA sequences 
contained a G at the queried position; mutant sequences contained an A. Source: (109). Copyright 2005 National Academy of 
Sciences, U.S.A.
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required to conduct high-throughput 
sequencing is decreasing at an 
extremely rapid pace, one that 
is reminiscent of the dramatic 
reduction in costs and increase in 
performance of microprocessors in 
the eighties and nineties. Within a 
few years, it is possible that high-
throughput sequencing will largely 
replace current approaches for 
genome-wide analysis of multiple 
polymorphisms. The International 
Cancer Genome Consortium (http://
www.icgc.org) has been organized to 
launch and coordinate several large-
scale sequencing research projects 
with the primary goal of generating 
comprehensive catalogues of 
genomic abnormalities (somatic 
mutations, abnormal expression of 
genes, epigenetic modifications) 
in tumours. Collectively, high-
throughput sequencing studies 
will generate a wealth of novel 
information on patterns of mutations 
in cancer. However, current 
technologies lack the sensitivity 
needed to detect somatic mutations 
in non-cancer tissues. Moreover, 
many of the mutations detected in 
such large-scale sequencing efforts 
appear to have no direct role in the 
development of cancer and simply 
happened to mutate as passengers 
in the tumour. Distinguishing ‘drivers’ 
from ‘passengers,’ and interpreting 
the significance of the latter as 
biomarkers of processes involved in 
mutagenesis, will require intensive 
research efforts.

Detection of genetic damage 
at the chromosome level

Chromosome aberrations 
encompass all types of changes 
in chromosome structure and 
number and have been shown to 
be involved in the development 
of cancer (e.g. leukemias and 
lymphomas (128,129). The most 
common numerical changes 

Figure 5.12. Detection of missense mutations in TP53 using arrayed primer 
extension (APEX). DNA is amplified by PCR and fragmented before hybridization 
to arrayed oligonucleotide that anneal with a sequence just 1 base upstream of the 
position of interest. Single base extension is then performed on the arrays using four 
different fluorescent nucleotides. The incorporated base is detected by acquisition 
and analysis of fluorescence data at each position of the array. Source: AsperBio 
(http://www.asperbio.com/)
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(resulting in aneuploid cells) are the 
loss (monosomy) or gain (trisomy) 
of one chromosome; less frequent 
types include the loss of both 
copies or the gain of more than one 
copy of a chromosome. Structural 
changes include translocations, 
inversions, breaks, and deletions. 
Chromosome loss can lead to 
the loss of tumour suppressor 
genes, while chromosome gain 
can lead to increased oncogene 
expression. Further, chromosome 
translocations, or other types of 
chromosome rearrangements, may 
lead to the formation of fusion genes 
with oncogenic properties.

Conventional cytogenetics

Chromosome aberrations are 
the only cytogenetic endpoint 
that has been shown to predict 
cancer risk (19,130), particularly in 
haematologic malignancies (Figure 
5.13) (131). They may thus represent 
a promising early effect biomarker 
of carcinogen exposure. However, 
classical aberrations measure 
overall chromosome damage rather 
than specific events on the causal 
pathways of particular diseases. 
This decreases their specificity as 
biomarkers of exposure-related 
diseases, making it necessary to 
screen large populations or examine 
many cells from each subject to 
attain sufficient statistical power.

Many specific chromosome 
aberrations have been identified using 
classic karyotyping among patients 
with clinical syndromes. For example, 
an extra copy of chromosome 21 is 
routinely detected among children 
born with Down syndrome. As a 
result, classic karyotyping has 
become a widely used clinical 
diagnostic tool for many diseases, 
including leukaemia. However, 
classic cytogenetic techniques 
have several drawbacks for the 
detection of chromosome-specific 

aneusomy and rearrangements: the 
cells must be cultured to generate 
metaphase spreads, only a limited 
number (25–100) of scoreable cells 
can be examined, and recognition 
of specific chromosomes is 
problematic. The use of fluorescence 
in situ hybridization overcomes these 
problems.

Molecular cytogenetics

Fluorescence in situ 
hybridization

Fluorescence in situ hybridization 
(FISH) has several advantages 
over conventional cytogenetics, 
including selectivity of specific DNA 
probes, multiple colour labelling, 
sensitivity of detection, and speed 
of microscopic analysis (132,133). 
Interphase FISH, in particular, offers 
several advantages over classical 
cytogenetics (134). First, it allows 

analysis of non-dividing cells. 
Second, a much larger number of 
cells, at least 103 or more, may be 
analysed. Third, the detection of 
aneuploidy is facilitated by simply 
counting the number of labelled 
regions corresponding to a particular 
chromosome within the nucleus. In 
contrast, metaphase FISH can readily 
detect structural rearrangements 
in addition to aneuploidy. The 
use of metaphase FISH makes it 
possible to directly compare and 
reconcile interphase FISH and 
conventional cytogenetics. Several 
studies have determined that FISH 
is more sensitive and convenient 
than classical cytogenetics, thus 
appearing to be the more suitable 
method for large-scale population 
biomonitoring (135–137). FISH is 
now widely used in the analysis of 
chromosomal changes in human 
cancers (e.g. leukemias) and in 
prenatal diagnostics (133,138).

Figure 5.13. Chromosome aberrations in haematological malignancies. In acute 
myeloid leukaemia (AML), loss of part or all of chromosomes 5 and 7 is a common 
event, along with trisomy of chromosome 8 and various specific translocations and 
inversions including inv(16), t(8;21), t(9;22), t(15;17), and t(11q23) (107). In acute 
lymphocytic leukaemia (ALL), particularly in childhood ALL, the translocation 
t(12;21) is common (~25%). In non-Hodgkin’s lymphomas the translocation t(14;18) 
is frequently found (> 70%) in follicular lymphoma (98,132). Therefore, the detection 
of these changes at the chromosomal level could be very important in predicting risk 
of these diseases
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FISH has been extensively used 
to analyse chromosomal damage 
induced by exposure to ionizing 
radiation (139,140), and has also 
been gradually applied in evaluating 
genetic damage in cancer cases and 
in exposed populations (141–143). 
For example, a specialized FISH 
assay used for radiation research in 
humans and experimental animals 
has been developed (144–146). 
This assay uses single-colour 
FISH for painting the chromosome 
pairs 1, 2, and 4 (or 3, 5 and 6) the 
same colour, which allows for the 
detection of both the numerical and 
structural chromosome aberrations 
among these painted chromosomes, 
and the structural rearrangements 
between these and other untargeted 
chromosomes. Since radiation is 
thought to cause equal levels of 
damage across all chromosomes 
(147), and chromosomes 1 through 
6 (the largest chromosomes) 
make up 40% of the genome 
(148), measurement of damage in 
these large chromosomes may be 
extrapolated to the whole genome 
(144). This may not be true for 
chemical exposures, as certain 
chemicals may have selective 
or preferential effects on certain 
chromosomes (149), as observed for 
epoxide metabolites of 1,3-butadiene 
(150). Indeed, the hypothesis of 
equal levels of damage across the 
genome may not hold true for low 
doses of radiation, as inversion 
of chromosome 10 has been 
shown to be highly sensitive to low 
intensity radiation exposure (151). 
Interestingly inv(10) rearranges the 
RET gene and is associated with 
thyroid cancer, potentially caused by 
linear energy transfer radiation.

Current studies employ FISH to 
examine the cytogenetic changes 
in human blood cells caused 
by exposure to the established 
leukemogen, benzene. Pilot studies 
in highly exposed workers from 

China and controls have analysed 
five chromosomes by metaphase 
FISH, demonstrating striking, dose-
dependent increases in monosomy 
and trisomy in some chromosomes, 
as well as several common structural 
changes (149,152). In particular, 
loss and long arm deletion of 
chromosomes 5 and 7, two of the 
most common cytogenetic changes 
in therapy- and chemical-related 
leukaemia, were significantly 
increased in benzene-exposed 
workers over controls (149).

While FISH can be used to 
measure both structural and 
numerical chromosome aberrations 
and is a powerful tool in molecular 
epidemiology, its sensitivity is limited 
to 1 in 103-104 cells and it is relatively 
expensive because of the high cost of 
probes. This makes it difficult to use 
FISH to detect rare translocations 
between multiple chromosomes, 
such as t(21q22) and t(11q23). The 
PCR technique allows much more 
sensitive detection of these types of 
changes and is also less expensive 
in comparison with FISH.

Other molecular cytogenetic 
methods

Novel cytogenetic methods have 
been recently developed, such as 
comparative genome hybridization 
(CGH), spectral karyotyping 
(SKY), and colour banding. CGH 
involves the comparison of total 
DNA extracted from normal and 
cancerous cells to detect specific 
gains or losses in genetic material 
associated with cancer (139). Initially 
developed using metaphase spreads 
as a template for hybridization, 
CGH is now commonly performed 
on cDNA or oligonucleotide 
microarrays representative of the 
whole genome. This method is now 
widely used to identify variations 
in copy numbers in tumour DNA, 
but has not been applied to the 

analysis of damage induced by 
environmental exposures in non-
diseased human tissues (although 
some experimental studies in 
animals and cell lines have shown 
changes induced by carcinogens).

The SKY method involves 
painting each of the 24 different 
chromosomes a different colour 
using four or five fluorophores with 
combined binary ratio labelling, 
which allows the entire karyotype 
to be screened for chromosome 
aberrations (153). Since the human 
eye cannot effectively distinguish 
the 24 colors, this method requires 
the use of an automated imaging 
system. In colour banding, which 
is based on traditional banding 
techniques, each chromosome 
is labelled by subregional DNA 
probes in different colors, resulting 
in an unique ‘chromosome bar 
code’ (154). This method allows the 
rapid identification of chromosomes 
and chromosome rearrangements. 
These techniques, however, are 
relatively new and have not been 
employed as widely or extensively 
as FISH.

Measurement of chromosome 
rearrangements by PCR

Chromosome translocations 
produce novel fusion genes or 
products that can be detected at 
the DNA or RNA level by PCR or 
reverse-transcriptase PCR (RT–
PCR), as well as by FISH. PCR 
holds several advantages over 
FISH, including the ability to detect 
very rare events (1 copy/106–7 cells 
versus 1/103–4 cells by FISH), and 
the ability to study large numbers 
of people easily and at low cost. 
However, the high sensitivity of 
PCR makes it prone to false-
positive results caused by sample 
contamination (see above). The use 
of exonuclease-dependent real-
time PCR (‘TaqMan’ technology, 
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now generally called real-time PCR) 
allows for the absolute number of 
novel sequences to be quantified in 
a cell population without the need 
for gel electrophoresis. While no 
methods yet exist which employ 
PCR to measure rare aneuploidies 
or genome-wide structural damage, 
real-time and conventional PCR 
techniques, which measure specific 
chromosome rearrangements, 
have become available. RT–PCR 
has previously been used to detect 
translocations including t(14;18), 
t(8;21), t(9;22), and t(4;11). Using 
these techniques, t(9;22) and 
t(14;18) have been detected in 
unexposed individuals of different 
ages and in smokers (155–157). 
Both translocations were found to 
increase with age and the t(14;18) 
translocation was increased in 
cigarette smokers (158). Studies 
showing detectable t(8;21) by 
RT–PCR in an otherwise healthy 
benzene-exposed worker (152), 
demonstrate the potential of 
RT–PCR for monitoring specific 
aberrations in populations exposed 
to suspected or established 
leukemogens. Because many of 
these translocations have multiple 
breakpoints or translocation 
partners, multiplex assays have 
been developed to detect multiple or 
unknown rearrangements.

Principle of real-time PCR

Real-time PCR is comparable to 
conventional PCR in that it uses 
sense and antisense primers to frame 
and amplify a targeted sequence 
of DNA. However, real-time PCR 
employs an additional, non-
extendable oligonucleotide probe, 
which is positioned between the two 
primers during the annealing phase 
of amplification (Figure 5.14) (159). 
The oligonucleotide probe is labelled 
with a fluorescent reporter dye 
(e.g. FAM (6-carboxyfluorescein)) 

at the 5ʹ end and a quencher 
fluorescent dye (e.g. TAMRA 
(6-carboxytetramethylrhodamine)) 
at the 3ʹ end. When the probe is 
intact, fluorescence resonance 
energy transfer to TAMRA quenches 
the FAM emission. During the 
extension phase of amplification, 
the Taq polymerase extends the 
primer to the region of the probe, 
at which point the 5ʹ exonuclease 
property of Taq cleaves the reporter 
dye from the probe. This results in 
an increase in fluorescent signal 
that is proportional to the amount 
of amplification product, measured 
in real time by appropriate 
florescence detection systems. 
After each cycle, the fluorescence 
signal is measured resulting in an 
amplification plot. The cycle number 
in which the fluorescence crosses 
a defined threshold, Ct, is inversely 
proportional to the number of copies 

of DNA templates in the PCR. 
Cts of positive control samples 
are used to generate a standard 
curve to calculate copy numbers 
in unknown samples. Methods 
for the quantitative detection of 
translocations using the above 
TaqMan technology have recently 
been reported (160–165).

Measurement of t(14;18) 
associated with lymphocytic 
leukaemia and lymphoma

The t(14;18) translocation induces 
Bcl-2 protein overexpression 
in lymphocytic leukaemia and 
lymphoma. It may be caused by 
illegitimate V(D)J recombination 
in pre-B-cells as a result of 
aberrant immunoglobulin gene 
rearrangement (166,167), although 
some recent studies have 
concluded that most breaks on 

Figure 5.14. Principle of real-time PCR. Source: (164). Copyright Elsevier (1999).
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chromosome 18 are independent 
of V(D)J recombinase activity 
(94,168). This translocation was 
first identified at low levels in 
normal, healthy individuals (157). 
They subsequently showed that the 
incidence of t(14;18) increased with 
age and was higher in the blood 
of smokers (158). Recently, novel 
quantitative PCR procedures that 
measure very low levels of t(14;18) 
have been described (163,169). 
Rearrangements were detected at 
the Bcl-2 major breakpoint region in 
36% of lymphoma cases, and a 98% 
concordance between real-time 
PCR and conventional PCR was 
found (163). In addition, using serial 
dilution it was demonstrated that 
real-time PCR was 100-fold more 
sensitive than conventional PCR. 
Bcl-2/JH fusion sequences were 
consistently detected when diluted 
105-fold with normal genomic DNA. 
Others confirmed the sensitivity of 
this assay and concluded that the 
detection of single genome copies is 
possible if a stochastic multiple tube 
approach is taken (169).

Measurement of t(8;21) 
associated with acute myeloid 
leukaemia and myelodysplasia

The t(8;21) translocation results 
in the fusion of the ETO gene 
(8q22) with the AML1 gene (21q22) 
and is one of the most frequent 
abnormalities observed in AML. The 
presence of t(8;21) is associated 
with high complete remission and 
survival rates (170), suggesting that 
the levels of the translocation may 
be predictive of relapse. A real-time 
RT-PCR method to detect AML1/
ETO fusion transcript in patients 
with AML was developed (171). Each 
patient showed 103 copies of AML1/
ETO transcript at diagnosis and a 
2–4-log decrease in copy numbers 
following successful induction 
chemotherapy. In one patient, 

relapse was predicted by high copy 
number immediately after induction 
chemotherapy, which continued to 
increase during initial remission. 
These results suggest the t(8;21) 
translocation is detectable at low 
levels and may be a valuable 
biomarker of early effect or potential 
relapse.

Measurement of t(9;22) 
associated with leukaemia

A real-time RT–PCR method has 
been developed for the detection of 
the t(9;22) translocation (172), which 
is common in chronic myelogenous 
leukaemia (CML). This translocation 
results in the fusion of the ABL 
gene, an oncogene, with the BCR 
gene (173). The fusion gene product 
is expressed in malignant cells. 
By performing serial dilutions of 
a positive control diluted in wild-
type RNA, a sensitivity of 10−5 was 
achieved, which is comparable to 
conventional PCR methods.

Micronuclei as indicators 
of chromosome damage 
in humans

Micronuclei are small cytoplasmic 
fragments of nuclear membrane-
encapsulated DNA that are 
excluded from daughter nuclei 
during telophase after a clastogenic 
or aneugenic event. An increased 
frequency of micronuclei in 
reticulocytes (nascent red blood 
cells) has long been used as an index 
of acute mutagenic exposure in 
animals (174–178). Micronucleated 
(MN) reticulocytes are easily 
detected using DNA stains in both 
the peripheral blood and bone 
marrow of rodents following recent 
mutagenic exposure. Close to 
70% of known human carcinogens 
are detected using this in vivo MN 
assay. Accordingly, this animal test 
is widely used as a pre-clinical 

cytogenetic assay for genotoxicity 
(21,179-181).

Reticulocytes are produced 
from rapidly dividing progenitors 
in the bone marrow and are well 
suited for rapid assessment of 
MN frequency because they, 
like mature red blood cells, have 
extruded their nucleus. However, 
the spleen filters micronucleated 
red cells out of circulation, so that 
erythroid micronuclei (known to 
haematologists as Howell-Jolly 
bodies) are found less frequently 
in the peripheral blood than in the 
marrow, and disappear from both of 
these compartments 2–3 days after 
aberrations occur. Furthermore, 
once an MN is formed, the genomic 
lesion can contribute to cell death, 
and, even if the cell is still able to 
proliferate, the MN is not replicated 
and will therefore be diluted in the 
progeny that are formed. Thus, the 
presence of micronuclei is mostly 
used as a biomarker of either 
recently occurring chromosome 
aberrations or of an increased 
tendency for these events to occur 
(indicated by relatively high baseline 
levels of MN formation or by an 
increased response upon exposure).

Since human marrow samples 
are not routinely collected when 
monitoring for exposure effects or 
cancer risk in healthy populations, 
reticulocytes are not used to 
evaluate MN formation in human 
tissues. Efforts to use micronuclei 
as mutation biomarkers in human 
tissues have instead mainly focused 
on cultured human lymphocytes or 
exfoliated cells (182). The MN assay 
in cultured human lymphocytes (the 
cytokinesis-block micronucleus 
(CBMN) assay) employs 
cytochalasin-B in vitro to interrupt 
cell division after the first telophase, 
allowing the visualization of daughter 
nuclei and excluded micronuclei 
(182–184). Cells that have 
undergone mitosis (a necessary 
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step in MN formation) are identified 
by their binucleate appearance in 
the CBMN assay; cytochalasin-B 
prevents the dilution of micronuclei 
in the culture population by 
prohibiting proliferation. Although 
the CBMN assay is conducted on 
lymphocytes in vitro, it has been 
shown to be an accurate indicator 
of both carcinogenic exposure in the 
lymphocyte donor and increased 
cancer risk. For example, the 
CBMN assay has been used to 
establish that spontaneous MN 
generation increases with age of 
the lymphocyte donor (185,186), 
and that MN frequency is increased 
in the lymphocytes of nurses 
handling cytotoxic drugs (187), 
workers exposed to chlorinated 
solvents (188), and mortician 
students exposed to formaldehyde 
(189). Furthermore, a case-control 
study using the CBMN assay 
demonstrated that micronucleus 
frequency is increased in the 
lymphocytes of smokers with lung 
cancer (190). A nested case-
control study recently showed that 
micronucleus frequency assessed 
in peripheral blood lymphocytes 
of disease-free subjects is a good 
predictor of cancer death risk (191).

The measurement of micronuclei 
in epithelial cells has also been 
used as a biomarker for monitoring 
DNA damage and is perhaps the 
least invasive method available for 
measuring DNA damage in humans 
(192). The MN assay in buccal cells 
was first proposed in 1983 (193), and 
has since been used to demonstrate 
that increased MN frequencies 
correlate with occupational 
exposures, lifestyle factors, dietary 
deficiencies, and various disease 
states. In early studies, exfoliated 
buccal mucosa cells were used to 
test for the genotoxic effects of betel 
nuts and quids of chewing tobacco 
(194,195). These studies often 
showed that higher MN frequencies 

were observed at the site where the 
quid or tobacco mixture was kept, 
compared to the opposite side. 
Other studies have demonstrated 
that increased MN frequency 
in buccal cells is significantly 
increased in people exposed to 
arsenic (196,197), formaldehyde 
(189), and smokeless tobacco (198). 
Furthermore, arsenic exposure has 
been shown to modulate the MN 
frequency in exfoliated bladder cells 
(199,200). As with the CBMN assay 
in lymphocytes, an increased MN 
frequency in epithelial cells has also 
been linked to cancers such as oral 
submucous fibrosis, oral carcinoma, 
and breast cancer (201–203). 
Therefore, although micronuclei 
are formed from a variety of 
chromosomal aberrations, only 
some of which are on the causal 
pathway to disease, MN frequency 
in cultured lymphocytes, red cells, 
and epithelial tissue remains a 
useful biomarker for evaluating 
exposure and cancer risk.

Detection of epigenetic 
changes

In addition to the wide range 
of genetic damage involved 
in carcinogenesis, epigenetic 
mechanisms (e.g. methylation 
of CpG islands in DNA) have 
gained attention as key players 
in certain cancer types. Although 
tumorigenesis is accompanied 
by global hypomethylation of the 
genome, some particular regions 
may become hypermethylated. 
Approximately 70% of known human 
promoter regions are found within 
CpG islands (204), and methylation 
of the cytosine within these CpG 
regions modulates expression by 
silencing genes. DNA methylation 
is normally controlled by the activity 
of the DNA methyltransferase 
family of enzymes, but it is also 
known that changes in local 

DNA structure, environmental 
exposure (e.g. nickel, plutonium, 
polycyclic aromatic hydrocarbons), 
and microsatellite instability can 
contribute to aberrant promoter 
methylation. Methylation patterns 
are reset during embryogenesis, 
although specific methylation 
patterns may be heritable through 
imprinting. Changes in the promoter 
methylation of a large series have 
been linked to aging and cancer; 
methods for measuring these 
epigenetic changes are critical to 
understanding the genetic basis of 
disease. Information on the diversity 
of methylated genes in cancer is 
available at the Methylation Cancer 
Database (MethCancerDB), which 
collects data on aberrant CpG 
methylation in human tumours 
and currently contains information 
on over 2000 genes (http://www.
methcancerdb.net/methcancerdb/
home.seam).

Aberrant methylation may result 
in changes in the dysregulation of 
every type of cell processes involved 
in carcinogenesis. Furthermore, 
changes in methylation patterns may 
occur synergistically with mutations 
or chromosomal aberrations. 
For example, in leukaemia and 
lymphoma, translocations cause the 
formation of novel fusion genes that 
produce excessive growth (128,129). 
Other genes undergo transcriptional 
silencing by methylation, which 
causes aberrant cell cycle control 
(205). Aberrant methylation and 
transcriptional silencing appears 
to be an early event in both solid 
tumours, including lung (206), 
colon (207), hepatocellular (208), 
and bladder (209), as well as 
haematologic malignancies (205).

Because of their widespread 
presence in the genome, their 
diversity, relevance to disease, 
and potential responsiveness to 
environmental changes, changes 
in methylation patterns are ideal 
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candidate early effect biomarkers. 
Several different methods have 
been developed to detect aberrant 
methylation of genes, but either 
methylation-sensitive restriction 
enzyme digests of DNA or bisulfite 
conversion of DNA is at the core of 
most. So far, however, the application 
of these methods to non-diseased 
human tissues is still in its infancy.

Methylation-sensitive 
digestion

Restriction enzymes that have CpG 
sites in their recognition sequence 
and are sensitive to methylation 
status can be used to differentially 
digest DNA before using other 
techniques, such as PCR or 
Southern blotting, to analyse the 
resulting digest. It is preferable to 
use enzymes that have at least 
two CpG sites in their recognition 
sequence (e.g. NotI, SacII, EagI, 
and BsHII) to increase the specificity 
of the method. Southern blotting 
after digest is the gold standard for 
measuring aberrant methylation. 
There are very few examples 
of a Southern blot analysis that 
has not been confirmed by other 
techniques. However, the downside 
of Southern blot analysis is that it 
is time consuming and requires a 
large amount of high-quality DNA, 
which precludes the use of paraffin-
embedded tissue. Methylation-
specific restriction followed by PCR 
using primers that frame the digestion 
site can give false-positives due to 
incomplete digestion. Restriction 
landmark genome scanning is a 
whole-genome approach that relies 
on methylation-sensitive restriction 
digest, followed by radiolabelling 
the resulting fragments and 
2D electrophoresis to resolve 
differences in the digest (210). 
Methylated CpG island amplification 
followed by microarray analysis is 
another modern technique, built 

on methylation-sensitive restriction 
enzymes, that facilitates high-
throughput detection of aberrant 
methylation (211,212).

Bisulfite conversion assays

The basis for another class of 
methylation assays is bisulfite 
conversion of DNA. While normal 
cytosine is converted to uracil upon 
treatment with bisulfite, methylated 
cytosine is unaffected. Since uracil 
is read by polymerases as thymine, 
bisulfite conversion can be used 
to introduce polymorphisms into 
a sequence based on methylation 
status (Figure 5.15). After bisulfite 
conversion, methylation-specific 
PCR, which targets the created 
polymorphisms with primer(s) 
that overlap with the modified site 
at their 3ʹ ends, can be used to 
distinguish between the two variants. 
Alternatively, standard PCR framing 
the modified site can be used to 
provide amplicon for SNP analysis 
using a variety of techniques including 
direct sequencing, pyrosequencing, 
methylation-sensitive single-
strand conformational analysis, 

high-resolution melting analysis, 
methylation-sensitive single 
nucleotide primer extension, 
hybridization to arrayed 
oligonucleotides, or base-specific 
cleavage/MALDI-TOF. In a recent 
study, bisulfite conversion and 
pyrosequencing have been used to 
analyse the methylation patterns of 
several genes in lung cancer tissues 
from smokers, ex-smokers, and life-
time never smokers, demonstrating 
substantial differences according 
to histology and to smoking history 
(213). A limitation of bisulfite 
conversion techniques is that only 
single-stranded DNA is susceptible 
to bisulfite, which requires that the 
DNA is denatured during analysis. 
Thus these techniques require 
optimization of temperature and salt 
concentrations during conversion to 
achieve a high degree of sensitivity 
and specificity. In addition, 
conditions of bisulfite conversion 
can lead to degradation of DNA, 
specifically depurination and 
random strand breaks.

Among aberrantly methylated 
genes in cancer, the tumour 
suppressor gene p16INK4a has been 

Figure 5.15. Detection and quantification of cytosine methylation using bisulfite 
conversion assay. Bisulfite conversion of a DNA sequence. Nucleotides in red 
are unmethylated cytosines that will be converted to uracils by bisulfite, while blue 
nucleotides are 5-methylcytosines resistant to conversion
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one of the most extensively studied. 
This gene is a key component in 
the G1/S cell cycle checkpoint and 
has been shown to be involved in 
almost every type of solid cancer 
and in leukaemia. The INK4a locus 
is of special interest in cancer as 
it contains an alternative reading 
frame (ARF), encoding a different 
protein which also exerts tumour 
suppressive activities. Each ARF 
has its own promoters, which may 
be simultaneously or differentially 
methylated (214). A real-time 
methylation-specific PCR protocol 
has been developed for p16INK4a and 
applied to bone marrow samples 
of patients with multiple myeloma 
(215). This method showed high 
concordance with conventional 
methods, plus the added sensitivity 
and specificity of the real-time 
technology. In addition, researchers 
correlated methylation status with 
p16 mRNA expression and observed 
that transcription was inversely 
correlated with methylation status. 
Other recent publications have found 
that promoter hypermethylation 
of p16 is associated with poor 
prognosis in recurrent early-stage 
hepatocellular carcinoma, and 
that aberrant p16 methylation is 
associated with nasopharyngeal 
carcinoma (216,217). As with other 
real-time methods, this application 
shows great potential for future 
studies involving methylation of key 
genes in carcinogenesis, as well as 
other biological processes.

Emerging technologies for 
measuring mutations in 
single cells

The ultimate goal of studies 
on genetic damage is to detect 
alterations at the level of a single 
cell, making it possible to capture 
modifications that precede and 
initiate pathological processes. 
Recently, several research groups 

have developed microfabricated 
genetic analysis systems based 
on performing PCR reactions in 
nanolitre volumes, either on a 
wafer or in emulsion, to separate 
individual templates for analysis and 
sequencing. These developments 
promise to vastly increase the 
throughput and sensitivity of long 
established methods for mutation 
detection (218–228). One such 
development is the BEAMing 
technique described earlier (126).

Microfabricated capillary 
array electrophoresis

Recently, a 96-channel 
microfabricated capillary array 
electrophoresis device was 
developed and applied (229) for 
high-throughput genotyping of 
the methylenetetrahydrofolate 
reductase gene (MTHFR), which 
has been shown to be predictive of 
increased risk of leukaemia (230). 
The microfabricated 96-channel 
capillary electrophoresis system 
used a radial channel format coupled 
with a four colour radial confocal 
fluorescence scanner. The chip 
was formed by microfabricating the 
capillary electrophoresis channels 
on one wafer and then bonding it to 
a drilled blank wafer. Samples were 
then introduced into reservoirs on the 
perimeter, electrophoresed into the 
channel intersection, and separated 
on a gel in under two minutes. This 
device was capable of rapid (< two 
minutes) two colour genotyping of 96 
MTHFR allelic variants (229).

Single cell analysis using 
laboratory-on-a-chip 
technologies

Microfluidic and laboratory-on-a-
chip technologies have advanced 
to the point that single cell genetic 
analysis is feasible on a high-
throughput scale. The key to the 

concept of single cell genetic 
analysis is the idea of a PCR colony 
or ‘polony’ (231). The basic idea is 
the dilution of a PCR template into 
the single molecule limit followed by 
PCR amplification of this template in 
a format that limits product diffusion, 
either by placing the amplification 
in a gel or by defining a picolitre 
volumetric element (232,233). 
The amplification in a restricted 
volume proceeds to produce a 
colony of up to ~108 amplicons that 
can be sequenced by sequential 
extension and fluorescence or by 
pyrosequencing. In the case of the 
method used by the commercial 
company 454 Life Sciences, one of 
the primers is covalently linked to a 
bead that is statistically distributed 
and trapped in the picolitre volume 
reactor. This ensures that each 
bead will yield progeny from only 
one template. The bead further 
facilitates the retention of the PCR 
product as one goes through the 
steps of pyrosequencing. This 
concept has been extended to 
single cell genomics (231), which 
demonstrates the isolation of 
DNA from a single bacterial cell 
followed by multiple displacement 
amplification of the cellular DNA, 
producing enough product for 
cloning and sequencing from a single 
cell. Other work has demonstrated 
‘digital PCR,’ where PCR 
template targets are diluted at the 
statistical limit into picolitre volume 
reactors in a microfabricated poly 
(dimethylsiloxane) (PDMS) structure 
(234). The observation of distinct 
stochastic product production 
allows the genetic characterization 
at the single molecule level. Thus, 
it is evident that there has been 
much success in the performance 
of single genomic copy amplification 
and PCR in picolitre-sized volumes 
followed by genetic analysis.
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Microdroplet generation and 
single template PCR

Sample preparation and analysis is 
typically performed at the microlitre 
or millilitre scale, because of the 
limitations of manual and robotic 
sample transport and measuring 
technologies, as well as detection 
technologies. However, new 
technologies exploit microfabricated 
microfluidics for sample transport 
and manipulation and operate 
in tandem with miniaturized and 

sensitive detectors. The marriage of 
these two technological advances 
will dramatically impact the 
performance of clinical and point-
of-care devices and is a critical 
part of single cell genetic analysis. 
Devices and methods, including the 
use of specific DNA probe-based 
affinity gels or beads for target 
capture and purification in DNA 
sequencing and DNA computing 
applications, have also advanced 
for performing sample preparation 
(218,219,221). A current version of 

one of these devices is shown in 
Figure 5.16 (228). This microdroplet 
generating nozzle forms uniform 
microdroplets containing PCR 
reagents, microbeads, and single 
cell templates. These methods have 
been used to sequence plasmid 
control templates and to detect 
amplicons of the gyrB and GAPDH 
control genes in single E. coli and 
lymphocyte cells, respectively 
(218,228).

Figure 5.16. Microfluidic device for single copy DNA template amplification. Single copy genetic amplification. A: target DNA or 
cells and beads are mixed with the PCR reagent (blue) at very dilute concentrations and pumped through a microfabricated droplet 
generator. Monodisperse nanolitre volume droplets of the PCR reagent are formed in a carrier oil (yellow) at the cross-injector and 
routed into a tube for temperature cycling. The number of droplets containing a single bead and a single target DNA/cell is controlled 
by varying their concentrations in the PCR solution and controlling the droplet volume. B: Each functional PCR mix droplet contains 
a bead covalently labelled with the reverse primer, dye labelled forward primer, and a single target copy. Subsequent steps of PCR 
generate dye labelled double stranded product on the bead surface. Following emulsion PCR, the droplets are broken and the beads 
are analysed by flow cytometry to quantify the bound clonal amplified product. C: Microdroplet generation for controlled formation 
of nanolitre PCR droplets: layout of device, showing the PCR solution inlet, the two oil inlets, and the droplet outlet ports (red). A 
three layer (glass-PDMS-glass) pneumatically controlled micropump is integrated on-chip to deliver PCR reagent containing dilute 
34μm beads and template. The manifold layer (blue) controls valve actuation, and the via hole connects the glass-PDMS hybrid 
channel (green) to the thermally bonded all-glass channel and cross-injector (black). Etch depth, 100μm. D: Optical micrograph of 
droplet generation at the cross-injector. Droplets are generated at a frequency of 5.7Hz with a combined oil flow rate of 2.2μL/min 
and a PCR solution flow rate of 0.8μL/min. For this experiment, average bead concentration was 130 beads/μL (0.33 bead/droplet). 
E: Optical micrograph of droplets with a predictable stochastic distribution of beads. Adapted from (233), Figures 1 and 2. Copyright 
(2008) American Chemical Society.
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Conclusions

A new generation of candidate 
biomarkers of early effect in 
carcinogenesis is now available. 
Their validation in translation 
studies is currently a major focus 
in molecular epidemiology. Several 
of these makers are now available 
for application in large-scale 
studies on human populations. 
These methods utilize the latest 
advances in molecular cytogenetics 
and PCR allowing for genetic or 
epigenetic changes to be detected 
and measured in cancer-related 
genes and in specific regions of 
chromosomes that are rearranged, 
lost, or amplified in carcinogenesis. 
The combination of these methods 
with microfluidics and advanced 
fluorescence detection systems 
opens a wide horizon for innovative 
technologies and the development 
of novel laboratory instruments.

These new early effect 
biomarkers are on the causal 
pathway to disease and, as such, 
should have important application 
in predictive clinical tests of cancer 

risk. In addition, the high sensitivity 
of these assays will allow the 
detection of genetic damage in 
normal, healthy individuals, either as 
the result of ongoing, endogenous 
DNA damaging processes, or 
as the result of environmental 
exposure to chemical or physical 
carcinogens and infectious 
agents. These developments 
will have a considerable impact 
on our understanding of gene-
environment interactions and of the 
early molecular steps of disease. 
However, their true value will only 
be assessed by their application 
into clinical trials and prospective 
epidemiological studies.

The implementation of these 
new biomarkers has important 
implications on the design, cost, 
conduct, and analysis of molecular 
epidemiology studies. Two 
particularly important aspects must 
be underlined. First, the cornerstone 
of such studies is the development 
of high-quality biobanks that 
include sophisticated systems for 
specimen collection, storage, and 
processing. Critical in this process 

is the definition of protocols for pre-
analytical processing of the samples 
(from collection to storage and from 
storage to the bench). Heterogeneity 
and lack of quality control in these 
protocols are currently the main 
obstacles to the application of any 
type of novel molecular biomarker. 
Second, it should be anticipated that 
implementing such biomarkers will 
lead us to reconsider some statistical 
aspects of study design. The major 
problem in this respect will be to 
develop studies with sufficient power 
to distinguish between ‘passenger’ 
and ‘driver’ genetic changes. The 
use of highly sensitive methods at 
the single cell level will inevitably 
generate an unprecedented level 
of heterogeneity in current data on 
the human genome. Interpreting 
and mastering this heterogeneity 
is an important challenge which 
will be critical for the cost-effective 
implementation of molecular 
biomarkers.
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Basic principles and laboratory 
analysis of genetic variation

Jesus Gonzalez-Bosquet and Stephen J. Chanock

Summary

With the draft of the human genome 
and advances in technology, the 
approach toward mapping complex 
diseases and traits has changed. 
Human genetics has evolved into 
the study of the genome as a 
complex structure harbouring clues 
for multifaceted disease risk with 
the majority still unknown. The 
discovery of new candidate regions 
by genome-wide association studies 
(GWAS) has changed strategies for 
the study of genetic predisposition. 
More genome-wide, “agnostic” 
approaches, with increasing 
numbers of participants from high-
quality epidemiological studies are 
for the first time replicating results 
in different settings. However, new-
found regions (which become the 
new candidate “genes”) require 
extensive follow-up and investigation 

of their functional significance. 
Understanding the true effect of 
genetic variability on the risk of 
complex diseases is paramount. 
The importance of designing 
high-quality studies to assess 
environmental contributions, as well 
as the interactions between genes 
and exposures, cannot be stressed 
enough. This chapter will address 
the basic issues of genetic variation, 
including population genetics, as 
well as analytical platforms and 
tools needed to investigate the 
contribution of genetics to human 
diseases and traits.

Introduction

New advances in microchip 
technologies and informatics allow 
geneticists to look across the genome 

agnostically using dense data sets 
with billions of data points. These 
developments have transformed 
the field, moving it away from the 
pursuit of hypothesis-driven, limited 
candidate studies to large-scale 
scans across the genome. Together 
these developments have spurred a 
dramatic increase in the discovery 
of genetic variants associated with 
or linked to human diseases and 
traits, many through genome-wide 
association studies (GWAS) (1). 
Already over 7400 novel regions of 
the genome have been associated 
with more than 75 human diseases 
or traits in large-scale GWAS (2). 
Each region now represents a new 
candidate “region” that harbours 
putative genes, which will require 
extensive mapping of the variants 
to explore the genomic architecture 
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of the region and its contribution 
to human diseases and traits. 
The return to exploring candidate 
regions differs from the old approach 
of nominating favoured genes, 
because it is driven by findings 
that reach conclusive thresholds 
based on more rigorous statistical 
considerations.

While there is ample opportunity 
to survey thousands of genetic 
variants, often well chosen 
and based on an emerging 
understanding of the structure of 
genetic variation and its patterns of 
inheritance, the ability to analyse 
the interaction between genetic 
variants and the environment has 
lagged. This is mainly because 
the measurement tools for the 
latter have not undergone the 
transformative shift observed 
in assessing genetic variation. 
The integration of environmental 
exposure with genetic factors 
should provide insights into disease 

mechanisms and outcomes. 
Eventually these insights will be 
applied to treatment or preventive 
measures that are best suited for the 
individual (known as personalized 
medicine). Individualization of 
treatments based on the greatest 
likelihood for efficacy, while 
minimizing (or avoiding) deleterious 
toxicities, represents a long-term 
goal, but one that is in the distant 
future. While the opportunity to 
begin to develop evidence-based 
individualized therapeutics, also 
known as pharmacogenomics, is 
promising, its realization will require 
a nuanced understanding of the 
contribution of genetic variation to 
complex diseases.

This chapter will address the 
basic issues of genetic variation, 
including population genetics as 
well as analytical platforms and 
tools needed to investigate the 
contribution of genetics to human 
diseases and traits.

The scope of genetic variation

The spectrum of human genetic 
variation is enormous with respect 
to both the types of genetic variation 
and the sheer magnitude of the 
number of variants in any given 
genome. Even though two genomes 
are estimated to differ by less 
than 0.5%, there are still several 
million differences; the majority are 
vestigial, but a small proportion 
probably contribute to disease risk. 
The most common type of variation 
is a single nucleotide base change, 
followed by small insertions or 
deletions in sequence. Progressively 
larger structural alterations and 
copy number variants are fewer 
in absolute number, but perhaps 
affect more bases (Figure 6.1). So 
far, available technologies have 
accelerated the discovery and 
characterization of diversity in the 
human genome. In the first wave of 
annotation, common variants have 

Figure 6.1. Genetic variant frequencies and estimated effect size for genetic contribution
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been described, many of which 
are universal to all populations. 
The ability to ascertain estimates 
for lower frequency variants is 
dependent upon the number of 
subjects surveyed, as well as the 
population genetic history of the 
subjects used for discovery. New 
sequencing technologies, referred 
to as next-generation sequencing, 
allow for the ability to catalogue 
variants with lower frequencies and 
will certainly shift the paradigms 
further. Generally, the interrogation 
of genetic variation continues to 
reveal greater complexity in different 
human populations, which manifests 
as differences in frequencies of 
variants.

Single-nucleotide 
polymorphisms (SNPs)

The most common sequence 
variation in the genome, the single-
nucleotide polymorphism (SNP), is 

the stable substitution of a single 
base, which by definition is observed 
in at least 1% of a population. Though 
this definition has been useful 
for cataloging genetic variation, 
the advent of next-generation 
sequencing technology has revealed 
the sheer breadth of variations in 
different populations with estimated 
frequencies well below 1%. Still, for 
the purpose of current applications 
of genetic variation, the SNP is the 
most commonly annotated variant. 
The minor allele frequency (MAF) 
is designated for the lower allele 
frequency observed at a locus in 
one particular population, but often 
there can be major differences 
in estimated MAFs between 
populations with distinct histories. 
The literature suggests that there are 
more than perhaps 15 million SNPs 
with a MAF greater than 1% (3–5), 
and 10 million SNPs with a MAF 
greater than 10% (3,6,7); however 
recent large-scale sequencing 

efforts, such as the 1000 Genomes 
Project, indicate these estimates 
are low (http://www.1000genomes.
org/). There are estimated to be a 
greater number of SNPs with lower 
MAFs and, unlike common SNPs, 
the majority may be population-
specific (Figure 6.2). The majority of 
common SNPs, with a MAF greater 
than 15–20%, are widespread in 
human populations (8,9). Only a 
small subset of high-frequency 
SNPs (less than 10%) appear to be 
found in a single population, again 
suggesting the universal ancestry of 
common SNPs (9).

Previously in candidate gene 
approach studies, SNPs in coding 
regions were often selected on the 
basis of an in silico predicted effect, 
but with little supporting biological 
evidence. The attempt to classify 
coding variants, known as a coding 
SNP (cSNP), has focused on the 
predicted effect on the actual coding 
sequence. The majority of cSNPs 

Figure 6.2. Estimated number of SNPs in the human genome in relation with their minor allele frequency (MAF). Source: (5). 
Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics, copyright (2003).
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do not alter the predicted amino 
acid and are known as synonymous 
SNPs. However, a subset of 
variants are predicted to shift the 
amino acid and are known as non-
synonymous coding SNPs. Though 
this subset was initially of great 
interest, very few non-synonymous 
coding SNPs have actually been 
conclusively associated with human 
diseases or traits, and even fewer 
have corroborative biological 
data to provide plausibility for the 
association (10,11). Nonetheless, 
the analysis of synonymous and 
non-synonymous SNPs has been 
quite informative for evolutionary 
studies (12,13).

There has been considerable 
effort to calculate the effect of 
a non-synonymous cSNP in 
conformational protein changes. A 
proliferation of prediction software 
has been created (e.g. Protein 
Data Bank (http://www.rcsb.org/
pdb) and Swiss-Model (http://
swissmodel.expasy.org//SWISS-
MODEL.html)). Though new models 
and algorithms claim improved 
reliability for predicting deleterious 
changes in protein structure 
(14–16), without corroborative 
laboratory data the findings are 
merely in silico observations. 
Overall, between 50 000 and 250 
000 SNPs could be functional, 
non-synonymous coding variants, 
or regulators of gene expression 
or splicing (10,11). It is likely that a 
subset of non-synonymous cSNPs 
contribute to regulatory differences 
in expression or genetic pathways 
(17–19), but most SNPs appear 
not to be functional and have been 
maintained on the backbone of 
an inherited block of DNA through 
generations. Subsets of SNPs that 
alter regulation or expression of 
a gene, called regulatory SNPs 
(rSNPs), are difficult to predict with 
high efficiency and most likely will 
be categorized on the basis of large-

scale surveys of cell lines, as well as 
laboratory data.

Nearly half of the more than 
10 million human SNPs in the 
international public database for 
SNPs, or dbSNP (http://www.ncbi.
nih.gov/SNP/), have been validated 
with genotyping assays by the SNP 
Consortium and the International 
HapMap Project (8,20). Until 
recently, only a small percentage 
had been verified by sequencing, 
but with the advent of the 1000 
Genomes Project, nearly all common 
(MAF >10%) and uncommon (MAF 
between 1 and 10%) variants should 
be confirmed by next generation 
sequence technology (21,22). 
In the current build, roughly one 
sixth of the variants in dbSNP are 
probably monoallelic, due to errors 
in either genotyping or, more likely, 
sequencing (23,24). In general, the 
reported SNPs have been biased 
towards high-frequency variants in 
populations of European ancestry.

Currently, the catalogue of 
uncommon variation, namely SNPs 
with MAFs under 1%, is incomplete. 
However, the 1000 Genomes Project 
is expected to generate a thorough 
catalogue of variants with greater 
than 1% MAF. The contribution 
of uncommon variants (MAF 
between 1% and 10%) represents 
an untapped portion of the genomic 
architecture. It will require either 
larger studies to provide sufficient 
power to detect association, or new 
design strategies to discover and 
characterize uncommon and rare 
variants (25,26). Rare or uncommon 
variants have been shown to be 
informative in the extremes of 
mapping human traits, such as with 
cholesterol levels (27). Rare variants 
or mutations can explain a proportion 
of the strong familial component of 
complex diseases, as well as the 
classical Mendelian inheritance of 
single or oligogenic diseases. These 
highly penetrant disease mutations 

are catalogued in a public database, 
the Online Mendelian Inheritance in 
Man (OMIM) (http://www.ncbi.nlm.
nih.gov/omim/).

The correlation of common 
genetic variants

Most SNPs are not inherited 
independently but in blocks, resulting 
in sets of SNPs being transmitted 
together between generations 
(4,28,29). These blocks are defined 
by linkage disequilibrium (LD), which 
estimates the correlation between 
SNPs on shared chromosomes 
passed down from ancestral 
chromosomes. LD is defined as the 
non-random association of alleles 
at different loci (30). Initially, each 
SNP is a single mutation that has 
taken hold and become fixed in a 
population, either as a consequence 
of direct selection or because it is 
close enough on the chromosome 
to be included within a block of a 
shared segment. Individual SNPs 
that are strongly associated with 
each other are said to be in LD, 
although this correlation could be 
eroded over time by recombination 
(exchange of genetic material) 
during meiosis (31). Haplotypes are 
defined as sets of SNPs, and other 
genetic polymorphisms (larger in 
size), on chromosomal segments 
that are in strong LD.

There are several ways 
to determine haplotypes from 
genotypes; this is commonly referred 
to as resolving haplotype phase. 
The offspring haplotype phase 
can be determined if the parental 
genotypes are known or directly with 
biochemical methods (30). Based 
on the assumption that haplotypes 
are randomly joined into genotypes, 
phasing can be estimated using 
one of several statistical methods 
that can account for the ambiguity 
of unobserved haplotypes (30). 
Different methods have been 
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developed to estimate haplotypes 
from unphased multilocus genotype 
data in unrelated individuals; the 
underlying principles are based on 
models that incorporate either a 
maximum likelihood (32), parsimony 
(33), combinational theory (34) or 
a priori distribution derived from 
coalescent theory (35). This last 
method is the basis for the phase 
reconstruction software PHASE 
(35,36), which has performed 
favourably in simulation studies (37), 
and its modified version designed 
for larger data sets, fastPHASE 
(22). Reconstructed haplotypes 
from unrelated individuals and LD 
structure have been used to study 
genomic association to complex 
traits (17,29). In fact, some research 
suggests that haplotypes would be 
better suited for candidate studies 
because of a perceived statistical 
advantage over the single-locus LD 

mapping (38–40), but the recent 
success with GWAS suggests 
otherwise.

The concept of LD also permits 
investigators to look at a set of SNPs 
and determine proxies for other 
untested SNPs (or tagSNPs) (41,42). 
This indirect approach is predicated 
on finding markers only, relegating 
the search for causal or functional 
variants to later work (Figure 6.3). 
Several approaches optimize the 
number of surrogate SNPs needed 
to account for untested variants, 
such as the “greedy algorithm.” The 
latter estimates highly correlated 
SNPs, primarily on the basis of 
the MAF, to create heuristic bins 
of tagged SNPs. Thus, tagSNPs 
represent proxies for additional, 
highly correlated SNPs with 
comparable allele frequency and 
distribution in the population of 
interest. In a sense, tagSNPs are 

used to mark common haplotypes 
in the region (Tagger, embedded 
in Haploview software (http://www.
broad.mit.edu/mpg/haploview) and 
TagZilla (http://tagzilla.nci.nih.gov)) 
(43). Consequently, the indirect 
approach of using a limited set of 
tagSNPs as a proxy of a LD block 
has emerged as the preferred 
approach, used by both GWAS and 
candidate gene studies (44).

Structural polymorphisms

Structural variations in the genome 
may be either cytologically 
visible or, more commonly, 
submicroscopic variants that can 
range in size from a few base pairs 
to thousands (45,46). These can 
include deletions, insertions and 
duplications collectively known as 
copy number variations (CNVs), as 
well as less-frequent inversions and 

Figure 6.3. SNP selection strategy. A. SNP selection through haplotype blocks, based on the concept of linkage disequilibrium 
(LD). D’ is a measure of LD between SNPs, represented in the figure through a heat map from white (low D’) to red (high D”). A 
haplotype (represented by a dark triangle in the figure) is a set of SNPs in strong LD, or high D’. “TagSNPs” are proxies for other 
SNPs in the same haplotype. This is the so-called indirect approach (147). B. Selection of SNPs based on r2, another measure 
of LD. This method creates groups with similar LD (r2) into ‘bins.’ In the figure each spot represents a SNP, and those with similar 
r2 are included in the grey blocks or ‘bins.’ ‘TagSNPs’ are proxies for all these loci included in each ‘bin’ with comparable LD (148)
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translocations (Figure 6.4) (47,48). 
Several of the inversions can be 
quite large, such as the 3.5 Mb on 
chromosome 17 seen in as much 
as 20% of the European population 
(49). On the other hand, insertion/
deletions as small as two base 
pairs can be observed. Although 
structural variants in some genomic 
regions have no obvious phenotypic 
consequence (50–52), CNVs have 
been shown to influence gene 
dosage in select circumstances. 
Consequently, many have pursued 
CNVs because of the potential 
contribution of high estimated 
effects for complex diseases, either 
alone or in combination with other 
factors (53). Some observations, 
either by the failure to assemble 
the draft genome sequence or by 
actual experimentation, estimate 
the segmental duplicated genomic 
sequence could involve between 
5–10% of the genome (51,54,55). 
Other clues come from the 
recognition that a notable number 
of SNPs failed the quality control 
metrics in the International HapMap 
Project; these were later determined 
to reside in regions now known to 
be enriched for CNVs (7,45,55–57). 
Current surveys suggest that CNVs 
are less common than previously 
reported (58), and many are 
infrequent (59). It is also notable that 
over three fourths of common CNVs 
are in LD with common SNPs (59).

Coordinated efforts are underway 
to establish a comprehensive 
catalogue of CNVs, such as the 
Database of Genomic Variants 
(http://projects.tcag.ca/variation/) 
(46,60) and the Human Genome 
Structural Variation Project (http://
humanparalogy.gs.washington.edu/
structuralvariation/). Recently, there 
have been several international 
efforts to establish standards for 
identification, validation and reporting 
of CNVs (46). The availability of 
several microarray platforms that 

can detect quantitative imbalances 
has accelerated CNV discovery, but 
there are still substantive technical 
challenges due to the breadth of 
polymorphic differences for which 
analyses are particularly unstable. 
New emerging algorithms should 
streamline moderate- to high-
throughput, cost-effective methods 
to scan the genome for CNVs, as well 
as inversions or translocations based 
on stable sequence assemblies 

(59–64). Advances in techniques 
have improved determination of 
common CNVs, such as tiling arrays 
(which cover the genome through 
partial overlapping (tile-like) sets of 
fixed oligonucleotides), paired-end 
sequencing (sequence analysis of 
both ends of a larger fragment to 
improve alignment), and new dense 
SNP genotyping platforms based 
on probe intensity (e.g. Illumina and 
Affymetrix).

Figure 6.4. Spectrum of genomic variation. Challenges and standards in integrating 
surveys of structural variation: The range of genetic variation that must be taken into 
account when designing and analyzing genotype studies (46). The figure represents 
the whole spectrum of human genetic variation, from the molecular level with DNA 
sequence variation, exemplified by SNPs, to structural variation, a broad category that 
includes variations from 2 bp to whole chromosomal variations. The focus of recent 
genetic studies has been the subgroup in the midrange (with strong highlighting). 
These forms of variation have been studied with molecular methods to cytogenetic 
approaches. Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics, 
copyright (2007).
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Short tandem repeats (STRs) 
represent a class of polymorphisms 
that occur when a pattern of two 
or more nucleotides are repeated 
in certain areas of the genome. 
Previously known as microsatellites, 
they were frequently employed to 
conduct linkage studies in potentially 
informative pedigrees. The patterns 
can range in length from 2–10 
base pairs (usually tetra- or penta-
nucleotide repeats) and are typically 
located in non-coding regions. 
Since longer repeat sequences 
can be susceptible to artefactual 
errors in genotyping accuracy, 
particularly related to problems of 
PCR amplification, the industry 
standard for both genetic analysis 
and forensic application is 4–5 base 
pair (bp) repeat units. Shorter repeat 
sequences (e.g. 2 or 3 bp) tend 
to suffer from artefacts, such as 
stutter and preferential amplification 
(65–67). By genotyping a sufficient 
number of STR loci, it is possible to 
generate a unique genetic profile of 
an individual.

Population genetics

The field of population genetics 
has advanced rapidly and emerged 
as central to the investigation of 
genetics and complex diseases. 
Overall, the discipline of population 
genetics seeks to characterize the 
genetic composition of biological 
populations, as well as the changes 
in genetic composition that occur 
from environmental and migratory 
factors, including natural selection. 
To draw conclusions about the likely 
patterns of genetic variation in actual 
populations, population geneticists 
develop abstract mathematical 
models of gene frequency dynamics 
and test these conclusions against 
empirical data. Some of the more 
robust concepts in population genetic 
analysis that are applied in disease 
mapping are discussed below.

Fitness for Hardy–Weinberg 
proportion

The fitness for Hardy–Weinberg 
proportion, an important tool for 
understanding population structure, 
examines the distribution of the 
allelic and genotypic frequencies. 
Though theoretical, it states that 
if certain assumptions are met, 
genotype and allele frequencies can 
be estimated from one generation 
to the next. The derivation of the 
Hardy–Weinberg principle for a 
single locus assumes: a randomly 
mating population; an infinitely large 
population, or a population size large 
enough that random fluctuations in 
allele and genotype frequencies are 
small; no mutation; no migration; 
and no fitness differences among 
genotypes. When all of these 
assumptions are met, Hardy–
Weinberg Equilibrium (HWE) is 
established and four important 
conclusions can be drawn: 1) allele 
frequencies do not change from one 
generation to the next; 2) genotype 
frequencies can be inferred from 
allele frequencies; 3) only one 
generation is required to go from 
non-equilibrium to equilibrium; and 
4) once the system is in HWE, it 

stays in HWE (68). Also, if these 
conditions are met, the genotypic 
and allelic frequencies of the 
offspring generation will be related 
by the following simple equations. 
For a trait in the population with two 
alleles (A1 and A2), if the A1 allele 
frequency in the population is p, and 
the A2 allele frequency is q = (1-p), 
then expected genotype proportions 
(f) under HWP are:
f(A1A1) = p2, f(A1A2) = 2pq, f(A2A2) = q2

Random mating, or the absence 
of a genotypic correlation between 
mating partners, will generate a 
distribution of observed genotypes 
that should not deviate significantly 
from the expected proportions 
(Hardy–Weinberg Proportions 
(HWP)). This is predicated on 
Mendel’s law of segregation, and, 
assuming the absence of selection, 
all parents contribute equal numbers 
of gametes to the pool. The HWE 
principles can be applied to family-
based and case–control data to 
detect genotyping error, population 
stratification and association.

A violation of any of the above 
assumptions can produce deviation 
from HWE, which may include 
mating behaviour, population size 
and migration patterns. For example, 

Table 6.1. Issues for generation of final, publication-grade build of high-density 
genotype data

• Eliminate samples with low completion rates (< 90%)

• Remove SNP assays with low call rates (< 90%)

• Determination of fitness for Hardy–Weinberg proportion

• Compare expected duplicates

• Investigate unexpected duplicates

• Assess concordance between duplicates

• Search for cryptic relatedness between subjects

• Assessment of population substructure (after filtering 1st degree relatives)

• Determine admixture with STRUCTURE analysis

• Estimate population stratification (principal component analysis)

• Assess genotype calling algorithm

• Validate significant genotype calls with second technology
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systematic inbreeding will increase 
levels of homozygosity across the 
genome, as will small population 
sizes (68). Having more than one 
random mating population in a 
sample may also cause deviations 
from HWE, as well as mating 
with certain phenotypes (known 
as assortative mating), which will 
increase homozygosity as well. 
Small population size causes 
allele frequencies to drift from one 
generation to the next. In many 
cases, the deviations are also a 
screen for performance of the 
genotype technology, because 
a disproportionate number of 
heterozygotes or homozygotes 
could represent systematic errors in 
genotyping.

One of the most common 
reasons for not using data in 
association studies is presumed 
genotyping error. Many types of 
errors in genotyping can cause 
deviations from HWE; therefore 
tests for both assay specificity and 
deviation from HWE have been 
proposed to minimize the genotype 
error rate and thereby improve 
data quality (69,70). Deviation from 
HWE resulting from allelic drop-out, 
where some alleles are insufficiently 
amplified, can cause an excess of 
homozygotes and increase false-
negative or false-positive results 
(71). However, caution should be 
exercised in association studies 
before removing data because 
of HWE deviations. If there is a 
systematic HWE deviation in both 
cases and controls, it may be 
easier to determine a genotyping 
error if both deviations occurred 
in the same direction (72). Non-
systematic error is more problematic 
and should trigger a review of 
standard operating procedures for 
biospecimen handling, as well as 
an assessment of all information 
workflow. If the error is recognized, 
re-genotyping of the faulty samples 

might eliminate the problem. The 
power to detect deviations due to 
genotyping error under most modes 
of inheritance has been found to be 
very small (73). Even the deviation 
created by neighbouring SNPs, 
which diminish the performance 
of genotyping assays, does not 
produce a large enough deviation 
from HWE to be detected (74).

In GWAS, it is likely that hundreds 
if not thousands of markers will 
deviate from HWE. Understanding 
why and how HWE testing would 
help in the process of disease-
gene discovery is becoming more 
important as the number of SNPs 
included in these studies increases 
into the hundreds of thousands (75). 
The control observed genotype 
frequencies are tested against control 
expected genotype frequencies to 
determine if there may be genotyping 
error (68).

Spectrum of differences 
in population substructure

The age of GWAS has generated 
sufficiently large data sets that 
can determine the degree of 
differences in underlying population 
substructure, also known as 
population stratification. An 
examination of thousands of markers 
not in LD permits investigators to 
assess the extent of admixture and 
exclude individuals who are outliers 
for the association analysis.

Classically, population 
stratification is present when there 
is a measurable difference in the 
distribution of alleles between 
subgroups that have different 
population histories. There are 
examples of this in older case–
control studies where the cases 
and controls have been drawn 
from different populations. It is 
also possible to have stratification 
between cases and controls based 
on differences in exposures, as well 

in the distribution of common SNP 
markers (76). The ability to detect 
stratification with any marker or set 
of markers may also vary depending 
on the allele frequency in each 
subgroup (68).

In general, an assessment of 
the underlying structure can be 
estimated using standard algorithms 
to identify distinct populations (77). 
The most commonly used approach 
is implemented in the STRUCTURE 
program. This uses multilocus 
genotype data to examine population 
structure by attempting to separate 
subjects into groups (defined as k 
populations) and determining the 
distribution of shared alleles.

As the ability to understand 
population stratification (or 
differences between cases and 
controls due to systematic ancestral 
differences) has improved, several 
methods have been developed to 
study and account for these types 
of systematic study population 
structures. One approach 
commonly used for the correction of 
population stratification is to adjust 
simultaneously for a fixed number 
of top-ranked principal components 
resulting from a principal component 
analysis (PCA) (76). It is critical to 
look for underlying subgroups in 
stratified samples by testing sets 
of genetic markers not linked to 
the phenotype, and then adjust 
for inflation due to stratification 
(76,78,79). An alternative approach 
is to use a structured association 
method in association mapping, 
permitting case–control analysis in 
the context of known differences in 
population structure.

In select circumstances, in 
which the epidemiologic data 
suggest major differences between 
populations, it is possible to 
conduct mapping by admixture 
of linkage disequilibrium (MALD). 
This capitalizes on the concept of 
admixture, which is the genetic mix 
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of two or more distinct populations. 
It relies on the differences in allele 
frequencies between populations 
to guide the search to focus on 
changes in the genome rather than 
a specific gene(s). So far it has 
been successful in mapping a key 
prostate cancer region on 8q24 and 
a type of end-stage renal disease 
that is more common in individuals 
of African American background 
(80–82).

Selection

Population geneticists often 
define evolution as a change in a 
population’s genetic composition 
over time. The four factors that can 
bring about such a change are natural 
selection, mutation, random genetic 
drift, and migration into or out of the 
population. More controversial is a 
possibility of changes in the mating 
pattern, which some consider not 
to be part of classical evolutionary 
change. Natural selection occurs 
when some genotypic variants in 
a population enjoy a survival or 
reproduction advantage over others. 
Although the concept that natural 
selection favours the survival of 
individuals with a fitness advantage 
now almost seems intuitive, it was 
largely opposed when introduced 
by Darwin (83). Under Mendelian 
inheritance and with random 
mating, genotype frequencies after 
one generation do not change; the 
determinant of whether the allele 
will spread in the population is the 
fitness of heterozygotes versus that 
of wild-type homozygotes.

Mutation is the primary 
source of genetic variation driving 
differences within a population 
and thus preventing homogeneity. 
Although mutations that occur in 
the genome are initially thought 
to be random, the distribution of 
biologically significant mutations 
that cause diversity appears to be 

non-random (84,85). Gene function, 
gene structure and the roles of 
genes and gene products in genetic 
networks can influence whether 
particular mutations will contribute 
to advantageous phenotypic 
changes. Some mutations generate 
specific phenotypic changes, 
whereas pleiotropic mutations alter 
several seemingly unrelated traits. 
Mutations with pleiotropic effects 
will rarely change all phenotypic 
traits in a favourable way, and, in 
some instances, may even reduce 
fitness (86). The same mutation in 
a different genetic background may 
produce a different phenotypic effect 
because of interactions between 
alleles, under the phenomenon 
called epistasis. Also, populations 
exposed to repeated environmental 
changes may present with different 
genetic changes that produce a 
range of phenotypes suited to the 
environmental conditions, namely 
phenotypic plasticity.

Initially, when the environment 
favours a phenotype that is largely 
different from the average one in a 
population, mutations that cause 
this phenotypic change towards the 
new optimum are favoured (called 
strength of selection). Population 
size and history also influence 
genetic evolution. A small population 
size can accentuate the effects 
of random sampling of alleles, 
so-called genetic drift. In small 
populations, genetic drift will allow 
deleterious alleles to occasionally 
increase in frequency (84).

Random genetic drift refers 
to the chance fluctuations in 
gene frequency that arise in finite 
populations; it can be thought of 
as a type of “sampling error.” In 
many evolutionary models, the 
population is assumed to be infinite 
or very large to avoid chance 
fluctuations. This assumption is 
often not realistic, and species with 
historically low effective population 

sizes, such as humans, show 
evidence for reduced variability 
and effectiveness of selection in 
comparison with other species 
(87,88). In the era of multispecies 
comparisons of genome sequences 
and GWAS, it is critical to assess 
the evolutionary role of genetic drift 
and its interactions with mutation, 
migration, recombination and 
selection. Therefore, population 
size plays a central part in modern 
studies of molecular evolution and 
variation (88).

One of the most influential 
variables for human genetic variation 
is geographic location, with genetic 
differentiation between populations 
increasing with geographic distance 
and genetic diversity decreasing with 
distance from Africa. Populations of 
African ancestry have the greatest 
diversity, resulting in shorter 
segments of LD (89–93). Modern 
population genetics estimates that 
the ancestral human population 
originated in Africa and radiated 
outward to other continental 
locations, both within Africa and 
elsewhere.

Alleles under positive selection 
can increase in prevalence in a 
population and leave distinctive 
signatures, or patterns of genetic 
variation, in DNA sequences. These 
can be identified by comparison 
with the background distribution 
of genetic variation, primarily 
evolved under neutrality (94). In 
some cases, these signatures, or 
differences in allele frequencies 
between populations, reflect major 
regional selective pressures like 
infectious diseases (e.g. malaria), 
environmental stresses (e.g. 
temperature), or dietary factors (e.g. 
milk consumption) (13,95,96).

When immigrants with a 
different genetic makeup enter a 
new population, the population’s 
genetic composition will be altered. 
The evolutionary importance of 
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migration stems from the fact that 
many species are composed of 
several distinct subpopulations, 
largely isolated from each other but 
connected by occasional migration. 
Migration between subpopulations 
gives rise to gene flow, limiting the 
extent to which subpopulations can 
diverge from each other genetically.

Laboratory analysis of human 
genetic variation

Genotype analysis

Genotyping is used to interrogate 
specific, unique loci in the genome 
following DNA amplification by 
polymerase chain reaction (PCR). 
One of the challenges of genotype 
analysis is that each allele in 
the genome must be assayed 
individually, unlike surveys of gene 

expression that can use a common 
signature (the polyA tail) to capture 
a high percentage of mRNA at 
once. An assay must be robust and 
reproducible in exceeding a sufficient 
threshold for detection. Even though 
amplification protocols are highly 
reliable, error can be introduced for 
SNP detection, particularly if there 
are neighbouring SNPs that alter 
allele-specific binding of probes 
or if local genomic sequence is 
enriched for guanine-cytosine (GC) 
content (Figure 6.5) (97,98). The 
presence of duplicates of part of 
the sequence (CNV), either in the 
segment amplified or neighbouring 
the SNPs, can undermine the 
fidelity of the assay, sometimes 
providing bias in allele calling (55). 
Based on the amplification of local 
sequence surrounding the SNP of 
interest, redundant sequences are 

amplified, either locally or elsewhere 
in the genome, and the fidelity of 
the polymorphisms between these 
different segments is undermined, 
as was observed in the International 
HapMap Project (45,56).

Initially, restriction fragment 
length polymorphism (RFLP) 
assays were used to identify 
patterns of DNA broken into pieces 
by restriction enzymes. The size of 
the fragments was used to develop 
a footprint of the region of interest 
(99). RFLP analysis is laborious 
and error-prone, and thus has 
been largely abandoned for probe 
intensity and microchip technologies 
that can be easily scaled and 
reliably performed. Examples of 
these are differential hybridization, 
primer extension, ligation reactions 
and allele-specific probe cleavage, 
all of which interrogate one SNP 

Figure 6.5. Fidelity of the genotyping assay: error could be introduced in SNP detection. For example, the presence of a 
neighboring SNP under both TaqMan® (TM) probes (left panel) may alter allele-specific binding and bias the allele call (right 
panel).
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at a time. Occasionally, RFLPs are 
required to interrogate a region with 
high degrees of paralogy.

Low-density genotyping

The most commonly used 
technique for single SNP assays 
is the TaqMan® SNP genotyping 
assay (Applied Biosystems). It is 
a PCR-based assay designed to 
interrogate a single SNP that uses 
two locus-specific PCR primers and 
two allele-specific labelled probes 
(100). The 5′ exonuclease property 
of Taq polymerase is capitalized 
for detection of base-matching at a 
specific site. Attached to the 5′ end 
of each probe is an allele-specific 
reporter dye: each allele has a 
corresponding dye, which provides 
a benchmark for the ratio of the 
dyes as a reflection of the allele 
distributions. On the 3′ end of each 
probe is a single universal quencher 
dye, which prevents the excitation 
and emission of the reporter dyes. 
During PCR amplification, the two 
PCR primers anneal to the template 
DNA. The detection probes anneal 
specifically to the complementary 
sequence between the forward and 
reverse primer sites. During the 
elongation step of each cycle, the 
Taq polymerase comes in contact 
from the 5′ end with the reporter dye. 
Capitalising on the exonuclease 
property of Taq polymerase, the 
reporter dye is released from the 
probe and the fluorescence is 
released (i.e. no longer quenched by 
the quencher dye). In addition, the 
probe itself is digested by the Taq 
polymerase. After multiple cycles 
of PCR (that reach saturation for 
copying both alleles), fluorescence 
is detected for the two reporter dyes 
using an ABI 7900HT Sequence 
Detection System.

Careful attention must be paid 
to the unique flanking sequences 
to avoid overlap with adjacent, 

neighbouring SNPs or insertion/
deletions. The throughput is 
moderate for single-plex TaqMan, 
but new miniaturization technologies 
have improved the efficiency of 
moderate-scale genotyping studies 
using either the Fluidigm® or 
BioTrove platforms (101,102).

Multiplexing has increased the 
technical capacity to interrogate 
large, predetermined, fixed sets 
of SNPs. The cost of high-density 
SNP platforms and the necessity 
for large-scale follow-up studies 
have incentivized the development 
of methodologies for selective 
replication efforts. The technologies 
that have been developed for these 
replication studies are based on 
direct oligonucleotide hybridization 
with probe fluorescence detection, 
the single-base sequencing method, 
or chip-based mass spectrometry 
(i.e. based on matrix-assisted laser 
desorption/ionization time-of-flight 
(MALDI-TOF)) (103). Matrix-assisted 
laser desorption/ionization (MALDI) 
enables analysis of biomolecules by 
ionization usually triggered by a laser 
beam. A matrix is used to protect the 
biomolecule from destruction; it can 
be multiplexed to perform roughly 30 
SNP assays at one time.

High-density SNP detection

The first generation of custom 
bead-array technology by Illumina® 
enables custom detection of more 
than 1500 SNPs with excellent 
performance, and analysis of high-
quality DNA generated by whole- 
genome amplification assays 
(104,105). This system combines 
high-multiplexing in a multisample 
array format, well suited for custom 
genotype analysis of samples. 
Though best used with native 
DNA, it can analyse whole-genome 
amplified DNA, but at a price of 
distortions of heterozygosity for 
roughly 5% of the SNPs.

The newer system of Illumina, 
known as the Infinium® Assay, 
features single-tube preparation of 
DNA followed by whole-genome 
amplification before genotyping 
thousands of unique SNPs. 
Hybridization to bead-bound 50mer 
oligomers is followed by single-
base extension, which incorporates 
a labelled nucleotide for assay 
detection. This technology can 
be used to design custom sets of 
SNPs (between 7600 and 60 000 
bead types) with high efficiency 
(106). It is the backbone of the 
fixed content chips, which have 
increased in size and coverage of 
the common SNPs in the genome. 
This began with the HumanHap300 
and its complementary HumanHap 
240, through to the HumanHap500, 
Human Hap610 and HumanHap 
660w. The Infinium HD (high-
density) series followed with the 
Human1M-Duo BeadChips, which 
has over 106 SNPs to be genotyped, 
primarily chosen as tagSNPs from 
HapMap II (8). The increasing 
content of the chips also provides 
an opportunity to detect a larger 
subset of the common CNVs. 
However, algorithms for detection of 
CNVs continue to evolve and should 
improve in the coming years.

The Affymetrix microchip system 
is based on an assay known as the 
whole-genome sampling analysis 
(WGSA) for highly multiplexed SNP 
genotyping (107). This method 
amplifies the human genome with a 
single primer amplification reaction 
using restriction enzyme-digested, 
adaptor-ligated human genomic 
DNA. After fragmentation, sequential 
labelling and hybridization of the 
targets is required before analysing 
the fragments on a microchip. The 
initial GeneChip® Human Mapping 
500K Array spaced SNP markers 
by physical proximity, but the new 
Genome-Wide Human SNP Array 
6.0 provides a denser set of SNPs 
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(over 900 000), as well as probes 
that monitor common CNVs across 
the genome. The distribution of 
restriction enzyme sites in select 
regions of the genome does not 
permit assays across the full 
genome, limiting the coverage 
somewhat. The primary debate 
over the choice of platforms is the 
coverage of known SNPs in HapMap 
Stage 2: the SNPs selected for 
the Illumina platform have been 
primarily chosen according to the 
aggressive tag strategy, whereas 
the first-generation Affymetrix chips 
provided spaced coverage based on 
the physical map of the genome, but 
with higher density. The coverage of 
the latter has improved.

Methodological issues in 
GWAS genotyping

High-throughput genotyping 
facilities require sophisticated 
robotics for efficient laboratory flow 
and sample handling, as well as 
dedicated computational hardware 
and software able to effectively 
process both the quantity and 
complexity of the data. Despite 
the fact that new technologies and 
platforms has decreased the nominal 
price per genotype assayed, the 
pricing must also take into account 
the need to study duplicates and 
samples that must be redone due to 
technical inadequacies determined 
in the quality control assessment 
(see below).

Since replication is a central 
requirement to protect against the 
flurry of false-positives observed in 
GWAS, follow-up studies are needed 
to verify the results and thus justify 
the considerable effort required to 
investigate novel regions. To this 
end, custom panels are needed 
to explore regions at the same 
time that loci are analysed over 
sufficiently large data sets, so that 
genome-wide significance can be 

conclusively established (106,108). 
Normally, custom panels are more 
expensive and usually created for 
a single study (109). In this regard, 
scalability to meet the requirements 
of validation studies represents one 
of the biggest challenges in the 
design of these studies (110).

Important components of the 
optimization process include both a 
Laboratory Information Management 
System (LIMS) and robotic 
automation that accurately track and 
handle samples for efficient workflow 
management. Because of the high 
cost of these platforms, the hardware 
used for sample processing, and the 
software integrating both, there is 
little flexibility in choosing individual 
SNPs to be included within the 
already-designed, commercially 
available whole-genome scans.

Two high-density genotyping 
platforms, Affymetrix and Illumina®, 
achieve calling capabilities of 
between 500 000 and 2.5 million 
SNPs, as well as probe content to 
interrogate CNVs. Both platforms 
need between 400–800 ng of total 
high-quality DNA (usually at 50 ng/
μl) for the assay, but because of the 
dead-space of the robotics (which 
can be 35% of the required amount 
for the assay) over 1 ug is required. 
Issues common to both platforms 
are the difficulties in assaying SNPs 
that reside close together (within 
60 or fewer nucleotides), which, as 
previously mentioned, is inherent in 
this type of genotyping detection. 
Denser sets of SNPs on commercial 
platforms have increased coverage, 
but not always for all populations.

Coverage based on the HapMap 
II set of SNPs with minor allele 
frequencies greater than 5%, is 
one of the main factors driving the 
choice of platform (8,43). Figure 
6.6 illustrates the minimum LD 
for any SNP assay assessed by 
the coefficient of correlation, r2 
(a measure of LD), for 2-SNP 

comparison. The closer the value is 
to 1, the stronger the correlation, and 
if the value is estimated to be 1.0, then 
both loci segregate together. New 
approaches are being developed 
to account for the complexity of LD 
patterns in distinct populations, such 
as multimarker strategies that have 
been proposed for analysing more 
complicated loci (111,112).

Sequence analysis

Until recently, DNA sequence 
analysis by capillary electrophoresis 
has been the platform of choice 
for medium- and small-scale 
projects, displacing the Sanger 
sequencing protocols that used gels 
or polymers as separation media 
for the fluorescently labelled DNA 
fragments (113). The advent of the 
96-capillary 3730/3730 xl DNA 
Analyser (Applied Biosystems) was 
the central catalyst in the generation 
of the first draft sequence of the 
human genome (114).

Dideoxy sequencing is based 
on the principle of terminating DNA 
synthesis by incorporation of the 
dideoxy nucleotide terminator on 
the complementary strand of DNA 
fragments. The generated library 
of various length fragments can 
be assembled to read the specific 
DNA sequence. Sequencing-
by-synthesis is based upon the 
principle of pyrophosphate release 
by nucleotide incorporation along 
the complementary strand of DNA 
to the varied-length template. As 
with dideoxy sequencing, the library 
of generated fragment lengths can 
be assembled into a specific DNA 
sequence. An amplification step by 
PCR is required, and thus has an 
intrinsic error below 0.3% (small but 
predictable) (115).

Efficient removal of 
unincorporated dye terminators is 
necessary before running samples 
on a capillary electrophoresis in 
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which an electrical field is applied. 
This allows negatively-charged 
DNA fragments to move through 
the polymer towards the positive 
electrode. Standard software 
collects raw data files and translates 
the collected colour data images 
into consecutive nucleotide base 
calls.

Next-generation DNA 
sequencing

Next-generation sequencers have 
been developed to process millions 
of sequence reads in parallel rather 
than in batches of 96 at a time, 

setting them apart from conventional 
capillary-based sequencing. These 
techniques provide high speed and 
high-throughput from amplified 
single DNA fragments, avoiding the 
need for cloning of DNA fragments. 
Therefore, with minimal input of 
DNA, the sequencer produces 
libraries of shorter length reads of 
between 35–400 bp, depending on 
the platform, compared to those of 
capillary sequencers (650–800 bp). 
A limiting factor is the elevated cost 
for generating the sequence with 
high-throughput. There is a need to 
develop software applications and 
more efficient computer algorithms 

to analyse the increasing amount 
of data generated by these systems 
(113). Because of their novelty, 
the accuracy and associated 
quality of sequencing reads must 
be further validated, but the high 
number of reads provides increased 
coverage of each base position 
(25). The major challenge of the 
next-generation sequencing is 
the informatics of the dense data 
sets, which requires archiving and 
storing dense data sets that must be 
assembled to determine accurate 
reads. In this regard, error rates for 
next-generation sequencing runs 
and assembly constitute a new set 

Figure 6.6. Genotyping platforms coverage of HapMap II SNPs. SNP coverage is plotted against LD measured by r2, or coefficient 
of correlation, for SNP-SNP comparison. Panels: A. HapMap CEU population: CEPH (Utah residents with ancestry from northern 
and western Europe USAB); B. HapMap YRI population: Yoruba in Ibadan, Nigeria; C. HapMap JPT population: Japanese in 
Tokyo, Japan, and CHB population: Han Chinese in Beijing, China.
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of problems, particularly since the 
quantum increase in data makes 
their inspection more daunting.

The Roche/454 GS-FLX 
technology works on the principle 
of pyrosequencing, which uses 
pyrophosphate molecules released 
on nucleotide incorporation by DNA 
polymerase to fuel a downstream 
set of reactions that ultimately 
produces light from the cleavage 
of oxyluciferin by luciferase (116). 
The DNA strands of the library are 
amplified en masse by emulsion 
PCR (117) on the surfaces of 
hundreds of thousands of agarose 
beads. Each agarose bead surface 
contains up to 1 million copies of the 
original annealed DNA fragment to 
produce a detectable signal from the 
sequencing reaction. Imaging of the 
light flashes from luciferase activity 
records which templates are adding 
that particular nucleotide; the light 
emitted is directly proportional to the 
amount of a particular nucleotide 
incorporated. The current 454 
instrument, the GS-FLX, produces 
an average read length of 400 bp per 
sample (per bead), with a combined 
throughput of ~100–150 Mb of 
sequence data per run. By contrast, 
a single ABI 3730 programmed to 
sequence 24 × 96 well plates per 
day produces ~440 kb of sequence 
data in 7 hours, with an average 
read length of 650 bp per sample 
(25).

The Illumina Genome 
Analyser is based on the concept 
of sequencing by synthesis 
(Solexa® Sequencing technology) 
to produce sequence reads of 
35–150 bp from tens of millions of 
surface-amplified DNA fragments 
simultaneously (118). A mixture 
of single-stranded, adaptor oligo-
ligated DNA fragments is incubated 
and amplified with four differentially-
labelled fluorescent nucleotides. 
Each base incorporation cycle is 
followed by an imaging step that 

identifies it and by a chemical step 
that removes the fluorescent group. 
At the end of the sequencing run (~4 
days), the sequence of each cluster 
is computed and subjected to quality 
control. A typical run yields ~40–50 
million such sequences.

The Applied Biosystems 
SOLiD sequencer uses a unique 
sequencing process catalysed by 
DNA ligase. A SOLiD (Sequencing 
by Oligo Ligation and Detection) run 
requires days, and produces 3–4 Gb 
of sequence data with an average 
read length of approximately 50 bp 
(119). The specific process couples 
oligo adaptor-linked DNA fragments 
with 1-μm magnetic beads that are 
decorated with complementary 
oligos, and amplifies each bead-DNA 
complex by emulsion PCR. A SOLiD 
sequencing by ligation first anneals 
a universal sequencing primer, 
then goes through subsequent 
ligation of the appropriate labelled 
8mer, followed by detection at each 
cycle by fluorescent readout. The 
unique attribute of this system is 
that an extra quality check of read 
accuracy is enabled that facilitates 
the discrimination of base calling 
errors from true polymorphisms or 
insertion/deletion (indel) events, the 
so-called “2 base encoding” (25).

The third generation of 
sequencing technologies is in 
development and should be available 
in the coming years. For example, 
single molecule sequencing is based 
on novel chemistry that enables 
direct measurement of billions of 
strands of DNA. The detection 
system measures incorporated 
bases on individual strands and 
thus avoids the requirement of 
amplification, which is subject to 
biases and errors.

Applications of high-throughput 
DNA sequencing

A major focus of this new technology 
is to rapidly and comprehensively 
catalogue human genetic variation, 
particularly common and uncommon 
genetic polymorphisms (e.g. SNPs 
and insertion/deletions). Since 
GWAS have relied on the genotyping 
of common alleles to discover 
novel associations with diseases’ 
risks (120), follow-up of regions of 
association identified by GWAS is 
important to characterize common 
and uncommon variants which 
might be better markers (or even 
candidates) for further functional 
studies. Since GWAS point to new 
candidate regions, the detailed fine 
mapping of a region necessitates 
the generation of a comprehensive 
set of common and uncommon 
variants. Already there are select 
examples of next-generation 
sequencing analysis applied to 
regions to determine new variants 
for follow-up association testing, 
such as for regions 8q24 associated 
with prostate and colon cancer and 
10q11.2 (containing the MSMB gene) 
associated with prostate cancer 
(121,122). Eventually the 1000 
Genomes Project should provide 
a suitable map to begin to choose 
variants in a region of interest. 
Characterizing all common variants 
previous to a fine-mapping process 
has two major benefits: all common 
genetic variants are represented 
using a tagSNP approach; and 
the correlations among all genetic 
variants are known, which provides 
advantages in functional variant 
detection (121,122).

Since large-scale sequencing 
across the genome is still several 
years away, attention has focused 
on targeted sequencing of regions of 
high interest, such as those defined 
by GWAS or linkage studies, and, 
more recently, the opportunity to 
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sequence across the exome (e.g. 
more than 180 000 known exons 
in the genome). Several different 
technologies have been developed 
to capture target sequence, 
either through liquid phase (e.g. 
biotinylated solution capture probes 
with long range or micro-droplet 
solution technique), or tiled arrays 
that contain probes that enrich 
for capture of DNA for sequence 
analysis. Each of the next-generation 
sequencing technologies have been 
successfully used with one or more 
target capture technologies. For 
instance, using the NimbleGen 
solution-based capture technique, 
the KLK3 locus, recently identified 
as a signal for prostate cancer and 
prostate serum antigen levels, was 
resequenced to comprehensively 
catalogue all common variants for 
follow-up genotype and functional 
analyses (123–125). Recently, 
sequencing across the exome after 
enrichment with tiled arrays has 
successfully been used to identify 
high-penetrant mutations in the 
coding regions in individuals with 
Mendelian disorders (126). Exome 
sequencing represents the first step 
towards examining the portion of the 
genome that is easily interpretable, 
namely changes in coding structure. 
It requires careful annotation and 
analytical structures, however, to 
sift through the thousands of rare 
variants in unique individuals.

The sequencing of the first 
human genomes has underscored 
the challenge of unraveling the 
physical map, particularly in some 
regions of great redundancy and/or 
complexity; moreover, it illustrates 
the daunting problem of assembly 
(127,128). More genomes need 
to be sequenced to establish a 
reliable reference standard for 
the analysis of human genomic 
variations. The current reference is 
an amalgam of several genomes, 
thus the ability to unravel variation 

is particularly difficult. Two new 
developments should address this 
issue: sequencing with greater 
coverage, which diminishes the 
false-positives and -negatives of 
sequence determination, and an 
increase in read length, which will 
permit phasing of genomes.

The ambitious effort from an 
international research consortium, 
namely the 1000 Genomes Project, 
“…will involve sequencing the 
genomes of at least a thousand 
people from around the world 
to create the most detailed and 
medically useful picture to date of 
human genetic variation” (http://
www.1000genomes.org/). The 
goal is to create a detailed map of 
human genetic variation relevant at 
or above the level of a frequency of 
0.5–1% across the genome (113). 
By optimizing technology, costs 
will continue to fall enabling greater 
scope of study at a lower price. 
Reduction to affordable levels, 
targeted for the US$1000 range for 
an entire human genome sequence, 
offers the promise of personal 
genomics. There are still formidable 
barriers, however, with respect to 
informatics, storage and the ethical 
and social dilemmas posed by such 
analyses.

Next-generation sequencing 
technologies have already been 
applied to complementary fields of 
investigation in genetics. The intent 
has been to characterize a complex 
sample with a mixture of nucleic 
acids through their sequence without 
prior knowledge of it, in contrast to 
the probe hybridization used by the 
original SAGE technique (129,130). 
Thus, it is possible to characterize 
the sequence of mRNAs, methylated 
DNA, DNA or RNA regions bound 
by certain proteins, and other DNA 
or RNA regions involved in gene 
expression and regulation (113). 
Recent examples are its application 
to transcriptome profiling in stem 

cells (119); to whole transcriptome 
shotgun sequencing, or RNA-
Seq, study into alternative splicing 
in human cells (131); and the 
identification of mammalian DNA 
sequences bound by transcription 
factors in vivo, by combining 
chromatin immunoprecipitation 
(ChIP) with parallel sequencing 
(ChIP-Seq) (132).

The Human Microbiome Project 
(HMP) (http://nihroadmap.nih.
gov/hmp/) integrates genomics 
and metagenomics in an effort to 
characterize the genome sequences 
of organisms inhabiting a common 
environment (133). By understanding 
genomics, metagenomics and 
their relations, the HMP seeks 
to determine whether individuals 
share a core human microbiome 
and whether changes in the human 
microbiome can be correlated with 
changes in human health (134).

Quality control in the 
laboratory

The advent of new technologies 
and workflow paradigms required 
for high-throughput genotyping and 
sequencing has changed the nature 
of laboratory work in genetics. The 
bulk of the work has been shifted to 
high-throughput analyses, where so 
much data is processed in such a 
short time that the older shibboleths 
of quality control have been shed for 
more efficient approaches, which 
seek to identify potential errors in a 
high-volume workflow.

The efficient and meticulous 
sample handling process must 
begin at the moment of receipt of 
germline DNA for genotyping or 
sequencing. Close coordination 
between the laboratory performing 
the extraction and the biorepository 
storing the DNA samples is 
optimal and protects against 
handling and biorepository errors, 
an underappreciated problem. 
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Standard operating procedures 
(SOPs) for the process should be 
created and reviewed regularly for 
improvements and quality control 
purposes.

DNA quantification is not an 
exact science. Due to technical and 
workflow issues, it is actually quite 
difficult to reproducibly quantify 
DNA (135). Several different 
techniques can be used to measure 
DNA, but each one has limitations 
and, in some workflows, different 
applications of preparing for low- or 
high-throughput genetic analyses. 
Quantification methods should 
be chosen for specific genotype/
sequence platforms. The most 
commonly used techniques are 
spectrophotometric measurement of 
DNA optical density by PicoGreen 
(Turner BioSystems) analysis, 
NanoDrop spectrophotometer 
(NanoDrop Technologies), or by 
real-time PCR analysis using a 
standardized TaqManTM assay 
(136). Real-time PCR can provide 
a preliminary test for sample 
quality as it relates to robust 
analysis in a high-throughput 
laboratory, but performance still 
must be gauged with specific 
technologies. Spectrophotometry 
and the PicoGreen assay measure 
total DNA present, regardless of 
source or quality, whereas a real-
time PCR assay measures the 
total amplifiable human DNA. DNA 
quantitation by real-time PCR is 
particularly helpful for assessing 
the contribution of non-human DNA 
to samples collected from buccal 
swabs, cytobrush samples or other 
non-blood sources. Minor but real 
differences between techniques 
reflect dissimilarities in the ratio of 
single- and double-stranded DNA, 
critical for analysis using diverse 
technologies.

Because of the high volume 
of activities in high-throughput 
genotyping/sequencing facilities, 

unique genetic profiles of samples 
can be useful for quality assessment 
and control in the workflow. Many 
laboratories have incorporated into 
the upfront analysis a set of SNPs or 
a forensic panel of 15 small tandem 
repeats and amelogenin, also 
known as the AmpFLSTR Identifiler 
assay (Applied Biosystems). 
The fingerprinting can be helpful 
to sleuth problems and identify 
contaminated samples before costly 
analysis. Furthermore, the results 
can serve as a proxy for the viability 
of the DNA and its success on the 
high-performance genotyping or 
sequencing technologies. Certainly, 
high failure rates indicate poor 
performance. The profiles can be 
used to match known duplicates 
and identify unexpected duplicates, 
which in turn stimulates close 
inspection of both biorepository 
issues and workflow in the laboratory 
(e.g. errors with plates or reagents).

For the conduct of many 
molecular epidemiology studies, 
sample availability has been a 
limiting factor. Naturally, there has 
been intense interest in the whole- 
genome amplification (WGA) 
technology to provide sufficient 
amounts of DNA for analysis. 
Thus, varying results reflect not 
only differences in the protocols 
and reagents, but the samples 
themselves. The quality of DNA 
used to amplify across the genome 
affects the success and fidelity of 
the process. WGA can generate 
large quantities of DNA for genotype 
assays, but approximately 5% of the 
genome is not faithfully reproduced, 
particularly regions with high GC 
content or near telomeres. Thus, the 
results of analyses of these regions 
should be cautiously interpreted. 
While the temptation to use WGA 
DNA in GWAS is great, the results 
so far have not been encouraging. 
Currently, there are two approaches 
that have been commercially 

optimized. These include a type of 
multiple displacement amplification 
(MDA) with the high-performance 
bacteriophage φ 29 DNA 
polymerase, which uses degenerate 
hexamers or generation of libraries 
of 200–2000 base pair fragments 
created by random chemical 
cleavage of genomic DNA. Ligation 
of adaptor sequences to both ends 
and PCR amplification is required. 
Quantities can vary greatly based 
on input DNA, but under optimal 
conditions an enrichment of 10 000-
fold can be expected.

The rolling circle amplification 
(RCA) technique is an enzymatic 
process mediated by DNA 
polymerases. Long single-stranded 
DNA molecules are synthesized 
on a short circular template by 
using a single DNA primer. RCAs 
generate a large-scale DNA 
template with the advantage of 
not requiring a thermal cycling 
instrument (137,138). Differential 
success has been observed with 
whole blood, dried blood, buccal 
cell swabs, cultured cells and buffy 
coat cells. Intriguingly, WGA of 
water control specimens generates 
a small, monoallelic signal, which 
can be called as a single allele, 
thus underscoring the value of 
rigorous controls (139). Still, more 
laboratories have chosen MDA for 
whole-genome amplification (140).

The utility of duplicates drawn 
from the same sample remains a 
central theme of laboratory quality 
control, but with the advent of high-
throughput laboratories the purpose 
has shifted slightly. Still duplicate 
testing is useful to detect problems 
with sample quality, prior storage, 
and informatic issues in sample 
management. In some cases, it 
can also reveal rare individuals 
enrolled in more than one study. 
Reproducibility of assays is key, and 
with the whole-genome-scan chips 
surpasses 99.8% concordance. 
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Errors in genotyping, mainly due 
to loss of one of the heterozygous 
alleles, occur in well below 1% 
of samples; therefore, when the 
rate creeps above 1%, close 
inspection of the process should be 
undertaken. If SOPs are followed 
closely, completion rates should be 
greater than 95% for most studies, 
but may be slightly lower depending 
on the quality of genomic DNA. 
Completion rates below 90% should 
raise substantive concern about 
technical or analytical problems. In 
GWAS studies, it is recommended 
that a second technology, such 
as TaqMan or sequencing, be 
performed to verify the accuracy and 
establish concordance (120). Errors 
with fitness for Hardy–Weinberg 
proportion (Hardy–Weinberg 
equilibrium (HWE) testing) can catch 
major genotype errors, but should 
probably not be used as a stringent 
threshold for excluding SNPs from 
analysis.

Bioinformatics

Large-scale genotyping and 
sequence analysis has shifted 
the burden of informatics towards 
high-performance tools that 
manage the computational and 
bioinformatic workflow needed 
to manipulate high-density data 
sets. The required tasks, archiving, 
analysis and access are destined to 
grow exponentially as studies are 
designed with increasing numbers 
of participants and larger and more 
complex variants to be interrogated. 
Accordingly, the efficiency of the 
laboratory flow is based on a high-
throughput pipeline for both genetic 
analysis and informatic handling 
of the data sets. Major steps in 
the process include the choice of 
markers and platforms together 
with a sophisticated quality control 
process. Highly trained personnel 
are needed to effectively coordinate 

the flow of information. Central 
to the success of a laboratory is 
the functioning of a Laboratory 
Information Management System 
(LIMS), which is required to 
track samples, assays, reagents, 
equipment, robotics and processes 
through the entire workflow. The 
LIMS captures the movement of 
information from receipt of samples 
through the analytical steps and into 
the quality control regime required 
to provide a final, stable data set, 
linking the results of experimental 
data to in silico information via 
relational databases. Annotation of 
the genome is needed to provide 
clear points of reference for the 
genomic coordinates for the 
genotype and sequence assays. 
Careful quality control and quality 
assurance checks within the LIMS 
software, particularly with real-time 
monitoring, are needed to maintain 
assay reproducibility and reliable 
data flow.

The increasing number of loci 
explored by new platforms, as 
well as the quantum increases in 
the increments in study size, has 
forced major changes in laboratory 
data storage and management. 
Laboratory systems should be 
able to routinely process, monitor 
and assess quality control of large 
amounts of data (106–109 data 
points) generated by these studies. 
The increasing need for processing 
power mandates the use of scalable 
computational systems capable of 
parallel computing, with software 
applications specially designed for 
this multiprocessor environment and 
readily upgradable.

Suites of publicly available 
tools (e.g. PLINK (http://pngu.
mgh.harvard.edu/~purcell/plink /
summary.shtml) (141) and Genotype 
Library and Utilities (GLU) (http://
cgf.nci.nih.gov/glu/docs)) have 
been developed for archiving and 
management of dense data sets, 

such as those encountered in 
GWAS. PLINK, now in version 1.06, 
is a free, open-source whole-genome 
association suite that focuses on the 
analysis of large-scale genotype/
phenotype data, but lacks support 
for study design and planning, 
genotype generation, or CNV calling. 
Its integration with Haploview (http://
www.broadinstitute.org/haploview/
haploview) allows visualization, 
annotation and representation of 
some of the results. GLU (version 
1.0) is also a suite created to manage, 
analyse and report high-throughput 
SNP genotype data (http://code.
google.com/p/glu-genetics). GLU 
was created to address the need 
for new and scalable computational 
approaches, as well as storage, 
management, quality control and 
genetic analysis. It is a framework 
and software package designed 
with a set of powerful tools that can 
scale to effectively handle trillions 
of genotypes. The integration of 
GLU with a robust and fast SNP 
tagging tool, like TagZilla, increases 
its functionality and allows LD 
estimation and computation of 
MAF, HWE, and proportions (http://
tagzilla.nci.nih.gov/).

Conclusions 
and future directions

Knowledge acquired by the draft 
of the human genome and its 
annotation, and advances in 
technology, have changed the 
approach towards mapping complex 
diseases and traits. Once oriented 
to the study of candidate genes 
and/or mutations, human genetics 
has evolved into the study of the 
genome as a complex structure 
harbouring clues for multifaceted 
disease risk; some known, but the 
majority unknown. The discovery 
of new candidate regions by GWAS 
has forced rethinking previous 
strategies for the study of genetic 
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predisposition. More agnostic 
approaches, genome-wide, with 
increasing numbers of participants 
from high-quality epidemiological 
studies are, for the first time, 
replicating results in different 
settings. But new-found candidate 
regions lead to extensive follow-up 
and confirmation of their functional 
significance. Understanding the 
true effect of genetic variability 
on the risk of complex diseases is 
paramount, but also important is 
the design of high-quality studies to 
assess environmental contributions, 
as well as the interactions between 
genes and exposures.

If accurate measures of 
environmental factors must be 
addressed, increased efforts are 
needed in the study of the biological 
relevance of the regions already 
discovered. To date, there are a 
few examples where biological 
functional basis has been associated 
with a candidate region discovered 
via GWAS. Also, the gap between 
new-found genomic regions and 
their biological interpretation could 
become greater with the introduction 
of new resequencing technology, 
which is capable of interrogating 
more numbers of less frequent 
loci. New challenges arise with 
new technologies. High-throughput 
resequencing must standardise its 
technical protocols, quality control, 
calling algorithm and interpretation. 
Only deep resequencing of high 
numbers of individuals will create 
quality databases capable of testing 
rare variants in the population. Until 
these steps are readily available 
for new technologies, broad 
implementation will not be possible.

The new approach to the 
genomic study of complex diseases 
has resulted in a more ambitious 
“team” science, in which resources 
and study populations are pooled to 
identify novel genetic markers (Cf. 
Figure 6.1). In this regard, GWAS 

study thousands of the most common 
genetic variants across the genome 
(SNPs), without any prior hypothesis, 
conception or what is being defined 
as an agnostic manner. This initial 
phase requires adequately powered 
follow-up studies for replication 
that is central to the search for 
moderate- to high-frequency low-
penetrance variants associated with 
human diseases and traits (120,142). 
Teams of scientists with specific 
responsibilities in each step of the 
process are necessary to ensure 
quality control and stable analytical 
results as part of the effort to map 
complex human diseases and traits.

Previously, family linkage 
studies have been used to identify 
rare genetic variants with high-
penetrance susceptibility genes 
(143,144), but failed to be informative 
on more common genetic variants 
with low to moderate effect (145). 
With the advent of next-generation 
sequencing technologies and 
the discovery of many rare and 
uncommon variants, family studies 
will be required to assist in defining 
the most notable variants for follow-
up studies. In this regard, family 
studies should prove invaluable in 
mapping many complex diseases, 
as well as the highly penetrant 
Mendelian disorders.

Based on the preliminary data 
published as a result of GWAS, it is 
not currently possible to draw final 
conclusions concerning the valid risk 
assessment of complex diseases. 
Education of both the public and 
scientific media is necessary to 
affect a rational approach towards 
implementing any risk reduction 
policies. These new challenges for 
public health officials will require 
careful attention to the ethical, moral 
and social implications of dense 
genomic data sets to assure the 
public, and the participants in the 
current studies, that confidentiality 
is protected (26).

Consortial efforts to describe 
human variation have focused on 
the description and characterization 
of three continental populations 
pursued by the International 
HapMap Project (http://www.
hapmap.org). But using GWAS, 
other consortia and interest groups 
have focused on a more disease-
specific approach that has resulted 
in the discovery of over 200 
novel loci associated with human 
diseases/traits (2,8,20,57). Though 
the majority of the association 
studies to date have used high-
throughput genotyping technology, 
new programs in comprehensive 
resequencing analysis would 
unveil an even greater catalogue 
of uncommon variants (http://
www.1000genomes.org/).

In concert with the assessment 
of germline genetic variation, 
other programs are underway to 
characterize functional annotation 
through gene expression 
analysis. The ENCODE Project 
(ENCyclopedia Of DNA Elements) 
seeks to define functional elements 
(http://www.genome.gov/10005107) 
(25), and The Cancer Genome Atlas 
(TCGA) examines both somatic 
and germline alterations in select 
cancers (146). Together, these new 
developments promise to accelerate 
the discovery and characterization 
of novel genomic mechanisms in 
human diseases and traits.
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Summary

Global biological responses that 
reflect disease or exposure biology 
are kinetic and highly dynamic 
phenomena. While high-throughput 
DNA sequencing continues to 
drive genomics, the possibility of 
more broadly measuring changes 
in gene expression has been a 
recent development manifested by 
a diversity of technical platforms. 
Such technologies measure 
transcripts, proteins and small 
biological molecules, or metabolites, 
and respectively define the fields of 

transcriptomics, proteomics and 
metabolomics that can be performed 
at a cell-, tissue-, or organism-
wide basis. Bioinformatics is the 
discipline that derives knowledge 
from the large quantity and diversity 
of biological, genetic, genomic and 
gene expression data by integrating 
computer science, mathematics, 
statistics and graphic arts. Gene, 
protein and metabolite expression 
profiles can be thought of as 
snapshots of the current, poorly-
mapped molecular landscape. The 

ultimate aim of genomic platforms 
is to fully map this landscape to 
more completely describe all of 
the biological interactions within a 
living system, during disease and 
toxicity, and define the behaviour 
and relationships of all the 
components of a biological system. 
The development of databases and 
knowledge bases will support the 
integration of data from multiple 
domains, as well as computational 
modelling. This chapter will 
describe the technical platform 
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methods involving DNA sequencing, 
mass spectrometry, nuclear 
magnetic resonance combined 
with separation systems, and 
bioinformatics to derive genomic 
and gene expression data and 
include the relevant bioinformatic 
tools for analysis. These genomic, 
or omics platforms should have 
wide application to epidemiological 
studies.

Introduction

The sequencing of the human 
genome stands as one of the major 
scientific achievements of the 
twentieth century. It embodies a 
defining moment in modern biology 
by which most high-throughput 
technologies are compared for size 
scope, and complexity. Beginning in 
1990, it took roughly a decade for the 
first draft of the human genome to 
be completed. By 2003, about 99% 
of all gene-containing regions were 
described, numbering about 20 500 
genes (1), although some regions of 
the genome, such as centromeres, 
telomeres and gene deserts, 
continue to undergo characterization 
and study. Data from the human 
genome project has provided a 
generalized human map of the 
three billion nucleotides comprising 
the DNA of a few human subjects. 
However, studies on the variations 
(polymorphisms) in human DNA 
sequences are currently underway; 
samples from 270 individuals of 
multiethnic backgrounds are being 
used in a consortium called the 
International HapMap Project for 
haplotype mapping (http://www.
hapmap.org) (2). The goal is to 
identify the patterns of single 
nucleotide polymorphism (SNP) 
groups, called haplotypes or haps, 
among individual human beings. In 
addition, interpretation of the human 
genome has been greatly enhanced 
by the DNA sequencing of many other 

genomes that allow comparison of 
genetic organization, evolution and 
function. Nearly 300 genomes have 
been completely sequenced and 
range from unicellular organisms, 
like E. coli and S. cervisiae, to 
model invertebrate organisms, such 
as Drosophila melanogaster and 
C. elegans, to several mammalian 
species for which the completed 
and ongoing genome projects are all 
available online (3).

Although the conception of the 
idea for sequencing the human 
genome is relatively recent, the 
project could not have occurred 
without the preceding decades 
of biological and technological 
developments. Particularly 
noteworthy of these contributions are 
early cytogenetics and chromosomal 
studies at the beginning of the 
twentieth century by Morgan and 
colleagues, the discovery of DNA 
structure by Watson and Crick in 
1953, DNA cloning in 1973 by Berg 
and Cohen, the DNA sequencing 
reaction in 1975 by Sanger, reverse 
transcriptase in 1970 and restriction 
endonucleases in 1971, and the 
polymerase chain reaction (PCR) 
by Mullis in 1983 (4). A new century 
now begins with an era of “omics,” 
those fields describing a multitude of 
genomic functions aimed at further 
deciphering the biological meaning 
of sequences in the human genome.

The purpose of this chapter is 
to describe the technical platforms 
in genomics, transcriptomics, 
proteomics, metabolomics and 
bioinformatics that could be useful 
in epidemiologic studies. These 
analytical platforms favour high 
sample throughput and generation 
of large data sets.

Omes and omics

Gene expression constantly 
changes during health, adaptation, 
toxicity, disease and aging. While 

the genetic blueprint of an individual 
is relatively static, the various levels 
of gene expression to form and 
operate a complex organism are 
dynamically regulated, structurally 
complex and spatially determined. 
At any point in time, only a portion 
of a genome is expressed in 
specific cells and tissues. At the 
mRNA level of gene expression, the 
transcriptome represents all genes 
transcribed at any one moment, and 
the proteome is the complement of 
proteins making up cells and tissues. 
Small molecules and metabolites 
comprise the metabolome. The 
global study of each gene expression 
level is suffixed with “omics,” such 
as transcriptomics, proteomics and 
metabolomics. Figure 7.1 suggests 
a sequence of gene expression 
based on genomic DNA sequences 
that are dynamically reflected in 
changes of transcripts, proteins 
and metabolites. Each level of 
gene expression (represented by 
upward, curved, dotted lines) has 
the opportunity to feed back and 
influence other levels reflective 
of highly integrated, multicellular 
processes in cells, tissues and 
organisms. Studies of each gene 
expression area utilize very 
different technical platforms to 
maximize large scale coverage of 
the transcriptome, proteome and 
metabolome. Technical platforms 
may involve mass parallel analysis 
using robotics, miniaturization, 
automation and computer 
processing. The integration of the 
many levels of gene expression is 
often referred to as systems biology 
by bioinformatics or computational 
biology. Bioinformatics represents 
an applied field of mathematics to 
biochemistry and molecular biology 
using statistics, computer science 
and artificial intelligence to design 
algorithms to derive biological 
meaning from gene expression 
data.
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Genomics

Chromosomal abnormalities are 
responsible for many developmental 
defects and malignancies, and 
include rearrangements in genomic 
DNA or changes in copy number, 
such as deletions, duplications 
and amplifications. Identification of 
genomic changes and mutations 
that underlie disease rely on 
comparisons of DNA sequences 
between affected and unaffected 
individuals. Finding disease-
causing chromosomal abnormalities 
by genomic analysis is confounded 
by the fact that many sequence 
polymorphisms are functionally 
irrelevant and produce no observable 
biological consequence. Detection 
of many disease-causing mutations, 

such as those in p53 in the Li-
Fraumeni syndrome (5) and ATM in 
ataxia telangiectasia (6), have been 
found by sectional resequencing 
of genomic DNA or PCR-amplified 
DNA or RNA. However, de novo 
sequencing of individuals using 
automated Sanger-based capillary 
electrophoresis systems has so far 
been practical for only small regions 
of the human genome-containing 
candidate genes.

Recent advances in nucleic 
acid sequencing technologies using 
massive parallel sequencing, called 
next-generation sequencing, now 
allow sequencing of much larger 
genomic intervals (7). Sequencing 
of entire genomes can take place 
within a matter of several weeks, 
in a comprehensive search for 

chromosomal aberrations and 
mutations that affect phenotype. 
DNA sequencing does have inherent 
advantages in achieving single-
base resolution and importantly 
for de novo analysis of samples 
without the prior knowledge of 
existing DNA sequence required 
for fabricated sequence platforms 
(8). New sequencing technologies 
that are high-throughput and 
low-cost while maintaining high 
accuracy and completeness are in 
continued development (9). New 
platforms often integrate real-time 
(RT) PCR and may incorporate 
microelectrophoresis, sequencing 
by hybridization, mass spectrometry, 
high-density oligonucleotide arrays, 
or incorporation of nanopore 
technology to bring within sight 
the goal of routine human genome 
sequencing (10) for personalized 
medicine (11).

There are several alternatives 
to whole-genome assessment of 
chromosomal abnormalities that 
do not involve traditional DNA 
sequencing. Alternative platforms 
involve selective genotyping of 
very focused genomic loci (short 
sections of DNA) that are potentially 
related to disease susceptibility. 
Haplotype mapping data have 
been extremely useful in providing 
candidate genomic regions with high 
polymorphic variation. Hundreds 
of thousands of loci can be very 
rapidly genotyped using BeadArray 
platforms, a technology based 
upon direct hybridization of whole- 
genome-amplified (WGA) genomic 
DNA to BeadArrays of locus-
specific, 50mer oligonucleotide 
sequences (12). As such, genome-
wide association studies (GWAS) 
comprise an important evolving field 
in genetic epidemiology in which 
more than 450 GWAS have been 
published, and the associations of 
greater than 2000 single nucleotide 
polymorphisms (SNPs) or genetic 

Figure 7.1. The interdependence of the cellular metabolome, proteome, transcriptome, 
and genome. Each type of characterization provides a functional indication of the 
activity of the proceeding set of molecules (solid lines). Conversely, there will be 
some degree of feedback regulation built into the system (dotted lines).
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loci have been reported so far (13). 
Equally as important are high-
density oligonucleotide microarrays 
for SNP detection in linkage 
analysis of susceptibility genes 
often used in cancer studies (14) or 
pharmacogenomics (15). In addition, 
fluorescence in situ hybridization 
(FISH) provides a visual map to 
examine all the chromosomes of 
a patient for abnormalities using 
fluorescent probes for specific 
genes or whole chromosome probes 
(16). Although high-throughput 
sequencing methodologies have 
been developed to accommodate 
the demand for sequence output, 
they consume large amounts of 
a valuable and potentially limiting 
genomic DNA. WGA can potentially 
remove DNA as a limiting factor 
for genomic analyses (17) that 
include multiple displacement 
amplification (MDA), primer 
extension preamplification (PEP), 
and degenerate oligonucleotide 
primed PCR (DOP) (18). However, 
genomic amplification technologies 
generate a certain level of 
replication error in sequence, 
which should be considered during 
verification studies. In summary, 
bead or chip DNA arrays or FISH 
platforms exemplify whole-genome 
technologies for high-throughput, 
compared to DNA sequencing for 
detection of genetic variation that 
can be linked to disease-based 
foci, protein, biomarkers and 
pharmacogenomic responses.

Transcriptomics

Transcriptomics studies the full, 
global complement of mRNA 
molecules expressed in cells and 
tissues. Some 20  500 genes are 
present within the human genome, 
of which about 10–15  000 are 
expressed at any one time in 
any particular tissue (19). Many 
expressed genes are necessary 

to perform basic functions of the 
cell, regardless of cell type or 
tissue, but a proportion of the 
expressed genes contribute to 
a cell’s unique phenotype and 
specialized functions. Beginning 
around 1989, DNA microarrays, 
consisting of thousands of high-
density cDNAs or oligonucleotides 
on support surfaces (called chips), 
were introduced and have evolved 
into powerful and versatile platforms 
for transcriptomic analysis (20–23). 
Spotted microarrays, either cDNAs 

or oligonucleotides, have been used 
extensively since the late 1990s, 
particularly by academia-based 
research scientists (see Figure 
7.2). Commercial oligonucleotide 
arrays provide highly reproducible 
platforms representing the entire 
genome. Oligonucleotides from 
25–70 bp in length are arrayed by 
either spotting pre-synthesized 
oligonucleotides directly onto 
glass, chemically synthesizing 
directly onto glass substrates 
(e.g. Agilent Technologies, Inc.), 

Figure 7.2. Platforms for gene expression in transcriptomics, proteomics and 
metabolomics. Transcriptomic platforms are cDNA or oligonucleotides bound 
to glass slides or microbeads for analysis of mRNA. Metabolomic platforms are 
nuclear magnetic resonance (NMR) or mass spectrometry (MS) instruments for 
small biologic molecules or metabolites. Proteomic platforms can be gel-based 
or liquid chromatography-based (e.g. linear column gradients or multidimensional 
chromatography (MuDPIT)) for separation of proteins before identification (ID) by 
mass spectrometry. Use of stable isotopes greatly facilitates protein quantitation 
(ICAT, isotope coded affinity tags; iTRAQ, isobaric tags for relative and absolute 
quantitation; SILAC, stable isotope labelling by amino acids in culture), while non-
isotopic or label-free methods can also be used that include spectral counting and 
ion precursor signal measurement. Retentate chromatography mass spectrometry 
(i.e. surface enhanced laser detection ionization (SELDI)) has been used for rapid 
profiling of biofluid samples using chemically reactive surfaces for separation and 
MALDI for generating protein mass spectra. Alternatives for MS-based proteomics 
involve affinity arrays, such as antibody microarrays or fluorescently tagged antibody 
bound bead suspensions (i.e. Luminex technology).
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or by synthesizing directly onto 
quartz wafers by photolithographic 
technology (e.g. Affymetrix, Inc.) 
(24). In addition, oligonucleotides 
can be covalently linked with micro-
beads that can then be used in a 
96-well microtiter dish format or on 
a glass substrate (e.g. Illumina, Inc.). 
With ever increasing technological 
advances, microarrays have 
progressed from chips with only 
several hundred probes to modern 
DNA chips reflecting expression 
of thousands, to even millions, of 
features per array.

The strength of any gene 
expression analysis, and the ability 
to determine expression profiles as 
potential biomarkers of exposure 
or effect, is dependent on proper 
experimental design and careful 
execution to minimize sources of 
variance and error and maximize 
useful biological information. Thus 
it is critical, in any microarray 
experiment, to design proper 
controls to include with samples of 
biological interest. Proper sampling 
and integrity of the RNA obtained 
from those samples are vital in 
determining the success of the 
analysis. Once RNA is isolated, 
proper labelling, hybridization, 
washing and scanning can 
dramatically influence the integrity 
of the resulting data. Since transcript 
expression is generally expressed 
in relative terms of a fold change 
of a particular gene expressed 
in one sample relative to a value 
in a control or normal sample, 
it is critical that the investigator 
structure the experiment in such a 
way as to minimize variations other 
than the one variable to be tested. 
Fortunately, commercial microarray 
providers have added increasingly 
more stringent quality control 
measurements in the production 
facilities. This has resulted in high 
reproducibility and low variation 
in microarrays coming from a 

manufacturer. Investigators have 
been allowed to shift resources 
away from multiple analyses of single 
samples to focusing on expanding the 
numbers of experimental samples. 
In turn, this has resulted in significant 
improvements in the confidence of 
results from microarray experiments. 
In fact, several large consortium 
efforts have demonstrated that 
comparable biological affects could 
be revealed in carefully controlled 
experiments in which multiple 
commercial microarray platforms, as 
well as rigorously quality-controlled 
spotted cDNA arrays, were used to 
analyse the same biological material 
(25–27).

Additional technological 
improvements have allowed for the 
reduction in the starting amounts 
of mRNA required in the labelling 
processes for the commercial 
platforms. Most labelling protocols 
used a single, PCR-based linear 
amplification of sample mRNA, which 
is used to incorporate a nucleotide 
conjugated with a fluorescent dye, 
biotin, or some other chemical 
modification. This amplification step 
has reduced the starting material 
for a sample to be analysed to only 
a few micrograms of total mRNA 
or less. Furthermore, protocols 
have been developed for additional 
rounds of PCR-based amplification 
of starting mRNA samples that 
make it possible to analyse very 
small quantities in the range of 
nanograms, and even picograms, of 
mRNA. These developments have 
facilitated gene expression profiling 
of samples derived from laser 
capture microdissection (LCM), 
for example, as well as biopsy 
samples, and other clinically derived 
samples that are limited in quantity. 
In addition, recent technological 
developments, particularly using 
bead-based microarrays (e.g. 
Illumina BeadChip), have opened 
up the possibility of using formalin-

fixed, paraffin-embedded material 
for gene expression analysis.

An accessible, biological 
material fluid of principal interest to 
several clinical research scientists 
is blood. Many researchers are 
interested in testing the utility 
of gene expression profiling of 
peripheral blood leukocytes to 
generate biomarkers as surrogates 
for other tissues or organs affected 
in disease or injury processes 
(28). The utility of this approach 
has been demonstrated in studies 
of inflammatory responses and 
diseases in both animal models and 
humans, of neurological disorders, 
of angiomyolipoma (AML) and 
renal cell cancers, and of cardiac 
injury (29–36). Recent studies have 
used gene expression analysis 
of blood samples to generate 
molecular profiles as biomarkers 
of exposure and exposure-induced 
injury to arsenic, benzene, tobacco 
smoke and hepatotoxic levels of 
acetaminophen (37–41).

A common application 
in transcriptomics, useful in 
epidemiology studies, is to compare 
transcript outputs between normal 
and diseased tissues in what has 
been termed transcript profiling 
or expression profiling. Transcript 
expression studies can query all 
known or predicted genes in an 
organism, providing an abundance 
of information that represents a 
snapshot of the expression status 
of a tissue at any given time. One 
can gain considerable insight 
into molecular mechanisms from 
properly structured microarray 
experiments, both on the level of 
individual genes and on the level of 
biological pathways and processes. 
The potential for mRNA degradation 
makes expression profiling most 
applicable to freshly isolated tissues, 
cultured cells or flash-frozen tissue 
sections, but not paraffin-embedded 
tissue. While microarray approaches 
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can be used to interrogate the entire 
genome on a single microarray 
chip, focused arrays representing 
distinct gene subsets have been 
used to focus upon changes in 
specific pathways or processes. 
These include both glass slide-
based microarrays (e.g. the National 
Institute of Environmental Health 
Sciences’ Human ToxChip (42)), 
and PCR-based gene expression 
analyses (e.g. SuperArrays).

DNA arrays can also reflect 
epigenetic effects upon gene 
expression. Epigenetics is defined 
as heritable changes in gene 
expression that are not due to DNA 
sequence alterations. Methylation 
is the most common epigenetic 
change and is detected by bisulfite 
conversion, methylation-sensitive 
restriction enzymes, methyl-binding 
proteins, and anti-methylcytosine 
antibodies. Combining these 
techniques with DNA microarrays 
and high-throughput sequencing 
has made the mapping of DNA 
methylation feasible on a genome-
wide scale. Genomic DNA 
methylation occurs particularly at 
cytosines in clusters of cytosine-
guanine dinucleotides, or CpG 
islands (p is the phosphodiester 
bond between C and G bases). 
Methylation of CpG islands in 
promoter regions frequently results 
in gene silencing, which normally 
occurs during development (43), 
but is often observed as an early 
alteration in some cancers by 
causing inactivation of tumour 
suppressors genes, such as von 
Hippel-Lindau disease (VHL), 
inhibitor of cyclin-dependent kinase 
4a (p16INK4a), and breast cancer 
gene 1 (BRCA1) (44).

DNA microarrays have also been 
developed for expression beyond 
profiling. In addition to SNP and 
comparative genomic hybridization 
(CGH) applications mentioned in 
the previous section, genome-wide 

localization of transcription factor 
binding sites can be accomplished 
by chromatin immunoprecipitation 
(ChIP) analysed on a microarray 
chip that forms the so-called ChIP-
on-chip technique (45). The method 
can be innovatively combined with 
different types of DNA arrays, 
such as SNP chips, to form “ChIP-
on-SNP” (46). The future for array 
technologies will also bring about a 
revolution in clinical DNA diagnostics 
(47), develop pharmaceuticals 
in pharmacogenomics (48), and 
personalized medicine (49).

Proteomics

The field for describing protein 
expression on a global scale is 
proteomics, which aims to detail 
the structure and functions of all 
proteins in an organism over time. 
The wide application of proteomics 
has generated great interest in many 
established disciplines of exposure 
biology and medicine, including 
the field of epidemiology (50,51). 
Chemical or toxicant exposure can 
bind to or modify proteins, produce 
changes in protein expression, 
and dysregulate critical biological 
pathways and processes that lead to 
toxicity and disease, which in theory 
should be detectable by proteomic 
analysis. Primary aims in proteomic 
analysis are the discovery of key 
modified proteins, the determination 
of affected pathways, and the 
development of biomarkers for 
association with and eventual 
prediction of disease.

The complexity of a proteome, 
represented by the total protein 
expression of a specific cell, organ, 
tissue or biofluid, presents numerous 
challenges for comprehensive 
analysis. Proteins are more 
complex than nucleic acids, and 
therefore proteomic analysis 
involves measurement of just some 
of the many attributes of proteins 

during any single expression 
analysis (52). Proteins exhibit many 
attributes of interest to biomarker 
development in epidemiology 
studies, including determination of 
protein sequence identity, quantity, 
post-translational modifications 
(PTM), protein–protein interactions, 
structure and function. Some of the 
challenges in proteomic analysis 
include: defining the identities and 
quantities of an entire proteome in 
a particular spatial location, such 
as serum or subcellular structures 
like mitochondria; the existence 
of multiple protein forms and 
complexes; the evolving structural 
and functional annotations of the 
human and rodent proteomes; 
and integration of proteomics 
data with transcriptomics or other 
expression data. Primary aims of 
proteomic analysis are to achieve 
maximal proteome identification, 
quantitative high-throughput protein 
measurement, timely analysis, 
and discovery-oriented platforms. 
Proteomic platforms represent 
combinations of technologies 
that describe protein attributes 
by the separation, quantitation 
and identification of all proteins 
in a biological sample. Proteomic 
analysis includes four broad 
categories of proteomic platforms: 
mass spectrometry has played a 
central role in proteomic platform 
development in large part because 
of its sensitive and versatile ability 
to identify proteins; the ability to 
separate proteins greatly determines 
the designation of platform type 
by gel-based separation or liquid 
chromatophic separation linked 
to mass spectrometry (53); solid 
phase adsorption, based on 
partitioning of peptides and proteins 
due to specific chemical properties, 
has been exploited in rententate 
chromatography combined with 
mass spectrometry; and finally, 
affinity chromatography, which 
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sorts and identifies proteins in one 
reaction, is exemplified by use 
of antibodies in various formats 
(54). The following proteomic 
platforms represent some of 
the primary technologies being 
used for separating, identifying, 
and quantifying proteins during 
toxicoproteomic studies (Cf. Figure 
7.2).

2D PAGE and DIGE

Two-dimensional polyacrylamide 
gel electrophoresis (2D PAGE) 
systems have been combined with 
mass spectrometry in an established 
and adaptable platform. Since 
1975, 2D PAGE has been the most 
commonly used proteomic platform 
to separate and comparatively 
quantitate protein samples (55). 
Current state-of-the-art 2D gels 
use immobilized pH gradient (IPG) 
gels to separate proteins by charge. 
They are then resolved by mass 
spectrometry using sodium dodecyl 
sulfate (SDS) gel electrophoresis 
for effective separation of complex 
protein samples in μg to mg 
quantities. Either visible stains, 
such as Coomassie Blue or silver, 
or fluorescent staining are used for 
sensitive protein detection. After 
electronic alignment (registration) of 
stained proteins in 2D gels by image 
analysis software, intensities of 
identical protein spots are compared 
among treatment groups and a ratio 
(fold change) is calculated for each 
protein. A relatively new variation of 
the 2D PAGE technique, difference 
gel electrophoresis (DIGE), allows 
an investigator to measure three 
samples per gel that have been 
labelled with Cy2, Cy3 and Cy5 
fluorescent dyes, which reduces 
some of the error associated 
with electronic registration during 
multiple gel alignment. This strategy 
allows for direct comparison of 
samples on one gel for better 

reproducibility and quantitation 
than conventional image analysis 
for comparison of multiple 2D gels. 
Thus, separation of proteins by 2D 
gels, using single stains or multiple 
fluors (i.e. DIGE), can be combined 
with mass spectrometry for ready 
protein identification to form a 
versatile and discovery-oriented 
platform for use in proteomic studies 
(56). In addition, some protein 
samples are sufficiently limited in 
their protein content that a simple 
size separation (one dimension) by 
SDS–PAGE can be used to identify 
protein bands of interest by mass 
spectrometry in 1D-Gel-MS.

Multidimensional LC-MS/MS

Proteomic platforms incorporating 
liquid chromatography (LC) as 
the primary means of separation 
(versus gel-based separations) 
have become the preferred means 
of analysis. There are many 
different types of LC separations 
often termed “multidimensional.” 
In this proteomic platform, LC is 
used to separate protein digests 
by exploiting different biophysical 
properties of proteins before 
identification by tandem mass 
spectrometry (MS/MS). One of the 
most notable multidimensional LC-
MS/MS platforms is Multidimensional 
Protein Identification Technology 
(MuDPIT). MuDPIT attempts to 
identify all proteins in a sample 
by two-dimensional separation of 
protein digests by charge (strong 
anion exchange matrix) and 
hydrophobicity (C18 column) with 
online LC immediately before entry 
into a tandem mass spectrometer 
(MS/MS) for protein identification 
(57). The platform has also been 
called shotgun proteomics, as entire 
protein lysates are trypsin digested 
into thousands of peptide fragments 
without any prior fractionation 
before separation and identification. 

Advantages of this newer platform 
are the potential for detection and 
identification of low abundance 
proteins that may not be observed 
in gel staining-based methods. 
One drawback is that LC-MS/MS 
platforms, like MuDPIT, are only 
semiquantitative and somewhat 
low-throughput in capacity.

The issue of protein quantitation 
in proteomics is an important one, 
since changes in protein expression 
may be a matter of altering existing 
gene and protein expression rather 
than turning them on (induction) 
or off (repression), which makes 
quantitation of proteins crucial in 
normal and diseased or control and 
experimental states. The use of 
stable isotopes, as detailed in the 
section below, takes advantage of 
the high resolution power of mass 
spectrometers to discriminate 
protein samples stable-isotopically 
labelled for quantitative comparison. 
However, rapid developments 
are being made using “label-free” 
approaches to quantitation if sample 
mass spectral data are sufficiently 
detailed (58). The two main 
approaches used are ion precursor 
signal intensities and spectral 
counting. Though they deliver 
relative sample quantitation, versus 
absolute protein measurement, 
they are simpler and less costly 
than stable isotopic methods, but 
not as precise. Label-free protein 
quantitation methods should be 
considered at the outset of designing 
LC-MS/MS proteomic studies and 
weighed against the considerable 
advantages and choices of stable 
isotopic approaches.

Stable isotope LC-MS/MS 
platforms: ICAT, iTRAQ 
and SILAC

A primary goal of proteomics is 
to comprehensively analyse all 
proteins in a sample, or as many 
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as possible. However, the prospect 
of quantifying protein levels 
for comparison among protein 
samples has been a difficult aspect 
of proteomic analysis. Protein 
quantitation can be considered either 
in relative terms as a proportion of 
treatment (test) samples compared 
to control samples, or in absolute 
terms as the number of molecules 
(moles) or concentration (molarity). 
Internal standards are useful, but 
not realistic, for complex protein 
samples of unknown composition in 
most proteomic studies. Since many 
proteomic platforms are based in 
mass spectrometry, comparison 
of intensity signals seems the 
most direct means for comparative 
measurements; however, intensities 
are subject to many interfering 
factors. Quantitation by mass 
spectrometry has generally been 
regarded as semiquantitative under 
the best of circumstances.

The use of stable isotopes for 
tagging proteins has made great 
strides in proteomics for determining 
the relative amounts of proteins 
among samples (59). Stable isotopes 
of an element differ in mass due to 
the number of neutrons, but have 
the same elemental and chemical 
characteristics as the element. 
Stable isotopes are not radioactive. 
Common stable elements and their 
stable isotopes are 1H and 2H; 12C 
and 13C; 14N and 15N; 16O and 18O; 
32S and 34S. A unique feature of 
high-resolution mass spectrometers 
is the ability to finely distinguish 
between small differences in mass, 
even to the point of resolving 
the relative abundance of stable 
isotopes in otherwise identical 
samples. Several proteomic 
platforms for protein quantitation 
and identification have been built 
around the use of isotopic tagging 
of proteins (isotope coded affinity 
tagging (ICAT), peptides (isotope tag 
for relative and absolute quantitation 

(iTRAQ), or metabolic incorporation 
of isotopically tagged amino acids 
in cell culture (stable isotope 
labelling with amino acids in cell 
culture (SILAC)). The applications 
of stable isotopes in proteomics 
have been recently reviewed for 
their sensitive detection of proteins 
in a quantitative and comparative 
fashion (60). As mentioned above, 
continuing improvements in spectral 
counting for use in LC-MS/MS 
platforms should have wide utility 
as a versatile, isotope-free method 
of protein quantitation when stable 
isotope use is not feasible (61).

SELDI-TOF mass 
spectrometry

Retentate chromatography-mass 
spectrometry (RC-MS) is a high-
throughput proteomic platform 
that creates a laser-based mass 
spectrum (based on matrix-
assisted laser desorption ionization 
time-of-flight (MALDI-TOF) mass 
spectrometry) from a chemically-
absorptive surface. The principle 
of this approach is the adsorptive 
retention of a subset of sample 
proteins on a thin, chromatographic 
support (i.e. hydrophobic, normal 
phase, weak cation exchange, 
strong anion exchange or 
immobilized metal affinity supports). 
The absorptive surfaces are placed 
on thin metal chips which can be 
inserted into a MALDI-type mass 
spectrometer. The laser rapidly 
desorbs proteins from each sample 
on a metal chip to create a mass 
spectrum profile. RC-MS can be 
performed upon any protein sample, 
but thus far this platform has found 
greatest utility in the analysis of 
serum and plasma for disease 
biomarker discovery (62). The lead 
commercial platform of RC-MS 
proteomic platforms is the surface-
enhanced laser desorption ionization 
time-of-flight mass spectrometry 

(SELDI-TOF-MS) instrument (63). 
Analysis of samples is relatively 
rapid (100/day), and only a few μl of 
sample is necessary. A downside is 
that protein identification of peaks 
is not readily accomplished without 
additional conventional separation 
and analysis.

Antibody arrays

Protein microarrays represent a 
promising new proteomic tool that 
closely emulates the design for 
parallel analysis of DNA microarray 
technology (64). Protein microarray 
formats can be divided into two 
types of multianalyte sensing 
formats: forward phase arrays and 
reverse phase arrays. In the forward 
phase array format, the analyte is 
captured from the solution phase by 
different capture molecules, such 
as an antibody immobilized on a 
substratum (i.e. glass slides). In 
contrast, the reverse array format 
immobilizes the individual test 
samples in each array spot so that, 
for example, hundreds of different 
patient blood or tissue samples 
are arrayed and probed with one 
detection protein, such as an antibody 
and a single analyte endpoint are 
measured for comparison across 
multiple samples. Such microarray 
studies have been carried out for 
metastatic ovarian cancer (65).

Many different types of capture 
molecules can be arrayed, including 
peptides (i.e. peptide substrates for 
kinases on phosphorylation arrays), 
proteins (protein–protein interaction 
arrays) and oligonucleotides (i.e. 
transcription factor binding arrays 
to oligonucleotides), but the most 
prevalent are antibody arrays in 
the forward phase format. Antibody 
arrays can directly separate proteins 
from complex biological fluids like 
plasma, serum or cell lysates by 
affinity binding to specific antigenic 
sites on target proteins.
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Generally, current commercial 
antibody array platforms fall into 
three classes based on the targeted 
proteins: cytokine/chemokine 
arrays, cellular function protein 
arrays and cell signalling arrays. 
Although not all proteins for any 
given cell type or biofluid (i.e. blood, 
serum, plasma, urine, cerebral spinal 
fluid) are currently represented on 
antibody arrays, they do provide a 
rapid screen for protein alterations 
that may be relevant to tissue injury 
or disease (54). Antibodies can be 
placed in ordered array on glass 
slides or on a fluorescent microbead 
format (i.e. Luminex technology) 
for multiplexed separation, 
identification and quantitation (66). 
For example, in a study investigating 
the chemotherapeutic and 
radiotherapy of patients with rectal 
cancer, 40 tumour samples were 
analysed by DNA microarray and 
plasma samples were analysed by 
antibody (Luminex) bead microarray 
platforms. Using a kernel-based 
method with Least Squares 
Support Vector Machines to predict 
rectal cancer regression grade, 
investigators found that combining 
and integrating of microarray and 
proteomics data improved predictive 
power leading to the best model 

based on five genes and 10 proteins 
with an accuracy of 91.7%, sensitivity 
of 96.2% and specificity of 80% (67). 
In a different approach, a molecular 
epidemiological study used SELDI-
TOF MS for in vivo studies of 
humans exposed to benzene. By 
using two sets of 10 exposed and 
10 unexposed subjects, researchers 
identified with chemically-reactive 
surfaces and validated with antibody-
coated chips three differentially 
expressed proteins in the serum 
of benzene-exposed individuals, 
two of which were identified as 
PF4 and CTAP-III, both members 
of the CXC-chemokine family 
(68). The same can be done with 
peptides (instead of antibodies) as 
the affinity ligand. This method was 
applied in the development of two 
diagnostic antibodies against avian 
influenza detection for epidemiologic 
studies, in which the epitopes 
of two monoclonal antibodies 
(mAbs) against avian influenza 
nucleoprotein (NP) were found using 
truncated NP recombinant proteins 
and peptide array techniques (69).

Future developments in 
proteomics will see incorporation 
of more sophisticated methods of 
quantitation in proteomic analysis 
(70), combining higher data 

density LC-MS/MS platforms with 
stable isotope labelled peptides, 
spectral counting, and parallel 
use of complementary proteomic 
platforms, such as tissue arrays 
(71). Study designs that remove 
abundant proteins from biofluids, 
enrich subcellular structures, and 
include cell-specific isolation from 
heterogeneous tissues will greatly 
increase differential expression 
capabilities. Advancement in 
mechanistic insights and biomarker 
development using proteomics 
will be furthered by completely 
defining plasma (serum) proteome 
and circulating microparticles in 
humans and rodent species as 
accessible biofluids (72). Some of 
the representative biomarkers and 
patterns of protein and message 
expression are shown in Table 7.1. 
Reviews on using proteomics to 
develop biomarkers and further 
mechanistic insights have been 
published (73–75).

Metabolomics

Analogous to the genomic 
characterization of cellular DNA 
and the proteomic characterization 
of the set of proteins expressed 
at a given time, cells also can be 

Table 7.1. Recently identified biomarkers and signatures of toxicity using transcriptomics and proteomics

Biomarker/Signature Identification Condition Reference No.

KIM-1 DNA microarray Renal toxicity (145)

Adipsin DNA microarray GI toxicity, functional gamma secretase inhibitors 
(FGSIs)

(146)

CXC-chemokines SELDI Benzene exposure (68)

Troponin I,T 2D gel-MS Myocardial ischemia, infarction (147)

Aminopeptidase-P
Annexin A1

2D gel-MS Radioimmunotherapy (148)

12 Lipid-gene signature DNA microarray Drug-induced phospholipidosis (149)

Multigene blood signature DNA microarray Systemic sepsis (32)
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characterized in terms of the set of 
low-molecular-weight metabolites 
(typically < 1500 D) that comprise the 
cellular “metabolome.” The cellular 
metabolome provides a functional 
readout of the cellular proteome (Cf. 
Figure 7.1). Although the analysis of 
homogeneous cell populations in 
culture, receiving identical nutrients 
and oxygenation, and exposed 
to the same levels of excreted 
waste products, represents the 
most ideal system for metabolomic 
characterization, the approach has 
been extended to the analysis of 
extracts and fluids derived from 
higher organisms. Urinary and 
blood metabolites have been 
among the most frequent targets 
for metabolomic characterization, 
but analyses of other fluids, such 
as cerebrospinal fluid (CSF), 
bronchoalveolar lavage fluid (76) 
and saliva (77), and of cellular 
extracts also have been performed. 
Typical 1H NMR spectra illustrating 
the different metabolite composition 
of urine, blood, and saliva are shown 
in Figure 7.3. Currently, metabolomic 
characterization is being used for a 
wide range of objectives in human 
nutrition and toxicology, and for the 
development of pharmaceuticals and 
agricultural products. The underlying 
objectives of these studies 
include: discovery of metabolite 
signatures as prognostic indicators, 
diagnostics or biomarkers of disease 
states; establishing toxicological 
markers for drug development 
and environmental toxicology; 
understanding mechanisms of 
metabolic diseases; and correlation 
of metabolite phenotypes 
(metabotype) with genotype and 
environmental input (e.g. nutrition).

The screening of neonates for 
genetic disorders in intermediary 
metabolism is an application that 
predates the more recent interest 
in metabolomic characterization. 
The recent reviews of analytical 

approaches for clinical diagnosis 
of metabolic disorders (78,79) 
summarize methods for metabolite 
analysis and provide good 
examples of the application of MS 
to metabolomic analysis (Cf. Figure 
7.2). Mass spectrometric analysis 
typically requires preparation of 
the metabolic components using 
either gas chromatography (GC) 
after chemical derivatization, or 
LC, with the newer method of ultra-
performance liquid chromatography 
(UPLC) increasingly used. The use 
of capillary electrophoresis (CE) 
coupled to MS also has shown 
some promise. It was reported that 
a combination of approaches for 
metabolite extraction produced over 
10 000 unique metabolite features, 
indicating both the complexity 
of the human metabolome and 
the potential of metabolomics in 
biomarker discovery (80).

Other more specialized 
techniques, such as Fourier 
transform infrared (FTIR) 
spectroscopy and arrayed 
electrochemical detection, have 
been used in some cases (81,82). 
The main limitation of FTIR is the 
low level of detailed molecular 
identification that can be achieved. 
In one study, MS was also employed 
for metabolite identification (82).

The extensive application of 
nuclear magnetic resonance (NMR) 
for metabolic characterization 
of urine and other body fluids 
has been developed primarily by 
Nicholson and coworkers (83–85). 
The primary advantage of the NMR 
approach (Cf. Figure 7.2) is the lack 
of required preparatory separations, 
which in turn leads to an unbiased 
and potentially quantitative measure 
of the constituents of the sample. 
Alternatively, while in principle it 

Figure 7.3. Typical 1H NMR spectra illustrating the metabolite composition of urine 
(A), saliva (B) and plasma (C). Used with permission from (77). 

TMAO, trimethylamine oxide; DMA, dimethylamine.
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is possible to obtain a molecular 
mass corresponding to each 
unfragmented metabolite observed 
in a mass spectrum, in an NMR 
spectrum, molecular information is 
distributed among the resonances 
of a compound, and the position 
of these resonances can depend 
critically on pH, salt concentration, 
divalent ions and other physical 
parameters. Additional caveats 
discussed in various reviews include 
loss of more volatile metabolites, 
metabolite contributions derived 
from intestinal bacteria (86), potential 
bacterial growth in stored fluids, and 
other factors (84,87). Some have 
proposed using dimethylamine and 
its nitroso metabolite as biomarkers 
for small bowel bacterial overgrowth 
(86), while others have suggested 
monitoring 4-hydroxyphenylacetate 
as a potential screening method 
for small bowel disease and 
bacterial overgrowth syndromes 
(88). Significant levels of ethanol 
in plasma or urinary samples 
generally indicate either bacterial 
contamination of the sample or 
small bowel bacterial overgrowth 
(87). Such conditions typically 
accompany renal failure or other 
serious illnesses.

In studies of chemical toxins 
or pharmaceutics, the xenobiotic 
and its metabolites and conjugates 
typically constitute an important 
source of variation of the 
metabolome. While of interest 
from a metabolic perspective, 
these compounds are not directly 
indicative of organ toxicity or 
therapeutic response, so that in 
general these metabolites are not 
relevant to the study. One approach 
to dealing with this issue involves 
stable isotope labelling of the 
compounds under study, so that the 
compound and metabolites derived 
from it will exhibit characteristic 
features in the NMR or mass 
spectrum. Alternatively, if the test 

compound and all of its metabolites 
and conjugates can be identified, 
these can simply be ignored or 
eliminated from the analysis. One 
general source of toxicity resulting 
from the administration of high 
levels of test compounds is the 
depletion of sulfur-containing amino 
acids that results from the excretion 
of glutathione and cysteine 
conjugates. Thus, it was reported 
that rats receiving high levels of 
acetaminophen excreted significant 
amounts of pyroglutamic acid. This 
effect of excess acetaminophen 
was prevented/reversed by 
supplementation with methionine 
(89). The glutathione analogue 
ophthalmic acid recently has been 
found to accumulate after high 
dosage with acetaminophen, and 
may also function as a biomarker 
for oxidative stress and glutathione 
depletion (90).

Various multivariate analyses 
of metabolite composition have 
been applied to detect differences 
among subject groups, such as 
those receiving different treatments 
or different chemical exposures. 
This type of analysis, termed 
“metabonomics” by the Nicholson 
group, most frequently utilizes 
principal component analysis 
(PCA) of the spectral data to 
reveal clustering behaviour that 
differentiates treated from control 
subjects. The clusters of data points 
in PC plots reveal the uniformity 
of the control and treated groups, 
as well as the extent to which the 
treated group yields a distinct 
metabolic phenotype. Since the 
axes of the PC plot are dependent on 
the data set and do not correspond 
to independent variables, the ability 
of different laboratories to utilize 
the published information is limited. 
Interestingly, a recent study that 
evaluated statistical methodology 
for the analysis of gene expression 
data found that the use of PCA to 

reveal clustering behaviour generally 
degrades cluster quality, and 
concluded that PCA was only useful 
in special cases (91). Hence, there 
is a critical need for the identification 
of metabolic biomarkers that provide 
universally quantifiable indications 
of organ function and toxicity.

Another critical issue related to 
the identification of biomarkers is the 
need to separate acute and chronic 
effects of illnesses or toxins. It is not 
unusual for a particular metabolite 
to become elevated during the 
acute phase of a toxic response, 
but to become depressed as the 
chronic effects become significant. 
Alternatively, in the absence of 
chronic effects, the metabolite level 
may return to pretreatment values. 
For this reason, plots of data obtained 
at different times after dosage, 
or trajectory plots for individual 
subjects, can provide critical 
information on the time-dependent 
response. Several of the issues 
discussed above are illustrated in 
studies identifying the association 
of the oxidative stress biomarker 
8-oxoguanosine with Parkinson's 
disease (92). In this study, elevation 
of the 8-oxoguanosine level was 
observed in cerebrospinal fluid 
(CSF), but not in the serum of 
patients with Parkinson. Further, 
there was a significant negative 
correlation between the level of 
the biomarker and the duration of 
the disease. Finally, as indicated in 
Table 7.2, 8-oxoguanosine is also 
elevated in other conditions, e.g. 
amyotrophic lateral sclerosis (93). 
Another important limitation on the 
identification of some biomarkers 
relates to the chemical reactivity, 
which can deplete the free metabolite 
pool and lead to heterogeneous 
adduct formation and difficulties of 
detection. Homocysteine, which has 
long been linked to cardiovascular 
disease, provides one example (94).
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Much of the early NMR work 
evaluating the effects of various 
toxins noted changes in the levels 
of tricarboxylic acid cycle (TCA) 
metabolites and other abundant 
molecules that may be present in 
the nutrient source and that are not 
organ-specific (85). More recently, 
several more specific metabolomic 
biomarkers have been correlated 
with various diseases or treatments 
(Table 7.2). Notably, most of the 

Biomarker Sample Analysis Condition Reference No.

NAN;
2-PY

NMR – human and rodent urine Type 2 diabetes mellitus (110)

NAN;
2-PY

NMR – rat urine peroxosome proliferation (111,112)

ADMA MS –human blood plasma Renal failure; atherosclerosis (108,109)

Ophthalmic acid MS – mouse serum, liver extract Acetaminophen-induced hepatotoxicity (90)

Pyroglutamic acid NMR – rat urine APAP-induced deficiency of sulfur- amino acids (89)

3-nitrotyrosine HPLC - human CSF Amyotrophic lateral sclerosis (150)

8-oxoguanosine HPLC – human CSF Alzheimer's disease (93)

8-oxoguanosine HPLC – human CSF Parkinson's disease (92)

Modified nucleosides LC-IT-MS of human urine Breast cancer (102)

12(S)-HETEa HPLC - tumor cell extracts Human melanoma (95-97)

Aspartyl-4-phosphate DESI-MS/NMR – murine urine Lung cancer/ tumour growth (100)

Phosphorylcholine 31P NMR – cell extracts Breast cancer cell extracts (98)

Depressed lysophosphatidyl 
choline levels

31P NMR – blood plasma Renal cell carcinoma (101)

Elevated xanthine, 
hypoxanthine, urate

GC-MS – human urine Lesch-Nyhan syndrome (103)

Glc-Gal-pyridinoline HPLC - human urine Synovial degradation – RA (104-106)

4-hydroxyphenyl acetate GC-LC – human urine SBBO (88)

Dimethylamine, 
nitrosodimethylamine

GC – human serum; 
GC – whole blood

SBBO (86)

Table 7.2. Biomarkers recently identified using metabolomics

biomarkers that have been related to 
metastatic growth are proteins, but 
new metabolomic markers continue 
to be developed. The metabolite 
12(S) -hydroxyeicosatetraenoic 
acid (12(S)-HETE) has been 
demonstrated to play a pivotal role 
in experimental melanoma invasion 
and metastasis, suggesting that 
12-lipoxygenase expression may be 
important in early human melanoma 
carcinogenesis (95–97). Changes in 

phosphate-containing metabolites 
and in phospholipid composition 
have been correlated with tumour 
stage and metastatic spread. In 
studies of extracts from tumour cell 
lines, elevations in phosphorylcholine 
or other membrane-related 
phosphomonoesters have frequently 
been observed, and suggested to be 
correlated with metastatic potential 
(98,99). Increases have been 
observed in aspartyl-4-phosphate 

a In most reported studies, concentration or enzymatic activity of 12-lipoxygenase, rather than 12(S)-HETE, has been determined.
2-PY, N-methyl-2-pyridone-5-carboxamide; ADMA, NG,NG-dimethylarginine; APAP, Acetaminophen; DESI, Desorption electrospray ionization; GC-LC, Gas chromatography-
liquid chromatography; GC-MS, Gas chromatography-mass spectrometry; HPLC, High performance liquid chromatography; LC-IT-MS, Liquid chromatography-ion trap-mass 
spectrometry; NAN, N-methylnicotinamide; NMR, Nuclear magnetic resonance; RA, rheumatoid arthritis; SBBO, small bowel bacterial overgrowth.
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that may correlate with tumour 
growth (100). Phosphorus-31 NMR 
studies of blood plasma derived 
from patients with advanced renal 
cell carcinoma have been found 
to exhibit depressed levels of 
lysophosphatidylcholine (101). A 
significantly improved discrimination 
of breast cancer patients based on 
metabolomic analysis of modified 
nucleosides present in urine was 
recently reported (102).

A metabolomic approach using a 
combination of gas chromatography 
and MS has identified elevations in 
the levels of the metabolites xanthine, 
hypoxanthine, urate and guanine 
in patients with Lesch-Nyhan 
syndrome (103). The urinary cross 
link product, Glc-Gal-pyridinoline 
(104), has been identified as a 
biomarker for synovial degradation 
observed in osteoarthritis (105); 
treatment with ibuprofen lowers the 
level of this excreted metabolite 
(106). Endogenously formed NG,NG-
dimethylarginine, also referred to 
as asymmetric dimethylarginine 
(ADMA), is a potent inhibitor of 
nitric oxide synthase (107). Plasma 
levels increase as a consequence 
of renal failure (108), and ADMA has 
been identified as a biomarker for 
atherosclerosis (109). Metabolomic 
analyses have identified several 
pyridine derivatives in urine 
from diabetic rats (110), and the 
same derivatives have shown 
up as biomarkers of peroxisome 
proliferation (Table 7.2) (111,112). 
The presence of these compounds 
indicates a perturbation of the 
tryptophan-nicotinamide adenine 
dinucleotide (NAD) pathway.

As is typical for new 
technologies, some reports of 
putative biomarkers have proven 
controversial. Early identification of 
the partly-characterized metabolites 
CFSUM1 and CFSUM2, associated 
with chronic fatigue syndrome, 
were subsequently demonstrated 

to arise from incompletely 
derivatized pyroglutamic acid 
and serine (113,114), and the 
quantitative abnormalities of these 
metabolites in urine from patients 
with chronic fatigue syndrome/
myalgic encephalomyelitis has been 
reported to be artefactual. Early 
analyses supporting the use of 1H 
NMR of blood sera to diagnose 
coronary artery disease (115) have 
subsequently been found to be more 
equivocal than originally suggested 
and to compare unfavourably with 
angiography-based diagnosis (116).

As more specific biomarkers are 
identified, the power of this approach 
will continue to evolve, providing 
useful diagnostic information 
for pathological, environmental, 
toxicological, pharmaceutical and 
nutritional research, as well as 
enhancing the value of metabolomic 
analysis for basic research into 
mechanisms of toxicity. Future 
developments in mass spectrometry 
platforms in metabolomics will 
increase the detectable coverage 
of the metabolome in clinical 
specimens and experimental 
species, and permit better 
identification of metabolites in the 
process of converting raw data to 
biological knowledge (117).

Bioinformatics

The wealth of data generated 
through high-throughput omics 
approaches has become 
increasingly complex and too vast 
for conventional biomarker analysis 
strategies. Bioinformatics has 
played a crucial role in biomarker 
discovery and validation (Figure 
7.4). It is a multidisciplinary field 
involving biology, computer science, 
mathematics and statistics to 
derive knowledge from biological, 
genomics and genetic data (118,119). 
Database systems, computational 
algorithms, statistical models, data 

mining methods and other analytical 
tools are typically employed in 
a bioinformatics framework to 
effectively manage, analyse and 
summarize the plethora of data. For 
example, proteomics approaches, 
such as SELDI-TOF and mass 
spectrometry in conjunction with 
bioinformatics tools, have greatly 
facilitated the discovery of new and 
better serum biomarkers to detect 
cancer (120).

The bioinformatics processes to 
translate omics data into clinically 
useful biomarkers can comprise a 
myriad of steps, beginning with initial 
analysis of the data to validation of 
the biomarkers (121). This multistep 
process typically involves discovery, 
data integration, predictive modeling, 
and delivery of the biomarkers to 
the clinic in a format to facilitate 
implementation (122). Bioinformatic 
analyses may take different 
approaches with several checkpoints 
along the way. A flowchart is 
described for the application of 
bioinformatics strategies to improve 
the identification of candidate 
biomarkers from cancer genome-
wide expression analyses (123). The 
process proceeds with acquisition of 
gene expression data from cancer 
tissues, followed by the identification 
of candidate genes as biomarkers. 
The next step entails meta-mining 
public cancer data sets of the same 
type of pathophysiology to reduce 
the biomarker false-positive rate. The 
last step before use of the biomarkers 
in clinical trials involves validation of 
the candidates by RT–PCR, ELISA, 
tissue arrays, immunohistochemistry, 
and other types of bioassays.

What are these bioinformatics 
tools and processes and how are 
they used to aid in the discovery and 
validation of disease biomarkers? 
It is helpful to appreciate that a 
useful biomarker must be objective, 
highly accurate and very reliable 
in determining disease states and 
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assessing risk. In other words, they 
must generalize well (i.e. extend) 
to broad cases, exhibit significance 
in their reporting, and be precise 
in their utility. Unfortunately, omics 
data possesses systematic variation 
due to the experimental error in 
the data acquisition process (124). 
There are technical limitations in the 
sensitivity of detecting biomarkers 
that are lowly expressed or non-
abundant; however, biomarkers do 
not need to be highly expressed 
or in large abundance. Thus, the 
challenge in biomarker identification 
is successfully mining omics data 
with inherent error to find the 
features that reliably, accurately 
and objectively relate to the 
pathophysiology of a disease (125).

Data normalization and 
dimension reduction (data 
condensing) techniques have been 
widely used to preprocess omics 
data before biomarker discovery. 
Standard ways of dealing with data 
normalization have been adopted 
for omics data. Robust Multiarray 
Average (RMA), loess and quantile 
normalization methods have 
seemed to pass the test of time 
(126–128). A systematic variation 

normalization (SVN) approach was 
developed specifically to remove 
systematic error from microarray 
gene expression data (129). Baseline 
subtraction, signal smoothing and 
normalization methodologies were 
employed in the preprocessing of 
mass spectrometry proteomics data 
to reduce the noise and to make the 
analysis of spectral data comparable 
(130). In general, once the omics 
data is made unbiased and adjusted 
to make fair comparisons across 
samples, all the data can be used 
to mine for biomarkers or be filtered 
first to remove uninformative or 
redundant information. Some believe 
that the inclusion of uninformative 
features in the biomarker selection 
process will severely degrade the 
performance of the predictor model 
(131). Thus, it has been suggested 
to remove variables that do not 
contribute to a biological response 
of interest before the selection of 
biomarkers. Filtering of the data 
can be based on a signal or relative 
level, fold change, a confidence 
level, standard deviation from the 
mean of the distribution, P-values, 
mutual information, full or partial 
correlations, or more elaborate 

methods. The underlying omics data 
should be rich enough to be narrowed 
down to a core set of features that 
best represent the biology of the 
system for biomarker selection. 
Caution must be taken with respect 
to the preprocessing of omics data 
for biomarker identification, as the 
use of a particular combination of 
methods will surely add variability to 
the set of indicators selected. In other 
words, the preprocessing and filtering 
steps are sources of variability in and 
of themselves. The US Food and 
Drug Administration-led MicroArray 
Quality Control Phase II (MAQC-
II) consortium set out to address 
this by trying to understand the 
limitations of various bioinformatics 
data analysis methods in developing 
and validating microarray-based 
predictive models, and determining 
if best practices for development and 
validation of predictive models based 
on microarray gene expression and 
genotyping data can be derived 
for biomarker discovery and 
personalized medicine (132).

The development and utilization 
of classification and prediction 
methods for analysis of omics data 
have transcended the process 

Figure 7.4. Sequential scheme for the integration of omics with bioinformatics in the biomarker discovery process
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for identifying biomarkers from 
molecular signatures. One of the 
most widely used methods for 
classification is clustering. The 
process works by using a dissimilarity 
measure for the feature profiles in the 
omics data to iteratively form groups 
of samples that are tightly clustered. 
Features that cluster well together 
and can distinguish between 
groups of samples that differ in 
pathophysiology are considered to 
be potential biomarkers. Clustering 
and an F-test-like score based on 
within- and between-sample gene 
expression variance measures were 
used effectively to identify an intrinsic 
gene subset (i.e. a molecular portrait) 
that has a high predictive score 
for human breast tumours (133). 
More sophisticated bioinformatics 
methods have been developed to 
identify potential biomarkers. A 
hybrid approach was developed 
based on the genetic algorithm 
(GA) and k-nearest neighbours 
(KNN) classifier that is capable 
of identifying gene and protein 
molecular signatures of diseases 
based on microarray and proteomics 
data, respectively (134,135). The 
GA serves as a search tool to 
choose small subsets of predictors, 
whereas the KNN functions as a 
non-parametric (no distribution 
model assumed) pattern recognition 
method to evaluate the discriminative 
ability of the subsets. More recently, 
a hybrid approach for biomarker 
discovery from microarray gene 
expression data was developed 
to distinguish between types of 
cancer (136). This approach is 
based on Fisher’s ratio (a measure 
for the linear discriminative power 
of variables) to select features 
“wrapped” with a classifier (hence, 
the procedure is called FR-Wrapper) 
to perform predictions. With these 
hybrid approaches, the two main 
objectives in biomarker discovery 
are met: 1) the identification of a 

small set of relevant indicators with 
minimum redundancy, and 2) the 
validation of the predictors using 
a classifier and cross-validation 
strategy. To balance false-positives 
and false-negatives in the selection 
of biomarkers, a clever method was 
proposed to use common peaks 
in mass spectrometry data as the 
predictive indicators (137). The 
procedure applies AdaBoost (a 
form of ensemble classifier training) 
to perform the classification and 
to select the informative common 
peaks.

Bioinformatics approaches 
to discover biomarkers can 
take on more sophisticated 
implementations. For instance, a 
dependence (interaction) network 
modeling scheme was suggested 
for identifying biomarkers from 
groups of genes or proteins (138). 
Very clear differences were 
observed in the dependence 
networks for cancer and non-cancer 
samples. On the other hand, a gene 
selection algorithm was used based 
on Gaussian processes to discover 
consistent gene expression patterns 
associated with ordinal clinical 
phenotypes (139). The method was 
able to identify subsets of genes as 
potential biomarkers for colon and 
prostate cancers. The integration 
of time-course microarray gene 
expression data with cytotoxicity 
measurements, by way of a partial 
least squares objective criterion, 
has been shown to be useful for 
identifying biomarkers in primary rat 
hepatocytes exposed to cadmium 
(140). The approach demonstrates 
the value of integrating omics data 
with associated biological data to 
glean more information about the 
biomarker’s diagnostic utility. More 
recently, a bioinformatics approach 
was introduced that takes into 
account the inherent correlation of 
genes when using gene expression 
data for biomarker discovery (141). 

Finally, a host of techniques and 
software to integrate omics data 
are summarized, to shed additional 
light on the complex molecular 
interactions that take place on a 
systems biology level (142).

Repositories of omics data 
from various studies that can be 
queried may bring about improved 
means for detecting biomarkers 
of a clinical process or phenotype 
than one which is isolated or from 
a small group of data sets (143). 
This realization has motivated the 
generators of omics data to store 
them in repositories for meta-mining 
purposes. Figure 7.5 represents 
a brief list of some of the publicly 
accessible databases that store, 
distribute and permit querying of 
omics data (a more comprehensive 
list is presented in (142)). A plasma 
proteome database at the Institute 
of Bioinformatics that stores 
comparisons of human plasma 
protein concentration levels along 
with their isoforms in normal and 
disease states should be useful for 
discovery of novel biomarkers (144). 
Another database, ONCOMINE, 
stores a collection of curated cancer 
gene expression profiles integrated 
with a therapeutic target database 
and biological resources, such as 
Gene Ontology, so that the data can 
be mined for putative biomarkers 
(123).

The use of bioinformatics 
tools has increased mechanistic 
understanding and development 
of biomarkers in the analysis of 
massive genomics, proteomics 
and metabolomics data (Cf. Figure 
7.4). Bioinformatics techniques 
will continue to be useful in 
organizing and extracting candidate 
biomarkers for chemical exposures 
and disease for epidemiology, 
clinical and experimental studies. 
However, mere access to 
sophisticated bioinformatics tools 
will be insufficient to grapple with 
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the identification of biomarkers from 
omics data (Figure 7.5). An ongoing 
and vigorous debate has emerged 
over the use and reproducibility 
of bioinformatics approaches and 
omics data for biomarker discovery 
and clinical applications (145,146). 
Clearly there is a need for rigorous 
quality control in the field of 
bioinformatics for the use of omics 
type data in clinical, diagnostic and 
regulatory settings (Lyle Burgoon, 
personal communication). A 
fundamental understanding of the 
inherent problems and issues with 
omics data, and knowing how, 
where and when to apply which 
type of bioinformatics approach, are 
essential to effectively translating 
omics biomarkers into clinically 
useful diagnostic tools and 
epidemiological markers.
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Measurement error 
in biomarkers: Sources, 

assessment, and impact 
on studies*

Emily White
*Parts of this chapter appear in White E. Effects of biomarker measurement error on epidemiological studies. In: Toniolo P, Boffetta P, Shuker DEG, Rothman N, Hulka B, Pearce N, 
editors. Applications of biomarkers in cancer epidemiology. Lyon, IARC Scientific Publication; 1997. p. 73–94

Summary

Measurement error in a biomarker 
refers to the error of a biomarker 
measure applied in a specific way 
to a specific population, versus 
the true (etiologic) exposure. In 
epidemiologic studies, this error 
includes not only laboratory 
error, but also errors (variations) 
introduced during specimen 
collection and storage, and due 
to day-to-day, month-to-month, 
and year-to-year within-subject 
variability of the biomarker. Validity 
and reliability studies that aim to 
assess the degree of biomarker 
error for use of a specific biomarker 
in epidemiologic studies must be 
properly designed to measure all 
of these sources of error. Validity 
studies compare the biomarker to 
be used in an epidemiologic study 
to a perfect measure in a group of 

subjects. The parameters used to 
quantify the error in a binary marker 
are sensitivity and specificity. 
For continuous biomarkers, the 
parameters used are bias (the mean 
difference between the biomarker 
and the true exposure) and the 
validity coefficient (correlation 
of the biomarker with the true 
exposure). Often a perfect measure 
of the exposure is not available, so 
reliability (repeatability) studies are 
conducted. These are analysed 
using kappa for binary biomarkers 
and the intraclass correlation 
coefficient for continuous 
biomarkers. Equations are given 
which use these parameters from 
validity or reliability studies to 
estimate the impact of nondifferential 
biomarker measurement error on the 
risk ratio in an epidemiologic study 

that will use the biomarker. Under 
nondifferential error, the attenuation 
of the risk ratio is towards the null 
and is often quite substantial, even 
for reasonably accurate biomarker 
measures. Differential biomarker 
error between cases and controls 
can bias the risk ratio in any 
direction and completely invalidate 
an epidemiologic study.

Introduction

Importance of understanding 
the degree of measurement 
error in biomarkers

When a biomarker is being 
considered for use in an 
epidemiologic study, or has 
been selected, the researcher 
needs to become familiar with its 
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measurement properties (i.e. how 
well the measure selected reflects 
the underlying exposure of interest). 
There are many sources of error 
in biomarkers when they are used 
in epidemiologic studies. These 
include not only laboratory error, but 
also errors due to variation in the 
specimen collection and processing 
methods, as well as a single measure 
of the biomarker not reflecting the 
longer time period during which 
the biomarker actually influences 
the disease. Validity and reliability 
studies that aim to assess the degree 
of biomarker error for use of a specific 
biomarker in epidemiologic studies 
must be designed to measure all of 
these sources of error; this differs 
from laboratory validation, which 
aims to assess only the laboratory 
component of error. If studies 
have not been published on these 
measurement issues, then a validity 
or reliability study of the biomarker 
should be conducted to determine 
its measurement error.

Once the measurement error in 
the biomarker has been quantified, 
the researcher can estimate the 
impact of that magnitude of error 
on the planned epidemiologic study 
in terms of the bias in the risk ratio 
of the relationship of the biomarker 
to the disease outcome. If there is a 
large degree of error, the researcher 
would need to improve the method 
or select a different one. If the 
biomarker measure is sufficiently 
valid to use in an epidemiologic 
study, then knowing the degree 
of measurement error will help in 
interpreting the results.

Definition of terms

The term parent epidemiologic 
study refers to the epidemiologic 
study that will use the biomarker. For 
simplicity, the assumption is made 
that the parent study is a case–
control, cohort, or nested case–

control study of the relationship 
between the biomarker and a binary 
outcome, such as incident disease 
or death. Measurement error in 
the biomarker leads to bias in the 
risk ratio for the association of the 
biomarker to disease in the parent 
study. This bias is called information 
bias or misclassification bias.

The measurement error for 
an individual can be defined 
as the difference between their 
measured biomarker and true 
exposure. The true exposure can 
be conceptualized as the underlying 
biologic or external factor that the 
biomarker is meant to measure (the 
causal factor for etiologic studies), 
without laboratory or other sources 
of error. If the biomarker measure 
can fluctuate over time, the true 
exposure would also be integrated 
over the time period of interest (e.g. 
the average of the true exposure 
over the etiologically important 
time period for etiologic studies). 
Nondifferential measurement error 
occurs when the measurement 
error does not differ between 
the disease and non-disease 
groups in the parent epidemiologic 
study. Differential measurement 
error occurs when the degree of 
biomarker error differs between 
those with and without the disease 
in the parent study. The sources 
and effects of both differential and 
nondifferential measurement error 
will be discussed in this chapter.

Validity is the relation of the 
biomarker measure to the true 
exposure in a population of interest. 
Measures of validity are parameters 
that describe the measurement error 
in the population. A validity study 
is defined here as one in which a 
sample of individuals is measured 
twice: once using the biomarker 
measure of interest and once using 
a perfect (or near-perfect) measure 
of the true exposure, and the values 
compared.

Often a perfect measure of the 
exposure does not exist or is not 
feasible to use in a validity study. 
In a reliability study, repeated 
measurements of the same 
biomarker are taken on a group 
of subjects and compared; they 
usually only measure part of the 
measurement error. However, 
certain designs of reliability studies 
can be used to measure the validity 
of a biomarker without having a 
perfect measure of the biomarker.

Overview of chapter

The first topics covered in this 
chapter are sources of measurement 
error in biomarkers and design 
issues in validity and reliability 
studies for biomarkers. The chapter 
then covers the parameters used 
in a validity study to measure the 
error in a binary biomarker and in 
a continuous biomarker. Equations 
are given for using these parameters 
to estimate the bias in the risk ratio 
in an epidemiologic study that will 
use the biomarker for both binary 
and continuous biomarkers. While 
these equations rely on simplifying 
assumptions, the purpose is to allow 
the researcher to easily estimate 
the impact of biomarker error on 
the parent epidemiologic study. 
Finally, these same concepts will be 
addressed for reliability studies.

Techniques to reduce biomarker 
measurement error, and therefore 
to reduce the bias in the results 
of the parent study caused by 
measurement error, are of great 
importance. Approaches to reduce 
measurement error are only briefly 
mentioned in this chapter, but are 
covered throughout the book.

Many related topics are beyond 
the scope of this chapter. The reader 
is referred to other sources for the 
effects of measurement error in a 
categorical measure with more than 
two categories (1–3), the design 
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and analysis of more complex types 
of reliability studies (4), and the 
effect of measurement error when 
the parent study is the relationship 
between a biomarker and a 
continuous outcome (5). General 
reviews of measurement error 
effects in epidemiologic studies, and 
their correction for continuous and/
or categorical exposures, are given 
in (6–12).

Sources of biomarker error 
and study designs to measure 
it

Sources of error in biomarkers

When used in an epidemiologic 
study, there are numerous sources 
of measurement error in a biomarker 
in comparison to the true exposure 
of interest (5,13). Examples have 
been discussed in previous 
chapters and are given here in Table 
8.1. Measurement error can be 
introduced by errors in the choice 
of laboratory method selected to 
be a measure of the exposure 
of interest. The method selected 
may not measure all sources of 
the true exposure. For example, 
if the true exposure of interest is 
total carotenoids, then using only 
serum β-carotene as the biomarker 
would not capture all of the relevant 
exposure. Alternately, the measure 
selected may detect other related 
exposures beyond the etiologically 
significant one (i.e. it may not be 
‘specific’ to the exposure of interest). 
For example, if the true exposure of 
etiologic importance is β-carotene, 
the choice of serum total carotenoids 
as the biomarker measure would 
include other exposures not relevant 
to the epidemiologic true exposure. 
Other sources of error that must 
be considered, especially in the 
selection of the biomarker method, 
are whether the method has a 
sufficiently long half-life in the tissue 

Table 8.1. Sources of measurement error in biomarkers in epidemiologic studies

Errors in the choice of laboratory method or specimen 
(as a measure of the true exposure of interest)

• Method may not measure all sources of the true etiologic exposure of interest (e.g. use of 
serum beta-carotene when the disease is influenced by all carotenoids)

• Method may measure other related exposures that are not the true exposure of interest (e.g. 
use of serum total carotenoids, when the disease is only influenced by beta-carotene)

• Biomarker value in tissue sampled may not equal the value in the target tissue

Errors or omissions in the protocol

• Failure to specify the protocol in sufficient detail regarding timing and method of specimen 
collection, specimen handling and storage procedures

• Failure to specify the laboratory analytic procedures in sufficient detail

• Failure to include standardization of the instrument periodically throughout the data collection

Errors due to variations in execution of the protocol

• Variations in method of specimen collection

• Variations in specimen handling or preparation before reaching the laboratory or freezer

• Variations in length of specimen storage or freeze-thaw cycles (leading to possible analyte 
degradation)

• Contamination of specimen

• Variations in technique between laboratories

• Variations in technique between laboratory technicians

• Variations between batches (due to different batches of chemicals, drift in calibration of 
instrument)

• Any of the above that vary between disease and non-disease groups (e.g. unequal 
assignments of lab technicians to cases and controls)—differential measurement error

• Biases due to knowledge of lab technicians of disease status—differential measurement 
error

• Random variation within batch

Errors due to biomarker variability between and within subjects

• Biomarker may be influenced by the disease under study, its pre-clinical effects or its 
treatment or sequelae - differential measurement errora

• Short-term variability (hour-to-hour, day-to-day) in biomarker within-subjects due to diurnal 
variation, posture (sitting versus lying down), time since last meal, time since last exposure to 
agent of interest in relation to the half-life of the biomarker

• Medium-term variability (month-to-month) within subjects due to, for example, seasonal 
changes in diet, transient illness

• Long-term change (year-to-year) within subjects due to, for example, purposeful dietary 
changes over time, changes in occupational exposures

• Lack of variability in biomarker with changes in exposure to agent of interest, due to 
homeostasis

a This is a source of differential error for etiologic studies, not for studies of biomarkers for early detection.
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selected to measure the exposure of 
interest, and whether homeostasis 
leads to the method not reflecting 
the actual level of external exposure. 
These sources of error can be 
minimized by careful selection of the 
biomarker measure to be used in the 
epidemiologic study.

Further sources of biomarker 
error are variations in the method of 
specimen collection and laboratory 
technique used between subjects. 
Due to variations in the collection 
and handling of the specimen by the 
study field staff, and by variations 
in the length of time or temperature 
the specimen was stored before 
analysis, errors often occur during 
the conduct of the epidemiologic 
study. Additional sources of error are 
the variations that occur between 
batches and between laboratory 
technicians even when the protocol 
is well specified. To reduce these 
sources of error, the protocol needs 
specific details in terms of subject 
instructions (e.g. fasting), method 
of specimen collection, handling of 
the specimen (e.g. maximum time 
at room temperature), methods 
of specimen processing before 
storage or analysis, and laboratory 
procedures. These procedures 
also must be carefully monitored 
throughout the study.

A final source of error that is 
common in molecular epidemiology 
is due to medium-term (e.g. month-
to-month) variability or long-term 
change in the biomarker over 
years within-subjects. This type 
of error is often ignored when 
assessing laboratory measurement 
error, but can have great impact 
on an epidemiologic study. This 
is due to the fact that unless the 
biomarker is a fixed characteristic 
within individuals, the underlying 
true biomarker (that influences 
the disease of interest) is rarely an 
individual’s measured biomarker on 
a single day, but rather the average 

over some much longer time period. 
Thus, even a perfect measure of 
the biomarker at a single point in 
time could be a poor measure of 
the true etiologic exposure. For 
example, even if an ideal laboratory 
method existed for serum estradiol 
in women, it could be a very poor 
measure of the true exposure (e.g. 
average serum estradiol) over the 
prior 15 years, which may influence 
breast cancer. This source of error 
can be controlled for by averaging 
multiple measures of exposure 
collected periodically over the time 
period of interest (12,14).

While it is essential to minimize 
the above sources of biomarker 
error, it is even more important 
to ensure that any errors are 
nondifferential between those with 
and without the disease (or other 
outcome) under study. Differential 
measurement error can invalidate 
a study, as discussed below, and 
should be avoided. A primary 
concern in case–control studies of 
biomarker-disease associations, 
when the specimens are obtained 
after diagnosis for the cases, is that 
the biologic effects of the disease 
or its treatment may affect the 
biomarker. In such situations, the 
biomarker does not measure the 
true (e.g. long-term, pre-disease) 
exposure for cases. (This concern is 
for etiologic studies, not for studies 
of biomarkers tested for early 
detection.) Differential measurement 
error can be avoided or reduced by 
selecting a cohort study rather than 
a case–control design when the 
disease or its treatment can affect 
the biomarker. The early cases 
occurring in a cohort study may also 
have their biomarker influenced by 
the preclinical phase of the disease 
under study. However, this can 
be tested by removing cases with 
diagnoses that occur within some 
time period (e.g. a year or two after 
the specimen collection) to see if this 

modifies the cohort study results.
Other potential sources of 

differential biomarker error are the 
laboratory technicians’ knowledge 
of the disease status of the subjects 
and differences in the specimen 
collection, or other methods, between 
those with and without the disease. 
Thus, not only must laboratory 
personnel be blinded to disease 
status, but also the researcher 
must ensure that all procedures of 
specimen collection, processing, 
storage and analysis are identical for 
cases and controls. One cannot, for 
example, collect specimens in a clinic 
and immediately freeze them for 
cases, yet collect specimens in the 
field when freezing will be delayed 
for controls, if length of time at room 
temperature can have any impact on 
the biomarker. Since some variation 
is inevitable, it is important that the 
sources of error are matched by 
case–control status or adjusted for 
in the analysis. For example, one can 
control for systematic differences 
between laboratory technicians, 
between laboratory batches, or 
between specimens stored for 
different lengths of time, through 
matching controls to cases on these 
factors (15).

Design of validity 
and reliability studies

To design a validity or reliability 
study that measures the amount 
of measurement error that will 
occur in the parent epidemiologic 
study, several design issues must 
be considered. First, the subjects 
in the validity or reliability study 
should represent those in the parent 
epidemiologic study. The subjects 
could be a random sample from the 
parent study (e.g. 100–200 randomly 
selected individuals from the larger 
parent study). If that is not possible, 
the subjects in the validity/reliability 
study should be comparable to the 
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subjects in the parent study in terms 
of age, sex and other parameters 
that could influence the distribution 
(variance) of the biomarker. Second, 
the biomarker should be collected, 
processed, stored and analysed in 
the validity/reliability study using the 
same procedures that will be used in 
the parent study.

A third issue is the selection of the 
comparison measure to be used in a 
validity study. Subjects need to be 
measured using a perfect measure 
of the true exposure in the validity 
study to compare to the imperfect 
biomarker. Sometimes a perfect or 
near-perfect measure exists that 
is too costly or not feasible for the 
parent epidemiologic study, but 
could be used for a validity study. 
This true measure must reflect the 
underlying true exposure without 
error, including without error due to 
variation in laboratory procedures or 
variations over time. The last issue 
is particularly problematic because 
the true biomarker of interest is often 
the average value over many years.

A reliability study can be 
conducted even when a perfect 
measure is not feasible or does 
not exist. For reliability studies, it 
is ideal if the two or more repeated 
biomarker measures taken on each 
subject vary in a way so as to capture 
all of the sources of error in the 
biomarker. Therefore, the repeated 
measures on a subject should be 
based on specimens taken years 
apart to reflect error due to year-
to-year variation, and be analysed 
by different laboratory technicians 
if more than one will be used in the 
parent study, etc. This differs from a 
reliability study that aims to assess 
only the laboratory component of 
error; those studies might split a 
single specimen (e.g. blood from 
a single blood draw) from each 
subject and send the two samples 
per subject to the same laboratory 
for analysis. The importance and 

methods of measuring all sources of 
error will be discussed in more detail 
below.

In addition, the researcher 
should consider conducting the 
validity/reliability study on two 
groups: those with the disease and 
those without the disease. This is 
particularly important if there is the 
possibility that the biomarker error 
could differ between the disease 
and non-disease groups that will 
be used in the parent study. As 
noted earlier, this is a concern if 
the parent epidemiologic study 
is a case-control study in which 
the disease could influence the 
biomarker test. For validity/reliability 
studies to be able to assess 
differential measurement error in 
the biomarker measure between 
cases and controls, the comparison 
measure must be perfect (i.e. a 
validity study), or if an imperfect 
comparison measure is used, it 
must not have differential error. For 
example, the comparison measure 
could be based on specimens 
collected years before diagnosis for 
cases and during a similar period for 
controls. The design, analysis and 
interpretation of studies to measure 
differential error are only briefly 
discussed in this chapter (see (16) 
for a more detailed review).

Finally, a validity or reliability 
study should be analysed using 
parameters that provide information 
about the impact of biomarker 
measurement error on the parent 
epidemiologic study. These 
parameters, and their interpretations 
in terms of bias in the risk ratio in the 
parent study, are discussed in the 
remainder of this chapter.

Measuring the error in a 
binary biomarker: Sensitivity 
and specificity

Binary (dichotomous) biomarkers 
are those that classify an analyte or 

characteristic as present (positive) 
or absent (negative) for each study 
subject. Measurement error in a 
binary biomarker is usually referred 
to as misclassification. Binary 
biomarkers are subject to all of the 
sources of measurement error as 
described above and in Table 8.1.

The degree of misclassification 
in a binary biomarker is measured 
by its sensitivity and specificity. 
These can be measured in a validity 
study in which the biomarker under 
evaluation (the mismeasured 
biomarker) is compared to a perfect 
measure of the underlying true 
exposure among a sample of the 
population of interest. Individuals 
are then cross-classified by their 
results on each test:

The sensitivity (sens) of the 
biomarker under evaluation is the 
proportion of those who are true 
positives (positive on the criterion 
test) and are correctly classified as 
positive by the biomarker test:

sens =    a     .
	     a+c

(Note that the definition given 
here of sensitivity is different from 
the meaning in some laboratory 
contexts, i.e. the lowest level 
detectable by a measurement 
method.) The specificity (spec) is 
the proportion of those who are 
true negatives and are classified as 
negative by the biomarker test:

spec =    d     .
	     b+d

Even though both sensitivity and 
specificity can range from zero to 
one, it is assumed that sensitivity 
plus specificity is greater than or 
equal to one. In other words, for the 
biomarker test to be considered a 
measure of the true biomarker, the 
probability that the biomarker test 
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classifies a truly positive person 
as positive (sensitivity) should be 
greater than the probability that it 
classifies a truly negative individual 
as positive (1 – specificity) (i.e. sens 
> 1 – spec, or sens + spec > 1). Thus, 
the parameter (sens + spec –1), 
called the Youden misclassification 
index (17), is a good measure of the 
total degree of misclassification. If 
the Youden index is close to 1, the 
biomarker test is close to perfect, 
and if the Youden index is close 
to zero, the biomarker has little 
association with the true exposure.

For a validity study to measure 
sensitivity and specificity of a 
biomarker, the study sample may 
be subjects selected independent 
of their biomarker status, or who 
are true positives and those who 
are true negatives by the perfect 
test. However, one cannot sample 
subjects based on the results of the 
mismeasured biomarker test and 
correctly compute sensitivity and 
specificity.

If the validity study is conducted 
on a sample of cases and a sample 
of controls, then sensitivity and 
specificity would be computed 
separately for the cases and for the 
controls.

Impact of error in a binary 
biomarker on epidemiologic 
studies

Effect of nondifferential 
misclassification 
on the odds ratio

The effects of misclassification of a 
binary biomarker on the results of 
the parent epidemiologic study of the 
relationship between the marker and 
a binary disease are straightforward 
(18–24). In an unmatched case–
control study of a binary biomarker, 
under the assumption that the disease 
is correctly classified, the effect of 
misclassification of the biomarker is 

The association between the 
biomarker and disease in the parent 
study would be measured by the 
odds ratio in a case–control or 
nested case–control study. (The 
results presented here would be 
similar for the hazard ratio from a 
cohort study as well.) When there is 
measurement error, the observable 
odds ratio, ORO, differs from the 
true odds ratio, ORT, because ORO 
is based on p1 and p2:

ORO
 
=    p1(1 - p2)    .                   (2)

	      p2(1 - p1)

The magnitude of the bias can 
be estimated by computing p1 and 
p2 from Equation 1 and ORO from 
Equation 2 and comparing it to ORT, 
using estimates of P1 and P2.

As an example, suppose current 
infection with Helicobacter pylori 
(H. pylori), an organism associated 
with several upper digestive tract 
diseases, is the true exposure of 
interest in a cohort study being 
planned. An ELISA test on serum, 
although imperfect, is the most 
feasible exposure measure to be 
used in the epidemiologic study. 
Information on the accuracy of 
the ELISA test comes from a 
validity study conducted in Taiwan, 
China on 170 patients undergoing 

to rearrange individuals in the true 
2x2 table into an observable 2x2 
table. Individuals in the disease group 
remain in the disease group, but may 
be misclassified as to biomarker 
status, and the non-disease group 
is also rearranged as to biomarker 
status:

				  
P1 and P2 are the true proportions of 
subjects who are exposure-positive 
in the disease and non-disease 
groups respectively, and similarly p1 
and p2 refer to the proportions that 
would be “observable” as positive by 
the biomarker test in the two groups. 
The term observable means what 
would be seen, on average, when 
the imperfect biomarker is used in 
the parent epidemiologic study.

There is nondifferential 
misclassification when the 
sensitivity of the biomarker test is 
the same for both disease and non-
disease groups in the parent study, 
and the specificity is the same for 
both groups. The misclassification 
leads the observable p1 and p2 to be 
different from the true P1 and P2 (21):

p1 = sens • P1 + (1 - spec) • (1-P1) }(1)
p2 = sens • P2 + (1 - spec) • (1-P2).

The first equation states that 
the proportion of cases who will 
be classified by the biomarker 
test as positive (p1) is made up 
of a proportion (sens) of those 
truly exposed (P1) in the disease 
group, plus a proportion (1-spec) of 
those truly unexposed (1-P1) in the 
disease group. The second equation 
expresses the same concept for the 
non-disease group.

 
                          

 
                                    

p1 p2

1  p1 1  p2

 - 
 - 

 - 
 - 
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respectively, as the true probabilities 
of exposure), and would yield an 
observed odds ratio of 3.0 rather 
than the true odds ratio of 4.3.

Nondifferential misclassification 
leads to an attenuation of the odds 
ratio towards the null hypothesis 
value of 1 (20). The observable 
odds ratio does not cross over the 
null value of 1, under the reasonable 
situation that sens + spec > 1 (see 
above). The degree of attenuation in 
the observable odds ratio depends 
on the sensitivity and specificity of 
the biomarker test and on P1 and 
P2, or equivalently, on the true odds 
ratio and on P2, the proportion of 
the non-disease group who are 
truly exposed. Table 8.2 gives 
further examples of the effect of 
nondifferential misclassification on 
the odds ratio for reasonable values 

of sensitivity (0.5–0.9), specificity 
(0.8–0.99), P2 (0.1, 0.5), and a true 
odds ratio of 2 and 4. As can be seen 
from the table, the attenuation in 
the odds ratio can be considerable. 
When the proportion who are truly 
exposed in the non-disease group 
is low (e.g. P2 = 0.1 in upper half of 
Table 8.2), the attenuation of the 
odds ratio is severe except when the 
specificity is very high (e.g. spec = 
0.99). When the proportion who are 
truly exposed is high (e.g. P2 = 0.5 in 
lower half of Table 8.2), the observed 
OR is strongly attenuated from the 
true OR except when the sensitivity 
is very high (e.g. sens = 0.9). Even 
strong associations between the 
true biomarker and disease would 
be obscured by moderate values 
of sensitivity and specificity. For 
example, for sens = 0.7, spec = 0.8, 

Table 8.2. Impact of nondifferential misclassification of a binary biomarker on the 
Observable Odds Ratio (ORO)

Biomarker Test
Sensitivity

Biomarker Test
Specificity

True OR=2.0
ORo

b
True OR=4.0

ORO
b

P2 = 0.1a

0.5                                 0.80                               1.14                                1.38

0.7 0.80 1.23 1.64

0.9 0.80 1.32 1.92

0.5 0.90 1.28 1.76

0.7 0.90 1.39 2.09

0.9 0.90 1.48 2.41

0.5 0.99 1.75 3.06

0.7 0.99 1.83 3.33

0.9 0.99 1.89 3.61

P2 = 0.5a

            0.5                                0.80                                1.24                               1.46

0.7 0.80 1.40 1.83

0.9 0.80 1.64 2.59

0.5 0.90 1.35 1.69

0.7 0.90 1.50 2.07

0.9 0.90 1.73 2.85

0.5 0.99 1.48 1.96

0.7 0.99 1.61 2.33

0.9 0.99 1.82 3.11

a P2 is the proportion with the true exposure in the non-disease group. By definition of ORT, P1, the proportion with 
the true exposure in the diseased group is: P1 = P2 • ORT/(1 + P2 (ORT – 1)).
b ORO from Equations 1 and 2.

gastroendoscopy (25). The serum 
ELISA test was compared to a 
highly accurate measure, assessed 
by either a positive culture or two 
positive tests among three others 
(histology, Campylobacter-Like 
Organism (CLO) test and 13C-urea 
breath test), with these results:

Sensitivity and specificity of the 
ELISA test were:

sens = 103/107 = 0.96
spec = 47/63 = 0.75.

These estimates can be used 
to approximate the effect of the 
biomarker error on the results of 
the epidemiologic study. If one 
assumes that the measurement 
error in the future cohort study 
will be nondifferential, i.e. that the 
sensitivity and specificity are the 
same for cases and controls, then 
Equations 1 and 2 can be used to 
estimate the observed odds ratio, 
ORO. If the estimated true H. pylori 
infection prevalence is 70% in cases 
(P1) and 35% in controls (P2), then 
the true odds ratio, ORT, is:

ORT
 
=    .70(.65)    

= 4.3
	      .35(.30)

Then by Equations 1 and 2:

p1 = 0.96 • 0.70 + 0.25 • 0.30 = 0.75
p2 = 0.96 • 0.35 + 0.25 • 0.65 = 0.50

ORO
 
=    .75(.50)    

= 3.0
	      .50(.25)

This validity study shows that 
a study using the misclassified 
H. pylori test would find 75% of 
cases positive and 50% of controls 
positive (rather than 70% and 35%, 
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and ORT = 4.0, the observable odds 
ratio would be 1.64 for P2 = 0.01 and 
1.83 for P2 = 0.5. These observable 
odds ratios would not be detectable 
as different from the null value of 
1 unless the parent epidemiologic 
study sample size was large.

Effect of differential 
misclassification 
on the odds ratio

There is differential misclassification 
when the sensitivity of the biomarker 
test for the disease group differs 
from that for the non-disease 
group, and/or the specificity of the 
biomarker test for the disease group 
differs from that for the non-disease 
group. Differential misclassification 
can have any effect on the odds 
ratio: the observable odds ratio can 
be closer to the null hypothesis of 
OR = 1, be further from the null, or 
crossover the null compared with 
the true odds ratio. Thus, while the 
odds ratio under nondifferential 
measurement error can be assumed 
to be conservative (biased towards 
the null), the odds ratio when there 
is nondifferential error could be 
biased away from the null or even 
be in the wrong direction (e.g. it 
could make the biomarker appear to 
be a risk factor when it is, in fact, a 
protective factor). Equations 1 and 2 
can be used to estimate the impact 
of differential measurement error, 
by using the estimates of sensitivity 
and specificity in the disease group 
for the equation for p1, and estimates 
of sensitivity and specificity in the 
non-disease group for the equation 
for p2.

Measuring the error 
in a continuous biomarker 
using a validity study

Often a biomarker assay yields 
quantitative information about the 
amount of an analyte in a biologic 

specimen; these measures can 
usually be considered to be 
continuous variables. This section 
covers the parameters used to 
assess measurement error in 
a continuous biomarker from a 
validity study in which each subject 
is measured twice: once using the 
mismeasured biomarker and once 
using a perfect measure of the true 
exposure of interest.

The theory of measurement 
error in continuous variables 
was developed in the fields of 
psychometrics, survey research 
and statistics (26–32). The effects 
of measurement error also have 
been derived in the context 
of epidemiologic studies of a 
continuous exposure variable and a 
binary disease outcome (3,33–35).

A model of measurement error

A simple model of measurement 
error in a continuous measure X is:

Xi = Ti + b + Ei,

where:
μE = 0
ρTE = 0.

In this model for a given 
individual i, the measured biomarker, 
Xi, differs from the true value, Ti, by 
two types of measurement error. 
The first is systematic error, or bias, 
b, that would occur (on average) for 
all measured subjects. The second, 
Ei, is the additional error in Xi for 
subject i. E will be referred to as 
subject error to indicate that it varies 
from subject to subject. It does not 
refer just to error due to subject 
characteristics; rather it includes all 
of the sources of error outlined in 
Table 8.1.

For the population of potential 
study subjects, X, T and E are 
variables with distributions (e.g. the 
distribution of E is the distribution 

of subject measurement errors in 
the population of interest). X, T and 
E would have expected means in 
the population of interest denoted 
by μX, μT, and μE, respectively, 
and variances denoted by σ2

X, 
σ2

T, and σ2
E. Because the average 

measurement error in X in the 
population is expressed as a 
constant, b, it follows that μE, the 
population mean of the subject 
error, is zero. The assumption of the 
model that the correlation coefficient 
of T with E, ρTE, is zero states that 
the true value of the biomarker is not 
correlated with the measurement 
error. In other words, individuals 
with high true values are assumed 
to not have systematically higher (or 
lower) errors than individuals with 
lower true values.

Measures of measurement 
error: Bias and validity 
coefficient

Two measures of measurement error 
are used to describe the relationship 
of X to T in the population of interest, 
based on the above model and 
assumptions. One is the bias (i.e. 
the average measurement error in 
the population):

b = μX - μT 
.

The bias in X can be estimated 
from a validity study as the 
difference between the mean of X 
and the mean of T: b = X - T. If b 
is positive, then X overestimates T 
on average; if b is negative, then X 
underestimates T on average.

The other measurement error is 
a measure of the precision of X (i.e. 
the variation of the measurement 
error in the population). One 
measure of precision is σ2

E, the 
variance of E, which is often called 
the within-subject variance. (Note 
that b is a constant for all subjects 
and therefore does not contribute 
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to the variance of the error, σ2
E.) A 

more useful measure of precision 
is the correlation of T with X, 
ρTX, termed here as the validity 
coefficient of X. The measure ρTX 
is important because it relates the 
within-subject variance, σ2

E, to the 
total variance, σ2

X, and it is this ratio, 
along with the bias, that measures 
the impact of biomarker error on 
the parent epidemiologic study. ρTX 

can range between zero and one, 
with a value of one indicating that 
X is a perfectly precise measure 
of T. ρTX is assumed to be zero or 
greater (i.e. for X to be considered 
to be a measure of T, X must be at a 
minimum positively correlated to T).

The validity coefficient ρTX can 
be estimated in a validity study by 
the Pearson correlation coefficient 
of X with T. Thus, using the standard 
interpretation of a correlation 
coefficient, the correlation squared 
(ρ2

TX) can be interpreted as the 
proportion of the variance of X 
explained by T. For example, if ρTX 
were 0.8, this would mean that 
only 64% of the variance in X is 
explained by T, with the remainder 
of the variance due to the error.

To further understand the 
concepts of bias and precision, 
consider a situation in which X has 
a systematic bias, but is perfectly 
precise (i.e. Ei = 0 for all subjects). 
Suppose that the only source 
of error in a measure of serum 
cholesterol, for example, were that 
it quantified each individual exactly 
100 mg/dl too high. X would be 
biased (b = 100 mg/dl), but would 
have perfect precision (ρTX = 1.0). 
Then, in a population, the measure 
X, even though it has systematic 
measurement error, could be used 
to perfectly order each person in the 
population by their value of T.

There could also be situations in 
which there is no bias, yet there is 
lack of precision. Suppose that the 
measurement error, Ei, varied from 

person-to-person, but for some 
subjects their measured X was 
higher than their actual T, and for 
other subjects their measured X was 
lower than their actual T, but X on 
average in the population equaled 
the average T in the population. In 
this situation there is no bias (b = 
0), but there is lack of precision (ρTX 

< 1.0). In this case, the ordering of 
subjects is lost. Of course, most 
likely a biomarker has both bias and 
lack of precision.

The degree of measurement 
error is not an inherent property 
of a biomarker test, but rather is a 
property of the test applied using 
a particular protocol to a specific 
population. Therefore, the error 
can vary for a biomarker test when 
applied using a different protocol or 
when applied to different population 
groups. In addition, ρTX is generally 
greater in populations with greater 
variance of the true exposure 
(36). Therefore, a validity study 
conducted on one population may 
not directly apply to another study 
population.

Finally, measurement error 
could differ between those with and 
without the disease, particularly 
in a case–control study. Separate 
assessment of the bias and 
precision in these two groups is 
needed to assess differential error 
(see below).

The terminology surrounding 
measurement error varies between 
fields. In this chapter, the terms 
validity, accuracy and measurement 
error are used as general terms 
reflecting the relationship of X to 
T, including both the concepts of 
bias and precision. (In laboratory 
quality control, the terms validity 
and accuracy are sometimes used 
to refer to unbiasedness only.)

Impact of error 
in a continuous biomarker 
on epidemiologic studies

When the bias and validity coefficient 
of the biomarker (X) are known, 
one can estimate the impact of the 
degree of measurement error in X 
on the parent epidemiologic study 
that will use X. Both nondifferential 
and differential measurement errors 
will be discussed, but first the effect 
of measurement error on a single 
study population will be considered.

Effect of measurement error 
on the observable mean 
and variance

In a single study population, both the 
mean and variance of the measured 
biomarker X would differ from 
the true mean and variance due 
to measurement error. Under the 
above model, the population mean 
of X would differ from the true mean 
(the population mean of T) by b:

μX = μT + b.                               (3)

The population variance of X, 
based on the above model, would 
be (30):

σ2
X = σ2

T/ρ
2

TX.                          (4)

The variance of X in the 
population is greater than the 
variance of T, due to the addition of 
the variance of the measurement 
error. For example, if the validity 
coefficient (ρTX) were 0.8, then the 
variance of X would be 56% greater 
than the variance of T (σ2

X = σ2
T/.8

2 
= 1.56 σ2

T by Equation 4).
Figure 8.1 demonstrates the 

effect of measurement error on the 
distribution of X in a population using 
a normally distributed biomarker 
and normally distributed error as an 
example. The bias in the measure X 
causes a shift in the distribution of 
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X compared with T. The increased 
variance of X compared with 
T (measured by ρTX) causes a 
flattening of the distribution of X. 
Even if a measure X were correct 
on average (b = 0), there could still 
be substantial measurement error 
due to lack of precision, which could 
lead to a greater dispersion in the 
measured exposures.

Effect of nondifferential 
measurement error 
on the odds ratio

While measurement error has an 
effect on the observable mean 
and variance of an exposure 
variable within a single population, 
a greater concern would be the 
impact of measurement error in 
an epidemiologic study comparing 
those who have the disease of 
interest to those who do not. In 
a case–control or nested case–
control study, the common measure 
of association between a biomarker 
and disease is the odds ratio, which 
is often expressed as the odds ratio 
of disease for a u unit increase in the 
level of the biomarker. The results 
given here also approximately apply 
to estimates of the hazard ratio from 

data from a cohort study and the risk 
ratio from a matched case–control 
study (33). The results given in this 
section do not apply to odds ratios 
expressed as odds of disease for 
the upper quantile of the biomarker 
versus lowest quantile. They also 
do not apply when X and T are 
measured in different units in the 
validity study. For a discussion of 
these situations, see (12).

Errors in the measurement of 
the biomarker X would bias the 
odds ratio in the epidemiologic 
study. There is nondifferential 
misclassification when there is equal 
bias and equal precision (equal ρTX) 
in the biomarker test when applied 
to both the disease and non-disease 
groups in the parent epidemiologic 
study. Figure 8.2 illustrates 
the effects of nondifferential 
misclassification. Under 
nondifferential misclassification, 
the distribution of exposure in 
cases and in controls may shift, but 
because there is equal bias for the 
two groups, they are not shifted with 
respect to each other. However, the 
lack of precision flattens and leads 
to more overlap and less distinction 
between the distributions of XD, the 
biomarker in the disease group, and 

of XN, the biomarker in the non-
disease group, compared with the 
distributions of the true exposure in 
the two groups (TD and TN).

The effect of nondifferential 
measurement error in X on the 
odds ratio can only be easily 
quantified when certain simplifying 
assumptions are made. Results can 
be derived for case–control studies 
under the following assumptions: a) 
XD and XN meet the assumptions of 
the simple model of measurement 
error given above; b) TD and TN are 
normally distributed with different 
true means in the disease and 
non-disease groups, but the same 
variance, σ2

T ; c) the bias in X is the 
same for the two groups; and d) the 
errors, E, are normally distributed 
with mean zero and common 
variance,σ2

E, in the two groups. 
Assumption c and the second part of 
assumption d are the assumptions of 
nondifferential error (i.e. equal bias 
and equal precision of XD and XN).

The above assumptions imply 
a logistic regression model for the 
probability of disease (pr(d)) as a 
function of true biomarker T, with a 
true logistic regression coefficient 
βT (37):

 

Figure 8.1. Distribution of true (T) and measured (X) biomarker
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log    pr(d)    
= aT + bTT.

       1-pr(d)

The true odds ratio for any u unit 
increase in T would be ORT = ebTu.

With measurement error in the 
biomarker test X, the assumptions 
also lead to a logistic model:

 

log     pr(d)    
= ao + boX.

        1-pr(d)

ORO = ebou is the observable 
odds ratio for a u unit increase in X.

The observable logistic regression 
coefficient, βO, differs from βT due to 
the measurement error in X. Under 
nondifferential misclassification, βO 
is attenuated towards the null value 
of zero in comparison to βT (34,37) 
by this equation:

βO = ρ2
TXβT .                             (5)

Equivalently, ORO is attenuated 
towards the null value of 1 in 
comparison to ORT by this equation:

ORO = ORρ2
TX .                         (6)

	         T

This states that the observable 
odds ratio for any fixed difference in 
units of the biomarker is equal to the 

true odds ratio for the same fixed 
difference to the power ρ2

TX. Since  
0 ≤ ρ2

TX ≤ 1, the observable odds 
ratio will be closer to the null value of 
1 (no association) than the true odds 
ratio. The observable odds ratio 
does not cross over the null value if 
X and T are at a minimum positively 
correlated.

Equation 6 shows that the 
attenuation in the odds ratio under 
nondifferential misclassification 
is a function of the precision of X 
(measured by ρTX), but not of the bias 
in X. Thus, even when X is correct 
on average for cases and correct 
on average for controls (bias = 0 
for cases and for controls), the lack 
of precision of X can substantially 
bias the odds ratio. Examples 
of the effects of nondifferential 
measurement error in a biomarker 
on the odds ratio, based on the 
assumptions above and Equation 
6, are given in Table 8.3. The table 
shows that biomarkers with a validity 
coefficient ρTX of 0.5 would obscure 
all but the strongest associations. 
For example, when ρTX = 0.5 and 
the true odds ratio for a u unit 
change in the biomarker was 4.0, 
this odds ratio would be attenuated 
to an observed odds ratio of 1.41. 

Furthermore, measures as precise 
as ρTX = 0.9 still lead to a modest 
attenuation (e.g. a true odds ratio of 
4.0 would be attenuated to 3.07).

Effect of nondifferential 
measurement error 
on power and sample size

The examples above show that 
nondifferential measurement error 
in a biomarker leads to attenuation 
of the odds ratio for the association 
of the biomarker with the disease. 
This attenuation of the odds ratio 
would reduce the power of the 
epidemiologic study that uses the 
biomarker if the sample size were 
fixed. If the sample size was not 
fixed, it would lead to a need for a 
larger sample size to detect the 
attenuated odds ratio as different 
from the null value of 1.

When a continuous exposure 
with measurement error is used in 
an epidemiologic study, the sample 
size needed, NX, is compared to 
the sample size needed in a study 
in which the exposure is measured 
without error, NT. A simple formula 
shows this comparison (14,38):

NX = NT / ρ
2

TX.

Figure 8.2. Effect of nondifferential measurement error (equal bias and precision) on distribution of true (T) versus measured (X) 
biomarker in an epidemiologic study comparing disease (D) and non-disease (N) groups
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This formula may be of 
theoretical interest only, since 
estimates of the parameters needed 
when calculating the required 
study sample size should be based 
on the mismeasured exposure 
(e.g. σ2

X); as these estimates are 
usually available, the sample size 
calculations will yield the correct 
N. However, the above equation 
can be used to show the potentially 
dramatic effects of inaccurate 
biomarker measurement on the 
sample size required. For example, 
if the correlation between T and X 
is 0.7 (ρ2

TX = 0.49), then the sample 
size required when the imperfect 
measure is used is twice that 
required if a perfect measure were 
available. This shows that the error in 
biomarkers, with what is considered 
to be a good validity coefficient, still 
leads to a large increase in required 
sample size for the epidemiologic 
study that will use the biomarker.

Effect of differential 
measurement error 
on the odds ratio

Differential measurement error 
occurs when the bias in the 

mismeasured biomarker in the 
disease group differs from the bias 
in the non-disease group, and/
or the precision differs between 
groups. As noted above, differential 
measurement error should be a 
concern in a case–control study 
when the biomarker is measured 
within the preclinical disease phase 
before diagnosis or anytime after 
diagnosis, unless the marker is fixed 
(e.g. genotype). Differential bias 
has the most problematic effects: 
depending on the magnitude and 
the direction of the biases in XD 
and XN, the observable odds ratio 
for any u unit increase in X, ORO = 
ebou , could be towards the null value 
of one, away from the null, or cross 
over the null value compared with 
the true odds ratio.

Figure 8.3 presents a graphical 
example of differential measurement 
error, in particular, differential bias 
between cases and controls. In the 
figure, the true mean exposure level 
in the disease group,μTD

, is greater 
than the true mean level in the non-
disease group, μTN

. This would lead 
to an odds ratio above 1 for any u 
unit increase in T. In this example, 
the bias for the non-disease group 

is positive, so the distribution of XN is 
shifted to the right relative to TN, and 
the bias among those with disease 
is negative, so the distribution of 
XD is shifted to the left relative to 
TD. Differential bias would cause 
the observable odds ratio to cross 
over the null value of one (i.e. the 
biomarker would appear to be a 
protective factor, rather than a risk 
factor, as the controls would appear 
to have higher mean exposure than 
the cases).

Differential bias could be 
assessed by comparing the bias 
(X – T) for cases with the bias (X 
– T) among controls. To assess 
differential bias, T does not need 
to be perfect; rather, T only needs 
to have nondifferential bias (e.g. 
T could be based on specimens 
drawn years before diagnosis).

An example of differential bias 
comes from several case–control 
studies which found that low serum 
cholesterol, measured at the time 
of diagnosis, was a risk factor for 
colon cancer (39). This could be 
an artefact if increased catabolism, 
or other effects of colon cancer, 
reduce serum cholesterol. In fact, 
it was found that serum cholesterol 

Figure 8.3. Effect of differential measurement error (b1 ≠ b2) on distribution of true (T) versus measured (X) biomarker in an 
epidemiologic study comparing disease (D) and non-disease (N) groups
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measured 10 years before diagnosis 
was higher in colon cancer cases 
than controls (40). This suggests 
that serum cholesterol measured at 
the time of diagnosis had differential 
bias; it likely underestimated the true 
etiologic exposure (say, true serum 
cholesterols a decade before) among 
cases due to the effects of the cancer, 
while it may have overestimated the 
true serum cholesterol a decade 
before among the controls (due to 
a tendency of cholesterol levels to 
increase with age).

Differential bias is a greater 
concern than differential precision 
because, as described above, 
differential bias can lead to a shift 
in the distribution of the biomarker 
in one group relative to the other. 
Differential measurement error 
will also occur if precision differs 
between groups. If there were 
no differential bias, but precision 
differed, the shape of the odds ratio 
function could change. For example, 
the observable odds ratio curve 
could be U-shaped when the true 
exposure–disease relationship is 
increasing (41).

More details about the design, 
analysis and interpretation of validity 
or reliability studies to assess 
differential measurement error are 
given in (16).

Measuring the error 
in a biomarker using 
a reliability study

The term reliability is used to 
refer to the reproducibility of a 
measure, that is, how consistently 
a measurement can be repeated 
on the same subjects. Reliability 
can be assessed in several ways, 
but only one type, intramethod 
reliability, will be covered in this 
chapter. Intramethod reliability 
studies measure the reproducibility 
of a measurement on the same 
subjects repeated two or more times 

using the same method, but often 
with some variation. For example, 
a comparison could be made of a 
biomarker from a single specimen 
from each subject analysed by the 
same laboratory technician twice, 
or analysed by two laboratory 
technicians, or from two specimens 
on each subject collected at two 
points in time. Reliability studies, in 
which two different analytic methods 
are compared, with one better 
than the other but neither perfect 
(intermethod reliability studies), 
are not covered here (see (12)). 
Measures of reliability are primarily 
important for what they reveal 
about the validity of a biomarker 
test, because as shown above, the 
bias in the odds ratio in the parent 
epidemiologic study is a function 
of the validity of the biomarker 
measure.

This section covers the 
parameters used to measure 
reliability, the interpretation of 
measures of reliability in terms of 
measures of validity, and the use of 
parameters from reliability studies to 
estimate the bias in the odds ratio in 
the parent epidemiologic study that 
will use the biomarker.

A model of reliability 
and measures of reliability 
for continuous biomarkers

Suppose each person in a sample 
of interest is measured two or more 
times using the same continuous 
biomarker test that will be used 
in the parent study. For a given 
subject i, two (or more) biomarker 
measurements, Xi1 and Xi2, are 
obtained. The simple measurement 
error model described above applies 
to each measure:

Xi1 = Ti + b1 + Ei1

Xi2 = Ti + b2 + Ei2

Both Xi1 and Xi2 are measures of 
the subject’s true biomarker Ti, but 
with different errors. In a reliability 
study, information is available on 
X1 and X2 for each subject, but not 
on T. A reliability study can yield 
estimates of the mean of X1 and X2 

(µX1 and 
µX2) and of the correlation 

between the two measures, ρX, 
termed the reliability coefficient.

The intraclass correlation 
coefficient (ICC) is generally used 
as the reliability coefficient for 
continuous biomarkers (see (12,14) 
for computational formulas). The ICC 
differs from the Pearson correlation 
coefficient in that it includes any 
systematic difference between X1 
and X2 (i.e. any difference between 
b1 and b2) as part of the subject error 
E (the error that varies from subject-
to-subject). The assumption is that 
in the parent epidemiologic study, 
each subject will be measured 
once, by either X1 or X2 (e.g. either 
by laboratory technician 1 or 2). 
Therefore, any systematic difference 
between X1 and X2 would not be a 
systematic bias affecting everyone 
in the parent study, but would vary 
between subjects because some 
are measured by X1 and some by 
X2. Thus, the ICC is equal to 1 only 
when there is exact agreement on 
all measures on each subject (which 
differs from the Pearson correlation 
coefficient, which is equal to 1 
when X1 is a linear function of X2). 
Because X1 and X2 will be used as 
interchangeable measures of X in 
the parent study, and more than two 
replicates per subject can be used 
to compute the ICC, the reliability 
coefficient of X is written as ρX.

Two measures of the validity of 
a continuous biomarker measure 
X, the bias and the validity 
coefficient, were shown to be 
important in assessing the impact 
of measurement error on the parent 
epidemiologic study, which will use 
X. Unfortunately, reliability studies 
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generally cannot provide information 
on the bias in X, because a similar 
bias often affects both X1 and X2. 
The inability of many reliability 
study designs to yield information 
on the bias, and on differential bias 
between cases and controls, is a 
major limitation. It should be recalled, 
however, that under nondifferential 
measurement error (and certain 
other assumptions), the attenuation 
of the odds ratio depends only on 
the validity coefficient and not on 
the bias. The reliability coefficient 
does provide information about the 
validity coefficient, and thus can 
be used to estimate the effects of 
measurement error on the parent 
study under the assumption of 
nondifferential measurement error.

Relation of reliability to 
validity under the parallel test 
model

When certain assumptions are 
met, reliability studies can yield 
estimates of the validity coefficient. 
One such set of assumptions is the 
model of parallel tests (27,29–31). 
The first assumption of the parallel 
test model is that the error variables, 
E1 and E2, are not correlated with the 
true value T. The second is that E1 
and E2 have equal variance σE

2. This 
also implies that X1 and X2 have 
equal variance and that X1 and X2 
are equally precise (ρTX1 = ρTX2). This 
is usually a reasonable assumption 
in intramethod reliability studies, 
since X1 and X2 are measurements 
from the same method. Third, it is 
assumed that E1 is not correlated with 
E2. This important (and restrictive) 
assumption implies, for example, 
that an individual who has a positive 
error, E1, on the first measurement 
is equally likely to have a positive or 
a negative error, E2, on the second 
measurement. These assumptions 
are often summarized by saying that 
two measures are parallel measures 

of T if their errors are equal and 
uncorrelated.

Under the assumptions of 
parallel tests, it can be shown that 
(30):  

ρTX = ѴρX .                                 (7)

This equation states that the 
validity coefficient of X, ρTX, can be 
estimated to be the square root of 
the reliability coefficient, ρX. This 
result is important because it shows 
that if the assumptions are correct, 
the reliability coefficient, which is a 
measure of the correlation between 
two imperfect measures, can be 
used to estimate the correlation 
between T and X without having a 
perfect measure of T. The correlation 
of the replicates of X is less than 
the correlation of X with T, as each 
replicate has measurement error.

A reliability study of a biomarker 
test can often be assumed to have 
equal and uncorrelated errors if 
the replicates within each person 
are sampled over the entire time 
period to which the true biomarker is 
intended to relate (if the biomarker 
can vary over time); the specimen 
handling, storage and analytic 
techniques vary in the reliability 
study as they will in the parent study; 
and the true exposure is defined as 
the mean measure over the relevant 
time period of repeated measures of 
the assay.

An example comes from 
a study which examined the 
reliability of serum hormone 
levels in premenopausal women 
(42). The goal was to understand 
whether a single blood draw was 
sufficiently accurate to be used 
in a large prospective study of 
serum hormones and cancer risk 
among premenopausal women. 
The reliability study included 113 
women who had blood drawn once 
a year for three years during both 
the middle of the follicular and luteal 

phases of their menstrual cycles. 
The reliability coefficient (intraclass 
correlation coefficient) was 0.38 for 
total estradiol during the follicular 
phase and 0.45 during the luteal 
phase. The repeated measures in 
this study are close to the parallel 
test model: the errors on each of the 
repeated measures can be assumed 
to be equal because the same test 
procedure was repeated, and the 
errors are likely to be uncorrelated 
(i.e. a woman whose hormone 
measure was higher than her “true” 
three-year average on one measure 
is not more likely to be higher than her 
true average on another measure). 
This study also measured most 
sources of error, such as error due 
to variations in blood processing, 
storage and laboratory technique, 
and error due to long-term variation 
of plasma hormones within women. 
Therefore, the estimated validity 
coefficient (ρTX) for a single measure 
of total estradiol (X) as a measure of 
average estradiol over three years 
(T), based on Equation 7, is 0.62 if 
blood were drawn during the mid-
follicular phase and 0.67 if drawn 
during the mid-luteal phase.

Based on Equation 7, the results 
in the last section on the effects of 
measurement error on the odds 
ratio can be expressed in terms of 
ρX rather than ρT

2
X. When the parallel 

model holds, Equation 6 can be 
written:

ORO = ORT
ρX  .                            (8)

From the example above (42), 
use of a single measure of total 
estradiol during the mid-luteal 
phase, with a reliability coefficient 
of 0.45 in a cohort study of total 
estradiol and breast cancer, would 
attenuate a true odds ratio of, for 
example, 4.0 to an observed odds 
ratio of 1.9 (from Equation 8). Other 
examples of the bias in the odds 
ratio (under the parallel test model) 
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from various degrees of unreliability 
are given in Table 8.3.

Relation of reliability to 
validity for correlated errors

In actual reliability studies, the 
assumptions of parallel tests are 
often incorrect. One assumption 
that is frequently violated is that 
of uncorrelated errors. Often the 
error in one measure is positively 
correlated with the error in the other 
(ρE1E2 > 0). Correlated errors occur 
when the sources of error in the first 
measurement on a subject tend to 
repeat themselves in the second. 
If in a reliability study, for instance, 
blood was drawn only once on 
each subject and analysed twice, 
and the true marker of interest was 
the mean value of the biomarker 
over several years surrounding the 
time of measurement, there would 
be correlated error. For example, 
suppose the reliability of serum 
β-carotene was assessed by 
repeated laboratory analysis from a 
single blood draw. This would have 
correlated error, as an individual 
whose β-carotene level was higher 

on the first measure than the true 
long-term average (perhaps due 
to a seasonal variation in intake of 
β-carotene) would also likely be 
higher on the second measure than 
the true value, because the second 
measure used the same specimen. 
Because part of the error is repeated 
in both X1 and X2, the errors are 
correlated. This means the reliability 
study does not capture all sources 
of error in X, and therefore the 
reliability coefficient, ρX, is artificially 
too high.

When the errors of the measures 
used in a reliability study are positively 
correlated, then the reliability study 
can only yield an upper limit for 
the validity coefficient. Specifically, 
when X1 and X2 are equally precise, 
and the assumptions of the above 
model hold except that the errors 
are correlated, then the validity 
coefficient is less than the square 
root of the reliability coefficient (1): 	

ρTX < ѴρX .                               (9)

Thus, a measure can appear 
to be reliable (repeatable) even 
if it has poor validity. While a low 

reliability coefficient implies poor 
validity, a high reliability does not 
necessarily imply a high validity 
coefficient. The high reliability may 
be due instead to correlated errors 
within subjects. The reliability 
coefficient is only diminished by 
part of the error in X (the part that is 
not repeated in X1 and X2), whereas 
the validity coefficient is a measure 
of all sources of error. When there 
is correlated error (i.e. when only 
part of the error is measured by a 
reliability study), then the attenuation 
of the odds ratio will be even greater 
than that predicted by Equation 
8. Reliability studies should be 
designed, therefore, to capture all of 
the sources of error in the biomarker 
X, including error due to variations 
of specimen collection, variations 
between laboratory technicians, and 
within-person variations over time. 
(The concepts of correlated error, 
repeated within-person error, and 
failure of a reliability study to capture 
all sources of error, each describe 
the same phenomenon.)

Sometimes it is only possible 
or desirable to assess some 
components of error. To assess the 
laboratory error, a blinded test-retest 
reliability study on split samples from 
a single specimen from each subject 
in the reliability study, analysed in 
separate batches and by different 
laboratory technicians (if multiple 
laboratory technicians were going to 
be used in the parent epidemiologic 
study), would yield an intraclass 
correlation coefficient that measures 
the laboratory component of error 
only. Similarly, other reliability 
studies could be designed to test 
the effect of handling, storage, and 
short-, medium- and long-term 
biologic variation by only varying 
these components. When only some 
components of error are measured, 
there is correlation error and the 
resulting intraclass correlation just 
provides an upper estimate of the 

ρTX
a ρX

b True ORc=2.0
ORO

d
True ORc=4.0

ORO
d

.50 .25 1.19 1.41

.60 .36 1.28 1.65

.70 .49 1.40 1.97

.75 .56 1.48 2.18

.80 .64 1.56 2.42

.85 .72 1.65 2.72

.90 .81 1.75 3.07

.95 .90 1.87 3.49

Table 8.3. Impact of nondifferential measurement error in a normally distributed 
biomarker X on the Observable Odds Ratio (ORO)

aρTX is the validity coefficient of X.
bρX is the reliability coefficient of X under the parallel test model (see text):

ρX = ρ2
TX

cThe true OR = is the odds ratio for a u unit difference in T for comparison to ORO for a u unit difference in X.
dORO from Equation 6 or 8. See text for model and assumptions.
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validity coefficient (see Equation 
9). However, by estimating the 
components of error, the researcher 
can seek to improve those aspects 
having the most adverse effects. 
For example, enhanced laboratory 
quality control procedures could be 
used to reduce laboratory error, or 
multiple specimens (over time) per 
subject could be used to reduce the 
error due to medium- or long-term 
biologic variation. Finally, nested 
reliability study designs can be used 
to estimate the different components 
of error within one reliability study (4).

Coefficient of variation

One additional analytic technique 
for reliability studies of continuous 
biomarkers, the coefficient of 
variation (CV) deserves mention 
(43). For laboratory measures, 
reliability is often assessed by 
repeated analysis of a single 
reference material. For example, a 
single pooled blood sample might be 
analysed 10 times to yield measures 
of the biomarker X. In such studies, 
the mean and variance of X can be 
used to assess the reliability of X. 
A reliability coefficient cannot be 
estimated because there is only one 
sample. Instead a CV, defined as the 
standard deviation of X divided by 
the mean of X x 100, is often used:

CV % =  s.d.X  x  100.
X

A small CV is considered to indicate 
a reliable measure. 

The CV provides only limited 
information about measurement 
error for two reasons. First, this type 
of reliability study only assesses 
the laboratory error and excludes 
errors due to storage and handling 
of specimens, and to the variation 
in the measure over time within 
individuals, which are usually greater 
sources of error in epidemiologic 
studies than the laboratory error. 

Second, the CV cannot be used to 
even assess the effect of laboratory 
error on the odds ratio. This is due 
to the fact that the CV is an estimate 
of the ratio of the standard deviation 
of X (which is an estimate of the 
standard deviation of the error (σE), 
as the true value of T is the same 
for each replicate) to X, but it is ρTX 
which is a function of the ratio of the 
error variance to the total variance 
in X in the population of interest, that 
is needed to understand the impact 
of measurement error.

Reliability studies 
of binary biomarkers

Issues in the design and 
interpretation of reliability studies 
of binary biomarkers are similar 
to the issues discussed above for 
continuous biomarkers. However, 
the parameter used to measure the 
reliability of binary biomarkers is 
kappa (κ) rather than the intraclass 
correlation coefficient (44).

To compute κ for a binary marker, 
subjects are cross-classified by 
results on their first and second 
repeated measurements into a 2x2 
table as follows:

where p11 is the proportion of relia-
bility study subjects classified as 
positive on both measures, p12 is the 
proportion classified as positive on 
measure 1 but negative on measure 
2, etc. Note that the four proportions 
(pij) sum to 1. The overall (marginal) 
proportions of those who are posi-
tive and negative for measure 1 are 
r1 and r2 respectively, and the margi-
nal proportions on the second mea-
sure are s1 and s2.

One measure of agreement is 
the observed proportion for whom 

there was agreement. The observed 
proportion of agreement, Po, is 
the sum of the proportions on the 
diagonal:

Po = p11 + p22.

However, this simple measure 
does not take into consideration the 
agreement that would be expected 
by chance. For example, suppose 
the first reader of a stain on a slide 
accurately classified 10% of subjects 
as positive and 90% as negative, but 
the second reader simply classified 
all slides as negative. Then the 
percentage agreement would be 
90%, which does not reflect the poor 
repeatability across readers.

Kappa is a measure of 
agreement that corrects for the 
agreement expected by chance. 
The expected agreement by chance 
(on the diagonal), Pe, is:

Pe = r1s1 + r2s2.

Kappa is the observed 
agreement beyond chance divided 
by the maximum possible agreement 
beyond chance, and is estimated as:

                       .

Kappa ranges from zero (no 
agreement beyond chance) to 1 
(perfect agreement), although it 
can be less than zero if agreement 
is less than expected by chance. 
(See (12,45) for the computation of 
confidence intervals for κ.)

Similar to the concepts discussed 
above for continuous biomarkers, 
the results of a reliability study of 
a binary biomarker can, in some 
situations, be used to estimate the 
impact of biomarker error in the 
parent epidemiologic study that will 
use the biomarker. If the reliability 
study meets the assumptions of 
equal and uncorrelated error of 
the parallel test model (described 

 =
PO - Pe

1 - Pe
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above), and of nondifferential 
measurement error, then κ can be 
used to estimate the bias in the odds 
ratio. Specifically, it has been shown 
that under these assumptions, this 
equation provides an approximation 
of the attenuation of the odds ratio 
(46):

ORo = ORT 
Ѵκ.                        (10)

Similar to continuous measures, 
when the reliability study of a binary 
maker does not capture all sources 
of error (i.e. when some sources of 
error are repeated within-subjects 
(correlated)), κ will be artificially too 
high. Therefore, the attenuation of 
the odds ratio will be even greater 
than that predicted by Equation 10.

Review and conclusion

Before embarking on an 
epidemiologic study that uses a 
biomarker, it is important to research 
and understand the measurement 
error in that biomarker. This can be 
accomplished by reading previously 
published works on validity/reliability 
studies of the biomarker of interest, 
or conducting a new validity/
reliability study. Measurement error 
in a biomarker refers to the error of a 
specific biomarker test, as applied in a 
specific way to a specific population, 
versus the true (etiologic) exposure. 
In epidemiologic studies, this error 
includes not only laboratory error, 
but also errors (variations) introduced 
during specimen collection, handling 
and storage, and due to month-
to-month and year-to-year within-
person variability of the biomarker.

Validity studies compare 
the biomarker to be used in an 
epidemiologic study to a perfect or 
near-perfect measure on a sample 
of subjects. The parameters used to 
quantify the error in a binary marker 
are sensitivity and specificity. For a 
continuous biomarker, X, the validity 

can be estimated by the bias (X - T)   
and by the validity coefficient ρXT 

(correlation coefficient of X with T), 
where T is the (continuous) measure 
of the true exposure. To assess 
whether the error is differential 
between those with and without 
the disease, separate analyses on 
a group of cases and a group of 
controls are needed.

Often a perfect measure of the 
exposure is not available, so reliability 
(repeatability) studies are conducted. 
For these, a sample of subjects is 
measured twice using the same 
marker to measure errors (variations) 
in the biomarker over time, between 
laboratory technicians, etc. The 
reliability study should be designed to 
capture all sources of error, so that the 
error in one measure is not repeated 
in (correlated with) the errors in the 
other measures. To design a reliability 
study without correlated error, the 
repeated specimens for each person 
must be collected at different times 
over the relevant etiologic time period 
and handled, stored, and analysed 
with the degree of variation (different 
specimen collectors/laboratory 
technicians/batches) as would occur 
in the parent epidemiologic study. 
Reliability studies are analysed using 
κ for binary biomarkers and the 
intraclass correlation coefficient for 
continuous biomarkers.

Equations 1, 2, 6, 8 and 10 can be 
used to interpret these parameters 
from validity or well-designed 
reliability studies to estimate the 
degree of bias in the risk ratio in an 
epidemiologic study that will use the 
biomarker. These equations assume 
nondifferential measurement error 
(i.e. equal biomarker error for those 
with and without the disease). 
Nondifferential measurement error 
in the biomarker attenuates the 
risk ratio in an epidemiologic study 
towards the null value of one. This 
attenuation is often quite substantial, 
even for reasonably accurate 

biomarker measures. For continuous 
markers, the impact of nondifferential 
measurement error depends only on 
the validity coefficient ρXT, and not on 
the bias (Equation 6).

Differential biomarker error 
between those with the disease and 
those without can bias the risk ratio 
in any direction, and even make a risk 
factor appear to be protective. Thus, 
differential error can completely 
invalidate an epidemiologic study 
and must be avoided. Differential 
measurement error is a particular 
concern in case–control studies (and 
among the early cases in cohort 
studies) when the biomarker is not 
a fixed marker (e.g. genotype), and, 
therefore could be influenced by the 
disease, its preclinical phase, or its 
treatment. Assessment of differential 
error requires specimens on a sample 
of cases years before diagnosis and 
comparable early specimens on 
controls. This measure can serve 
as the “true” marker, even if it is not 
perfect, as long as it does not have 
differential error. For continuous 
variables, differential bias has the 
most problematic effects on the 
risk ratio; it could be estimated by 
comparing bias (X - T) for cases with 
bias (X - T) among controls.

One goal of giving examples of 
the large effects that even moderate 
degrees of biomarker measurement 
error have on epidemiologic studies, 
is to motivate attention to reducing 
the biomarker error. The researcher 
should focus on reducing the errors 
through appropriate quality control 
techniques for specimen collection, 
storage and laboratory analyses, 
and, if needed, by use of multiple 
measures over time in the parent 
epidemiologic study to reduce the 
errors caused by biomarker variation 
over time. These important methods 
and additional approaches to reduce 
biomarker error in epidemiologic 
studies are covered in other chapters 
of this book and by (12,15).
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unit 3.
assessing exposure to the environment

chapter 9.  

Environmental 
and occupational toxicants

Frank de Vocht, Jelle Vlaanderen, Andrew C. Povey, Silvia Balbo, and Roel Vermeulen

Summary

Biological monitoring is the analysis 
of human biological materials for 
a substance of interest and/or 
its metabolites (biomarkers) or a 
biochemical change that occurs as 
a result of an exposure to provide a 
quantitative measure of exposure or 
dose. These measures can be used 
in epidemiological studies either 
directly as estimates of exposure 
or indirectly in the calibration 
of other exposure assessment 
methods, such as questionnaires. 
This chapter will discuss important 
methodological considerations for 
the implementation of biomarkers of 
exogenous exposure in epidemiology 
by focusing on biomarker 
characteristics (e.g. variability, half-
life) and their application in different 
study designs.

Exposure assessment 
in environmental and 
occupational epidemiology

In general, the goal in environmental 
and occupational epidemiology is to 
estimate the association between 
levels of exposure and their impact 
on health in human populations in 
a valid and precise manner. (The 
analytical and technical aspects 
of measuring specific biomarkers 
of exposure will not be discussed 
here; see chapters 4 and 11 on 
biological monitoring of chemicals 
and nutrients, respectively). In these 
studies, ‘exposure’ is described 
as a substance or factor affecting 
human health, either adversely or 
beneficially, which in practice is 
usually regarded as an estimate of 
the ‘true’ exposure a subject under 
study might receive (3). Exposure 
might originate from environmental 

or occupational sources, which, 
within the context of this chapter, 
are included within environmental 
epidemiology. Exposure to humans 
can be considered a dose when a 
distinction is made between the 
available dose, which is the dose 
that is available for uptake in the 
human body; the administered dose 
(or intake); the absorbed dose, which 
actually enters the body (uptake); 
and the biologically effective dose, 
which reaches the target cells in 
the body. The objective of exposure 
measurements in any environmental 
or occupational epidemiological 
study is to provide an unbiased 
measure of the actual exposure or 
dose that an individual receives. 
To optimize the quantification of 
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the association between exposure 
and health effects, these estimates 
of exposure should be accurate, 
precise, biologically relevant, 
apply to the etiological important 
exposure period, and show a range 
of exposure levels in the population 
under study (3).

Exposure is generally 
characterized by the physical and 
chemical properties of the agent, 
its intensity, and temporal variability 
(4,5). There can be considerable 
variability in all of these factors, 
temporal as well as between study 
subjects, which allow them to be 
used as metrics for exposure. 
Several distinct exposure metrics 
are used in epidemiological 
studies: cumulative exposure 
(total accumulated dose), average 
exposure (total accumulated dose 
divided by time), and peak exposure 
(highest exposure level experienced 
by a subject in a given time period). 
Each of these exposure metrics can 
be derived for the whole lifetime 
of each study subject or just for 
a particular etiologically relevant 
time period. Whereas cumulative 
exposure, average exposure, 
and peak exposure are basically 
interchangeable for short time 
periods, they might not be for long-
term exposures due to complex 
exposure patterns over time (4).

Epidemiological studies 
generally deal with large population 
sizes. This makes estimating 
exposure for all individual study 
subjects difficult, as often not 
all subjects’ exposure can be 
measured. Researchers therefore 
have to rely on some form of 
modelled or surrogate measure for 
true exposure. In general, there 
are two study types for exposure 
assignment: individual-based 
studies, in which exposure levels 
and health outcomes are measured 
for all persons; and group-based 
studies, in which samples of 

persons are measured in each 
of several groups and group-
specific mean values of exposure 
levels are used to estimate the 
exposure-response association (6). 
In the group-based approach, it is 
important that measurements are 
made on a random selection of the 
population; often, however, they are 
based on convenience samples. 
In environmental epidemiological 
studies, these groups are generally 
defined on the basis of the presence 
or absence of an exposure source 
and the distance from it, while in 
occupational studies, exposure 
groups are often defined by 
factories, departments, or job titles 
(3). The underlying assumption 
when using this strategy for 
grouping is that subjects within each 
group are exposed to comparable 
exposure characteristics (e.g. 
intensity, cumulative exposure).

Environmental studies tend to 
have larger within-subject variability 
and smaller between-person and 
between-group variability than 
occupational studies. Therefore, 
group-based designs will generally 
be more appropriate to investigate 
exposure-response associations in 
the general population, but to a lesser 
extent for occupational studies (6). 
However, in both individual- and 
group-based designs, the relatively 
large within-subject variability in 
environmental and occupational 
exposures, emphasizes the 
importance of collecting multiple 
exposure measurements for 
each subject in the study (3,5). 
To assess the relative impact of 
temporal, between-subject, and 
between-group variability, studies 
using a repeated measures design 
should be conducted. This study 
design uses multiple exposure 
measurements for study subjects 
or groups in time to estimate these 
variance components by means of 
advanced statistical techniques, 

including (hierarchical) mixed 
effects models (7).

If the intensity or duration of 
exposure is poorly characterized, 
due to random measurement or 
misclassification error, the resulting 
estimated exposure-response 
associations will often underestimate 
the true risk for a given exposure 
level. This is known as attenuation 
bias. The expected attenuation in 
the risk estimate β in a common 
regression model (Yi~α + β1x1 + ei) 
to assess an exposure-response 
association, can, for group-based 
studies, be estimated by (8):

     ^ 
E(β1) = 

       β1          

                  σ2
wg        

  
   1 +

            knσ2
bg + nσ2

bh

              ^ 
where E(β1) is the expected risk 
estimate (β1) adjusted for attenuation 
bias, σ2

wg is the within-group 
variance (i.e. between-subject), σ2

bg 
is the between-group variance, σ2

bh 
is the within-subject variance, k is 
the number of randomly selected 
subjects, and n is the number of 
repeated measurements per subject.

While for individual-based studies 
this can be described by:

     ^ 
E(β1) = 

  β1    

              σ2
ws 

              σ2
bs

where σ2
ws is the within-subject 

variance and σ2
bs is the between-

subject variance.
Non-random or differential 

measurement or misclassification, 
which can result from errors in 
the design of the study or the 
measurement technique, can both 
over- or underestimate an exposure-
response association depending on 
the magnitude and direction of the 
bias.
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Application of exposure 
markers in environmental 
epidemiology

Biomarkers of exposure generally 
aim at measuring the level of an 
external agent, or its metabolites, 
in either the free-state or bound 
to macromolecules. The range 
of biological samples that can be 
obtained and analysed includes: 
blood, urine, exhaled breath, hair, 
nails, milk, feces, sweat, saliva, 
semen, and cerebrospinal fluid. The 
choice of biological sample depends 
on the substance of interest, its 
characteristics (e.g. solubility, 
metabolism, transformation, and 
excretion), and how invasive the 
method to obtain it is. As such, 
several biomarkers can be available 
to represent the same exposure, 
including the parent compound itself, 
a metabolite, or a macromolecular 
DNA or protein adduct (9).

Whereas ‘classical’ methods of 
exposure assessment provide an 
estimate for exposure from one route 
of exposure only (e.g. inhalation 
through the respiratory system, 
ingestion through the gastrointestinal 
system, or absorption through 
the skin) (3), biological monitoring 
has the theoretical advantage 
of integrating exposures from all 
exposure routes. In addition, it also 
covers unexpected or accidental 
exposures and reflects interindividual 
differences in uptake, metabolism, 
genetic susceptibility, and excretion 
(10–12). However, some exposure 
biomarkers can also be formed 
endogenously and levels may then 
reflect both endogenous formation 
and exogenous exposures (13). 
Nonetheless, the use of exposure 
markers in epidemiology could 
potentially lead to a more accurate 
and/or more biologically relevant 
exposure estimate than ‘classical’ 
methods. For instance, biomarkers 
for tobacco specific N-nitrosamines, 

such as 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK), 
might be more relevant for certain 
research questions than self-
reported smoking habits, as NNK 
is a known carcinogen and urinary 
levels of its reduction product 
4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanol (NNAL) reflect differences 
in smoking habits, the type of 
tobacco, and individual metabolism 
(see the example below on tobacco 
smoke).

Biomarker characteristics

The choice of a biomarker will 
depend on several considerations, 
but the main issues are its kinetic 
parameters and the knowledge 
of the mechanistic basis of the 
adverse effects (9). Of these, the 
biological relevance (i.e. association 
with ‘true’ exposure at the site of 
action) is generally considered the 
most important selection criterion 
(14). However, although it is usually 
assumed that the biomarker is 
in some way associated with the 
exposure and the disease, limited 
information is often available on 
where the markers are located along 
the multistep pathway from exposure 
to human disease (14). Furthermore, 
to date, only a few biomarkers have 
been properly validated (15), which 
limits their application. The National 
Health and Nutrition Examination 
Survey (NHANES), conducted by the 
US Centers for Disease Control and 
Prevention (CDC), provides a good 
overview of exposure biomarkers 
and reference values in the normal 
population for many environmental 
exposures (http://www.cdc.gov/
nchs/nhanes.htm).

In addition to the biological 
relevance of the biomarker, its 
biological half-life is a critical 
characteristic. ‘Biological half-life’ 
refers to the biological clearance 
of the biomarker from the target 

tissue. It can be derived from 
several sources, including empirical 
modeling of experimental data, 
compartment models incorporating 
experimentally determined rate 
constants, or from simulations based 
on physiologically and metabolically 
based parameters (16). Biological 
half-lives vary substantially between 
biomarkers. The half-lives of some 
compounds measured in the 
NHANES survey are presented in 
Figure 9.1.

The interpretation of a biomarker 
measurement depends on the 
sampling time, as each biomarker 
has a specific half-life. The 
analysis may reflect the amount of 
chemical absorbed shortly before 
the sample was taken, in the case 
of a biomarker with a short half-
life (e.g. nicotine in blood); it may 
reflect exposure occurring during 
the preceding days for markers with 
intermediate half-lives (e.g. cotinine 
in blood); or it may reflect the dose 
integrated over a period of months 
for biomarkers with long half-lives 
(e.g. 3- and 4-aminobiphenyl-
haemoglobin adducts). Additionally, 
some chemicals accumulate in 
specific tissues or organs; thus 
the biomarker value may reflect 
cumulative exposure over a period 
of years (16). However, most existing 
exposure markers have relatively 
short half-lives, with exceptions like 
some metals, and persistent organic 
pollutants like polychlorinated 
biphenyls and dioxins (Figure 9.1).

In general, biomarkers with 
relatively long half-lives are preferred, 
reflecting weeks, months, or even 
years of exposure when studying 
chronic health effects. This does not 
automatically mean that biomarkers 
with relatively short half-lives cannot 
be used in epidemiological studies; 
they are useful in studies of acute 
biological or health effects or where 
exposure is relatively constant over 
time.
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Analytical variability

One source of variability in 
biomarker studies is laboratory, or 
analytical, variability. Before a new, 
promising biomarker can be used 
in population studies, transitional 
studies should first be conducted 
to characterize the biomarker in 
terms of accuracy, reliability in the 
laboratory, and optimal conditions 
for use (17). These studies should 
make certain that the analytical 
results are sufficiently accurate 
to ensure correct interpretation of 
the biomarker results in population 
studies and that the results will be 
reproducible.

At present, the contribution 
of analytical variability to total 
variability is, in general, much lower 
than biological variability because 
of improved techniques and quality 
assurance procedures in biomarker 
assessment (9,18). This variability 
can be further reduced by sharing 
methods and techniques and 
exchange of reference materials 
between laboratories (9).

Individual and temporal 
variability

Variability in biomarker responses, 
for continuous, non-fixed biomarkers, 
has two dimensions: an individual 
dimension and time. Individual 
variability in biomarker responses 
will depend on external exposure 
variability and on interindividual 
differences as to how an individual 
metabolizes the agent of interest. 
The temporal variability in biomarker 
response depends primarily on the 
half-life and on the temporal variability 
in exposure. Driven by financial or 
logistic motivations, the assumption is 
often made in epidemiologic studies 
that biomarker levels (and other 
traditional measures of exposure) 
are a fixed attribute of an individual, 
rather than being time-dependent, 

and as such are measured at only 
one single point in time. However, 
for this to be valid, biological steady-
state conditions are required. In 
practice, these are not likely to occur 
since they require stable biokinetics, 
a constant rate of exposure, dynamic 
equilibrium among body tissues, 
and a sufficiently long period of time 
for the biomarker to stabilize in all 
relevant tissues (19).

In general, ignoring the temporal 
variability in biomarker response leads 
to additional classic measurement 
error, which results in the attenuation 
of the biomarker-disease association 
(17). Biomarkers with relatively short 
half-lives generally display more 
temporal variability than biomarkers 
with relatively long half-lives, which 
is related to the dampening of the 
temporal variance in exposure over 
time (17,20). It has been shown that 
whereas less than 50% of the temporal 
variance in exposure is transmitted 
for many biological markers with 
a half-life of more than 40 hours, 
the dampening effect is negligible 
for markers with a half-life of less 
than five hours (21). In Figure 9.2, 
examples of constant and variable 
occupational and environmental 
exposure circumstances are given 
for biomarkers with different half-
lives (i.e. five, 20, and 100 hours). 
These examples suggest that 
because biomarkers with a relatively 
short half-life are more sensitive 
to fluctuations of exposure from 
hour-to-hour and day-to-day, that 
timing of sample collection becomes 
increasingly important. The 
exception to this is when exposures 
are constant over time. Therefore, 
the use of biomarkers with relatively 
long half-lives is generally more 
appropriate for epidemiological 
studies, especially when they can 
be measured only at a single point 
in time and not necessarily in the 
optimal etiological time window. 
This also depends on the health 

effect under investigation, since, in 
principle, biomarkers with a short 
half-life are needed when (semi-) 
acute biological and health effects 
are studied.

Biomarker validity

Ideally, before starting a study 
involving biomarker measurements, 
information on the variation in 
exposure patterns between 
individuals, as well as over time, 
should be known to determine 
whether a specific biomarker of 
exposure will be appropriate for the 
particular study. If this information is 
not available at the start of the study 
and it is not feasible to conduct a pilot 
study to estimate the variability of 
exposure, the intraindividual variation 
in the biomarker response can also 
be evaluated. At the same time, 
all sources of unwanted variation 
(e.g. laboratory variation) should be 
taken into account, by conducting 
a repeated measures design in the 
main study.

Several methods are available 
to assess variability when using 
biomarkers with a continuous 
outcome. The coefficient of variation 
(CV), which is defined as the ratio of 
the standard deviation (σ) to the mean 
(μ), is generally used as a measure 
of the extent of variation between 
different batches, and/or duplicate 
samples within batches, and can be 
used to identify ‘bad’ sample batches. 
It does not, however, provide insight 
into the impact of the observed 
variance on the biomarker-disease 
association and it cannot be used 
to correct measures of association 
to account for measurement error 
(17,21). The intraclass correlation 
coefficient (ICC), described by:

σ2
bs

   ICC = 
              

σ2
bs +  

σ2
ws

      

N
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(where σ2
bs is the between-subject 

variance, σ2
ws is the within-subject 

variance, and N is the number 
of repeated measures on an 
individual), is a more useful measure 
for evaluating the impact of the total 
measurement error (temporal plus 
analytical error).

In addition, the ICC can be used 
to adjust measures of association 
to account for measurement 
error. However, in the absence of 
a ‘gold standard,’ the results of 
such adjustments should not be 
interpreted as true associations, 
but instead as indicators for the 
degree of bias in the observed risk 
estimates (22; for more details, see 
Chapter 8).

Study designs

There is a spectrum of 
epidemiological study designs that 
make use of biological exposure 
markers. The choice of design 
depends on the specific research 
question and disease under 
study (e.g. rare versus common; 
acute versus chronic), and has 
implications for the use of biological 
exposure markers. The strengths 
and limitations of using exposure 
markers in relation to the major 
study designs are discussed below 
(for a more in depth discussion on 
study designs, see Chapters 14 and 
15).

Cross-sectional studies

Cross-sectional studies are often 
initiated to assess whether a subset 
of a population has been exposed to 
a particular exposure, or to validate 
the exposure assessment from other 
sources, such as environmental 
monitoring or data obtained from 
questionnaires. For example, 
toenail nicotine levels, together with 
self-reported smoking habits and 
exposure to environmental tobacco 

smoke, were collected from 2485 
women to assess the validity of 
toenail nicotine levels as a marker 
of tobacco smoke exposure, and 
to provide insight into its ability to 
capture non-reported exposure (23).

A distinct advantage of cross-
sectional studies over alternative 
study designs is that detailed 
and accurate information can be 
collected on current exposure 
patterns and on determinants of 
exposure or potential confounders. 
To further improve the accuracy of 
the biomarker assessment, repeated 
measures should be considered, 
especially if the temporal variability 
is relatively large. However, one 
of the disadvantages of this study 
design is that current exposure 
patterns or determinants do not 
necessarily reflect historic levels, 
which might be more relevant to the 
exposure-disease pathway.

Case-control studies

The main goal of case-control 
studies is to compare exposure 
patterns in cases and in carefully 
matched controls during the 
etiologically relevant time period. 
One of the important advantages 
of case-control studies compared 
to prospective cohort studies, 
especially for biomarker studies, is 
their ability to enrol large numbers 
of cases relatively quickly and 
the potential to study uncommon 
diseases (17). A problem inherent to 
the way cases are recruited is that 
biological samples, exposure data, 
and other information is collected 
after diagnosis and even sometimes 
after commencing treatment of 
the disease. This makes these 
studies susceptible to differential 
misclassification and may lead to 
problems in the assessment of the 
temporal association between the 
disease and the biomarker under 
study (17).

For example, in a study on blood 
levels of organochlorines before and 
after chemotherapy among Non-
Hodgkin lymphoma (NHL) patients, 
a marked decrease (25–30%) in 
serum levels of these compounds 
was found after treatment (24). This 
could lead to large exposure biases 
if cases are not enrolled before the 
start of chemotherapy, as blood 
levels of organochlorines among 
controls would not be influenced by 
therapy.

Prospective cohort studies

Prospective cohort studies are 
considered the only study design 
that allows researchers to look 
at biomarkers that are directly or 
indirectly affected by the exposure-
disease mechanism, since 
biological specimens and exposure 
information are collected before 
disease diagnosis and, ideally, 
before the beginning of the disease 
process (25). It can be difficult 
to recruit enough subjects in the 
cohort and/or follow-up enough 
people for the duration of the 
study, therefore the study can be 
enriched with cases in subsequent 
nested case-control or case-cohort 
studies, which will improve the 
study efficiency (25). Unfortunately, 
larger prospective cohort studies 
have been able to collect only one 
biological sample at one point in 
time for individuals enrolled in the 
cohort. As discussed, this can 
cause problems for most types of 
biomarkers of exposure; especially 
short-term exposure markers which 
may vary substantially from day-to-
day. It has further been discussed 
that although biomarkers can be 
collected in a variety of media, and 
that sometimes more media are 
available to assess exposure to the 
same chemical, most studies have 
only collected blood samples and 
only a few have collected urine.
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An example of environmental 
exposure markers - tobacco 
smoke

Exposure to tobacco smoke 
represents one of the most 
prominent risk factors for cancer, 
cardiovascular diseases, and 
chronic respiratory diseases (26). 
Environmental tobacco smoke 
has also been implicated in the 

Table 9.1. Overview of tobacco exposure related biomarkers

Biomarker Specimen
Reflected Exposure 
to Tobacco Smoke 
Product

Specificity Half- Life Detection Method

COex
COHb

Breath
Blood

Carbon monoxide Low 2-3 hours Infrared spectroscopy 
and GC

Thiocyanate Saliva
Blood
Urine

Hydrogen cyanide Low 1-2 weeks Photometry,
Ion exchange 
chromatography 
followed by UV 
detection, GC 
coupled with MS after 
derivatization

Nicotine Saliva
Blood
Urine
Toenail
Hair

Nicotine High 2 hours
Several months

HPLC with UV 
detection

Cotinine Saliva
Blood
Urine

Nicotine High 3-4 days HPLC with UV 
detection

NNAL 
and NNAL-Gluc
1-hydroxy-pyrene

Urine

Urine

NNK uptake

Pyrene uptake

High

Low because of PAHs 
sources of exposure 
other than tobacco

Several months

Around 15 hours

GC

HPLC

Benzo[a]pyrene diol 
epoxide DNA adducts

DNA Benzo[a]pyrene 
biological effective 
dose

Low because of PAHs 
sources of exposure 
other than tobacco

In general, DNA 
adducts are 
considered to provide 
estimates of exposure 
for several half-
lives of the adduct 
depending on adduct 
stability and repair 
capacity

3- and 4- aminobiphenyl  
haemoglobin  adducts

Blood Aromatic amines 
uptake plus metabolic 
activation

Low because of 
aromatic amines 
sources of exposure 
other than tobacco

Around 120 days 
(haemoglobin life-
span)

Trans-trans-muconic acid Urine Benzene uptake Low - influenced by 
food intake of sorbic 
acid from food

13 hours LC/UV

S-Phenylmer-capturic 
acid

Urine Benzene uptake Low because of 
benzene sources of 
exposure other than 
tobacco

14 hours LC/MS

Anabasine, anatabine 
and myosine

Saliva
Urine

Tobacco products High Few hours HPLC/MS
GC/MS

etiology of these diseases (27). The 
immense impact on public health 
of tobacco smoking and exposure 
to tobacco smoke has stimulated 
the development of tobacco-related 
biomarkers (Table 9.1).

Carbon monoxide and 
thiocyanate. Carbon monoxide (CO) 
and thiocyanate are considered the 
oldest biomarkers used as indicators 
of tobacco smoke exposure. 

CO is the product of incomplete 
combustion of organic materials. 
Inhaled CO is absorbed through 
the lungs and binds to haemoglobin 
(Hb) forming carboxyhaemoglobin 
(COHb). As the absorption is by the 
lung alveoli, levels of exhaled CO 
(COex) or COHb measured in blood 
are useful biomarkers of exposure, 
as CO does not undergo metabolic 
activation. CO has a short half-life 
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(2–3 hours) making it a marker of 
recent exposure. However, COex 
and COHb levels can be affected 
by physical activity, sex, and the 
presence of lung or airway diseases.

Hydrogen cyanide. A chemical 
present in tobacco smoke, hydrogen 
cyanide (HCN) is formed in tobacco 
combustion mainly from proteins 
and nitrates. It is metabolized into 
thiocyanate (SCN) that can be 
measured in saliva, blood, and urine. 
Due to its relatively long half-life (1–2 
weeks), SCN reflects at least several 
weeks of exposure (see section on 
Temporal Variability). However, both 
these biomarkers are considered 
non-specific. Levels of CO and 
SCN, can be affected by numerous 
sources other than tobacco smoke, 
such as air pollution and diet for CO 
and SCN, respectively (28).

Nicotine. Nicotine is a chemical 
found in all tobacco products and 
is the major addictive component. 
Levels of nicotine can be measured 
in blood, saliva, and urine, providing 
a specific biomarker of exposure. 
However, since this chemical has 
a short half-life (a few hours), the 
results are very dependent on time 
of sampling. Furthermore, urine 
levels are highly influenced by urine 
volume and pH, reducing the use of 
this biomarker. The development of 
methods for the detection of nicotine 
in hair and nails has recently been 
suggested as a promising marker for 
long-term exposure (29).

Cotinine. Cotinine is the major 
proximate metabolite of nicotine, but 
with a longer half-life in the blood 
(3–4 days) (30). The presence of 
cotinine in a biologic fluid indicates 
exposure to nicotine. There is 
some individual variation in the 
quantitative relationship between 
cotinine levels in blood, saliva, and 
urine and the intake of nicotine, due 
to the fact that people metabolize 
nicotine and cotinine differently. 
Still this metabolite has been widely 

used as a very specific biomarker of 
tobacco exposure. Cotinine is also 
of particular interest as a biomarker 
for the evaluation of exposure to 
environmental tobacco smoke 
(ETS). Cotinine concentrations 
in plasma, urine, and saliva of 
non-smokers have been used in 
assessing population exposure to 
ETS for developing risk estimates for 
ETS-related lung cancer (31).

N-nitrosamines. Tobacco smoke 
contains volatile N-nitrosamines, 
such as N-nitrosodimethylamine 
and N-nitrosopyrrolidine, as well as 
tobacco specific N-nitrosamines, 
such as N’-nitrosonornicotine 
(NNN) and 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone (NNK) 
(32). In particular, nitrosamines 
in tobacco are chemically related 
to nicotine, and other tobacco 
alkaloids, and therefore specific to 
tobacco products. For this reason, 
4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanol (NNAL) (the major 
metabolite of NNK) together with 
its glucuronide derivative (NNAL-
Glucs), which can be detected in 
urine, provide a particularly valuable 
biomarker due to their specificity. 
Moreover, both NNAL and NNAL-
Glucs have a relatively long half-
life compared to other measurable 
urinary metabolites. This biomarker 
has been used to quantify levels 
of NNK uptake in smokers and 
smokeless-tobacco users (33) to 
examine ethnic differences in NNK 
metabolism (34), and to study the 
effects of diet and potential cancer 
chemopreventive agents on NNK 
metabolism (35,36). There is a 
consistent correlation between 
levels of cotinine, NNAL, and 
NNAL-Glucs in urine (37). The 
measurement of NNAL and NNAL-
Glucs in urine has been particularly 
useful in studies of ETS. Uptake 
of NNK by non-smokers exposed 
to ETS has been shown in several 
settings, including the detection of 

these biomarkers in amniotic fluid, 
indicating that NNK or NNAL are 
present in fetuses of mothers who 
smoke (38).

NNK and NNN can also 
lead to the formation of specific 
haemoglobin and DNA adducts, 
which can potentially measure 
uptake plus metabolic activation and 
the biological effective dose of these 
carcinogens, respectively. Methods 
for the detection of these biomarkers 
have been developed; however, 
their levels are frequently low and, in 
some cases, undetectable in many 
active smokers.

As for the N-nitrosamines, 
aromatic amines can undergo 
metabolic activation leading to the 
formation of DNA or protein adducts. 
4-Aminobiphenyl (4-ABP) undergoes 
P450 catalysed N-oxidation to a 
hydroxylamine. O-Acetylation, 
catalysed by N-acetyltransferases 
(NATs), produces an O-acetoxy 
compound that reacts with DNA. 
Other esterification reactions of 
the hydroxylamine lead to related 
intermediates that can also react 
with DNA. However, since the 
levels of DNA adducts in humans 
are generally low (once every 106-
108 normal bases), large amounts 
of DNA and sensitive methods are 
needed for the analysis. Moreover, 
little is known about their persistence 
in human tissue. Animal studies 
have shown a great variability in this 
respect depending on the different 
chemical structures formed and 
on the repairing systems, which 
might remove some adducts but not 
others (32). In general, studies on 
DNA adducts have reported higher 
levels in smokers compared to non-
smokers and higher levels in tissue 
samples (from oral, lung, and bladder 
cancers) from cases than controls.

Aromatic amines, polycyclic 
aromatic hydrocarbons, and 
benzene. Aromatic amines 
(arylamines), such as o-toluidine, 
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2-aminonaphthalene, and 
4-aminobiphenyl, occur in the 
environment and are constituents 
of tobacco smoke. A method 
for measuring these in cigarette 
smokers was developed, using the 
acid hydrolysis of the arylamine 
conjugates in urine. Urinary 
arylamine excretion in smokers 
was associated with the extent 
of smoking as assessed by daily 
cigarette consumption, urinary 
excretion of nicotine, cotinine in 
saliva, and carbon monoxide in 
exhaled breath. This analytical 
method is suitable for measuring 
short-term exposure to arylamines 
in urine of non-occupationally 
exposed smokers and non-smokers 
(39).

Haemoglobin adducts of 
aromatic amines are an informative 
type of carcinogen biomarker. Large 
amounts of haemoglobin are readily 
available in the blood and protein 
has a long half-life (120 days), which 
allows the adducts to accumulate 
and thus reflect a relatively long-
term exposure. Levels of these 
adducts are consistently higher 
in smokers than in non-smokers 
(40). In a recent study, the relative 
risk of bladder cancer in women 
who smoked was found to be 
significantly higher than in men 
who smoked a comparable number 
of cigarettes. Consistent with this 
gender difference, levels of 3- and 
4 -aminobiphenyl -haemoglobin 
adducts, in relation to the number 
of cigarettes smoked per day, was 
statistically higher in women than in 
men (41).

Polycyclic aromatic hydrocarbons 
(PAHs), which cause lung cancer and 
other smoking-related cancers, are 
present in tobacco smoke. One of the 
main metabolites, 1-hydroxypyrene 
in urine, is the biomarker used 
to study the uptake of PAHs in 
smokers. Levels of 1-hydroxypyrene 
are 2–3 times higher in smokers than 

in non-smokers and decrease with 
smoking cessation (42). Benzo(a)
pyrene, another main constituent of 
the PAHs mixture, is metabolized to 
Benzo(a)pyrene diol epoxides, which 
reacts with Hb and DNA forming 
adducts. However, since these 
adducts are difficult to detect even 
with highly sensitive methods, levels 
have been undetectable in many 
active smokers.

Benzene is another chemical 
present in tobacco smoke. Its 
metabolites trans-trans-muconic 
acid and S-phenylmercapturic acid 
can be detected in urine to measure 
benzene uptake; both biomarkers 
have been found elevated in 
smokers compared to non-smokers 
(42).

Aromatic amines, PAHs, 
and benzene are not exclusively 
contained in tobacco smoke: they 
also exist in environmental pollution, 
diesel exhaust, and as an outcome 
of many industrial productions. 
Thus their biomarkers are lacking 
in specificity towards exposure to 
tobacco smoke.

Minor tobacco alkaloids. 
Tobacco contains small amounts of 
minor alkaloids, such as anabasine, 
anatabine, and myosmine. As 
for nicotine, the main tobacco 
alkaloid, these minor alkaloids 
are absorbed systemically and 
can be measured in the urine of 
smokers and users of smokeless 
tobacco. The measurement of 
minor alkaloids is important as 
a way to quantitate tobacco use 
when a person is also receiving 
nicotine from other sources, such 
as nicotine medications or a non-
tobacco nicotine delivery system, 
for instance, in smoking cessation 
studies (43).

The above example on tobacco 
smoke clearly demonstrates that a 
single environmental exposure can 
be represented by several biological 
exposure markers. Choosing the 

appropriate biomarker depends on 
several factors including chemical 
and biological characteristics of the 
biomarker itself, sources of variation 
(analytical, population, temporal), 
and the study design in which the 
biomarker is to be used.

The future of biomarkers of 
exposure – the exposome

The term ‘exposome,’ which 
encompasses all life-course 
environmental exposures, was 
coined to draw attention to the need 
for methodological developments 
in exposure assessment (44). 
It is known that environmental 
exposures play an important role 
in many common chronic diseases, 
yet the advances with regard to 
molecular epidemiology have been 
focused mostly on the genome. To 
some extent this can be explained 
by the complexity of measuring 
the exposome, as compared to the 
genome, due to its highly variable 
nature. However, more recently 
omics technologies, including 
transcriptomics, proteomics, 
metabolomics, and adductomics, are 
being applied to detect signatures 
of environmental exposures and to 
identify novel exposure markers. 
For instance, human metabolic 
phenotype diversity was found 
to be associated with dietary 
habits across different ethnic 
populations (45). This promising 
result suggests that in the future 
metabolomics might provide new 
leads to better individual exposure 
assessment. The development of 
adductomics, which measures the 
full complement of protein adducts, 
might, however, be more relevant 
for improving exposure assessment 
in epidemiological studies, as 
signals can be highly specific for 
certain (electrophilic) environmental 
exposures. Furthermore, given 
the relatively long half-lives of, for 
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instance, haemoglobin adducts 
(~3000 hours if adducts are 
chemically stable), these markers 
would reflect months of exposure.

Conclusions

Given the potential issues associated 
with the use of biomarkers in 
epidemiological studies, it is 
certainly not a given that biomarkers 
of exposure always provide the most 
accurate and precise estimates of 
true exposure. Although the use of 
biological markers of exposure can 
improve the assessment of exposure 
in epidemiological studies, either by 
complementing other methods of 

assessment or by serving as the 
best method when other methods 
are absent or less valid, these are 
not always the most appropriate or 
valid assessment methods. As such, 
in addition to assessment of the 
use of biomarkers, it should be part 
of the design of any study to also 
consider ‘classic’ alternatives for 
exposure assessment, like personal 
external exposure measurements 
and advanced exposure modeling.

In summary, before deciding 
on a specific biological marker to 
assess exogenous exposures to 
investigate a specific hypothesis, 
there are several factors that should 
be considered. One should verify 

that the marker is indeed detectable 
in human populations and that its 
kinetics are known. A repeated 
measures design should be created 
to evaluate interindividual variation 
relative to intraindividual variation. In 
addition, duplicate samples should 
be included in the design to assess 
laboratory variation. Furthermore, 
the timing of sample collection in 
combination with the biological 
half-life of the biomarker should 
be optimized. The effect modifiers 
should be known and all major 
sources of variance quantified.
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Summary

The detection and characterization 
of microbial agents in biological 
specimens are essential for the 
investigation of disease outbreaks, 
for epidemiologic studies of the 
clinical course of infections, and 
for the assessment of the role of 
infectious agents in chronic diseases. 
Methodological approaches depend 
on the infectious agent, the specimens 
analysed and the target populations. 
Although the diagnosis of infectious 
diseases has traditionally relied 
on direct microscopic examination 
of samples and on the cultivation 
of microbial agents in vitro, novel 
techniques with increased sensitivity 
and specificity are now being 
used on samples that can be more 
easily collected and transported to 
microbiology laboratories (e.g. dried 
blood spots on filter paper for nucleic 

acid analysis). Direct detection 
techniques include the microscopic 
examination of specimens with 
special stains, antigen detection and 
nucleic acid detection by molecular 
assays. These assays are highly 
sensitive and provide rapid results for 
most agents. Genomic amplification 
assays greatly increase the 
sensitivity of nucleic acid-based tests 
by extensive amplification of specific 
nucleic acid sequences before 
detection. Real-time polymerase 
chain reaction (PCR) permits 
genomic amplification concurrently 
with detection of amplified products. 
Typing infectious agents requires 
additional investigation employing 
either serologic techniques 
to identify unique antigenic 
epitopes, or molecular techniques. 
These studies are important for 

epidemiologic purposes, as well as 
for the investigation of pathogenesis, 
disease progression, and to establish 
causality between a disease and a 
microbial agent. Much of bacteriology 
has relied on growth of organisms on 
artificial media, and on identification 
of bacterial growth with biochemical, 
serological, or more recently, nucleic 
acid-based tests. The detection 
of specific antibodies from the 
host directed against pathogens is 
another strategy to identify current or 
past infections.

Introduction

The detection and characterization 
of microbial agents in biological fluids 
are important for the prevention, 
control, and management of 
infectious diseases in clinical 
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medicine, for the investigation of 
infectious outbreaks, for large-
scale studies on the epidemiology 
of infectious agents, and for the 
assessment of the role of infectious 
agents in chronic diseases. Several 
approaches have been developed 
to attain these objectives depending 
on the nature of the infectious agent, 
the type of specimens available 
for analysis, the and populations 
evaluated (Table 10.1). Although 
the diagnosis of infectious diseases 
has traditionally relied on the direct 
microscopic examination of samples, 
and on the cultivation of microbial 
agents in in vitro systems, novel 
techniques with increased sensitivity 
and specificity are now being 
used on samples that can be more 
easily collected and transported 
to microbiology laboratories, such 
as the use of dried blood spots on 
filter paper for nucleic acid analysis. 
This chapter provides an overview 
of the approaches used to detect 
and identify infectious agents, 
investigate their relatedness, and 
characterize novel infectious agents 
in biological fluids. A comprehensive 
and detailed overview of available 
diagnostic molecular techniques by 
target agent is beyond the scope of 
this chapter, though the interested 
reader can find a wealth of detailed 
information on specific methods in 
several diagnostic microbiology and 
molecular epidemiology textbooks 
(1–3). Methods for the detection of 
microorganisms are classified into 
three categories: 1) direct detection 
techniques, 2) in vitro cultivation 
systems and 3) indirect detection 
based on serological methods that 
assess the host immune response 
against a putative infectious agent. 
This chapter also reviews the causal 
criteria for assessing the putative 
role of an infectious agent, and a 
chronic disease such as cancer, 
and the epidemiologic pitfalls due 
to measurement error inherent in 

diagnostic testing for an infectious 
agent.

Direct detection techniques

Microscopic examination

Microorganisms are often directly 
detected in biological fluids by 
special stains, such as the Gram 
stain or acridine orange for bacteria; 
mycobacterial stains, based on the 
ability of mycobacteria to retain 
dyes after treatment with alcohol-
acid decoloriser; nocardia stains; 
and calcofluor white for fungi. Wet 
mounts are used for detection 
of fungi or parasites. Potassium 
hydroxide is often added to better 
visualize yeast or hyphal structures. 
Enteric parasitic infections can be 
diagnosed by detection of ova in 
stools. Classically, the viral agents 
responsible for gastroenteritis are 
not detectable by cell culture, but 
usually are with electron microscopy. 
This is especially the case for 
the investigation of outbreaks 
caused by noroviruses. There are 
several limitations to these direct 
techniques. Although rapid and easy 
to perform, they are often insensitive 
and non-specific. Electron 
microscopy is a costly procedure 

that requires the availability of an 
electron microscope and expertise 
in specimen processing and 
interpretation of results. Detection 
of a virus does not equate to active 
infection, as some individuals may 
simply shed a virus without active 
disease. Electron microscopy can, 
however, detect unsuspected or 
unknown agents (e.g. Severe Acute 
Respiratory Syndrome (SARS) 
coronavirus agent). Direct detection 
of microorganisms can also be 
accomplished histopathologically or 
cytologically by visualization of the 
pathogen itself with general-purpose 
stains, such as periodic acid-Schiff 
stain, or stains for substances 
produced by or contained in the 
pathogen, such as methenamine 
silver stain.

Detection of antigens 
from infectious agents

Simplified antigen detection assays 
are commonly used in diagnostic 
laboratories for a variety of 
microorganisms, including bacteria 
(e.g. group A streptococcus) or 
bacterial toxins (e.g. Clostridium 
difficile, enterohaemorrhagic 
Escherichia coli), viruses (e.g. 
varicella-zoster virus, influenza, 

Table 10.1. Methods for the detection and analysis of microbial agents in biological 
fluids

1. Direct detection of microbial agents

A. Microscopic examination of specimens

B. Microbial antigen detection

C. Microbial nucleic acid detection

D. Promising techniques: real-time PCR and matrix hybridization

2. In vitro cultivation systems of microbial agents

A. Non-cellular cultivation assays

B. Cell culture systems

3. Serological diagnosis of infectious diseases

A. Screening assays

B. Confirmatory assays
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rotavirus), fungi (e.g. Pneumocystis 
jirovecii, Cryptococcus neoformans) 
and parasites (e.g. Toxoplasma 
gondii). Immunoassays involve the 
specific non-covalent binding of a 
microbial antigen to an antibody 
that is detected by a labelled 
ligand. Since antigen and antibody 
can react under a wide range of 
conditions, these assays can be 
applied in most biological fluids, 
including cerebrospinal fluid, stools, 
serum, respiratory secretions or 
urine. Several assay formats have 
been used (Table 10.2). The most 
widespread assays use antibodies 
that are fixed to a solid phase to 
separate unbound from bound 
antigens.

Direct or indirect 
immunofluorescence assays 
use an antiserum conjugated to 
a fluorochrome dye, fluorescein 
isothiocyanate. Some of these assays 
have been proven to reach sensitivity 
endpoints that are clinically relevant. 
Fluorescent staining assays are 
always subject to technical concerns 
and require expertise. The quality of 
specimens tested and sensitivity of 
the fluorescent assays are improved 
by including a cytocentrifugation 
step. The use of multiple antisera, 
directed against various infectious 
agents, is also an advantage of 
direct immunofluorescence (antisera 
pools).

Membrane EIAs have the 
advantage of being simple assays 

that can be performed rapidly, do 
not require expertise or special 
equipment, and allow analysis of 
one specimen at a time. However, 
sensitivity is usually inferior to cell 
culture, and weak positive samples 
may be difficult to interpret. The 
same comments apply to latex 
agglutination techniques that have 
the added disadvantage of false-
negative reactions due to prozone 
effects. The quality of these tests 
can be evaluated with periodic 
quality control panels.

The greatest drawback of the 
detection of microbial antigens is the 
limited sensitivity of these assays 
(e.g. Legionella fluorescent assays). 
Moreover, antigens can be degraded 
in clinical specimens, causing 
false-negative results. Intracellular 
antigens may not be detected as 
easily with these assays. Cross-
reactivity, or high background 
staining in cellular material examined 
microscopically, can also generate 
false-positive results. The specificity 
of the antibody is influenced by the 
presence of non-microbial antigenic 
determinants co-purifying with 
microbial antigens during the steps 
of antigen production. Non-specific 
reactions can also be mediated by 
the antibody’s F(c) portion, which 
can react with rheumatoid factor-
like molecules in serum and some 
biological fluids. Finally, there 
may be cross-reactivity with other 
related organisms. Interestingly, 

direct immunofluorescence 
assays have proven to be more 
sensitive than cell culture (see 
below) for some enveloped viruses 
that are susceptible to adverse 
transportation conditions. Microbial 
antigens can also be detected in 
biopsies using immunofluorescence 
or immunoperoxidase reagents.

Detection of nucleic acid 
from infectious agents

The limitations of traditional direct 
(see above) and cultivation methods 
(see below) have provided the 
impetus for the development and 
validation of new methodologies 
based on the detection and 
analysis of nucleic acids contained 
in biological samples. Nowadays, 
these assays are highly sensitive, 
provide rapid results for most 
microbial agents, and can be 
partially automated. The unique 
sequence specificity of DNA from 
a given species permits the design 
of assays that are highly specific 
to a target agent. Performance of 
the test is not affected by death of 
the organism due to antimicrobial 
therapy, or to transportation or 
storage of specimens under 
suboptimal conditions (provided that 
extreme conditions that can affect 
DNA integrity can be avoided). 
DNA is one of the most stable and 
chemically resistant biological 
molecules in nature. Intracellular 

Table 10.2. Most common assay formats for detection of microbial antigens in biological fluids 

Assay Format Time for completion Potential for automation Control of cellularity

Microtiterplate EIA <4 hours + -

Particle agglutination 15 minutes - -

Membrane immunoassays 15 minutes - -

Direct or indirect IF 30-60 minutes - +

EIA, enzyme immunoassay; IF, immunofluorescence.
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organisms can be detected after 
a DNA extraction treatment of 
samples. These techniques can 
also detect organisms involved 
in latent infections. Nucleic acid-
based assays have been able to 
demonstrate integration into the 
human genome of viral DNA (e.g. 
hepatitis B virus (HBV) and human 
papillomavirus (HPV)). These 
assays can be quantitative or detect 
microbial mRNA, permitting the 
analysis of transcriptional activity 
of a microbial agent, such as for 
cytomegalovirus. Recombinant 
DNA technologies, as well as 
oligonucleotide synthesis strategies, 
have facilitated the synthesis of 
large quantities of reagents that 
can be standardized and quality-
controlled more easily than for 
other diagnostic modalities. The 
cost of production of reagents has 
decreased substantially in recent 
years. Similar protocols for reagent 
synthesis can be used for different 
agents, since DNA is the target for 
all assays irrespective of the agents 
detected. This is in contrast to 
immunoassays, for which antibodies 
are produced by immunization of 
animals for polyclonal antibodies, 
and by hybridoma formation for 
monoclonal antibodies.

Although the use of direct nucleic 
acid assays was initially impeded by 
a lack of sensitivity, since the 1990s 
genomic amplification techniques 
have revolutionized diagnostic 
microbiology. The reliance on 
radiolabelled probes, initially to detect 
specific nucleic acid sequences 
(Figure 10.1), was also an important 
limitation for diagnostic laboratories. 
Radioactive probes had a short 
functional half-life and sometimes 
necessitated prolonged exposure 
to photographic plates to reach 
adequate sensitivity. The expense of 
the facilities required to manipulate 
radioactive material and dispose 
of it were significant drawbacks. 

Fortunately, non-radioactive labels 
(i.e. enzyme-labelled probes, 
avidin-biotin systems, Europium, 
acridinium esters and others) 
have been successfully used 
with these technologies. Assays 
manufactured by Gen-Probe, with 
acridinium-labelled single-stranded 
DNA probes, have been used to 
detect Chlamydia, mycobacterial, 
fungal or Neisseriaceae rRNA 
by chemiluminescence. They 
are now mostly used to identify 
dimorphic fungi or mycobacterial 
isolates isolated by culture. Another 
format of nucleic acid detection 
tests, the signal amplification 
assays (branched DNA tests and 
Hybrid capture), have significantly 
increased the endpoint sensitivity 
of DNA-based assays (Figure 
10.1). In these assays, the signal 
is amplified without amplification 
of the nucleic acid target (see 
below), thus avoiding carryover 
contamination and false-positive 
results. These assays are often less 
sensitive analytically than genomic 
amplification techniques, but reach 

useful clinical sensitivity endpoints 
(e.g. for human immunodeficiency 
virus (HIV), hepatitis C virus (HCV) 
or HPV), and are also highly specific.

Genomic amplification assays 
have greatly increased the sensitivity 
of nucleic acid-based tests by 
extensive amplification of the target 
nucleic acid sequence before 
detection (Figure 10.1). Several 
amplification technologies have 
been devised, as described in Table 
10.3. Of note are those based on 
thermal cycling amplification, such 
as the polymerase chain reaction 
(PCR) (Roche Molecular Systems), 
and those based on isothermic 
amplification, such as transcription-
mediated amplification (TMA) (Gen-
Probe), Nucleic Acid Sequence-
Based Amplification (NASBA) 
(Organon Technika) or strand 
displacement amplification (SDA) 
(Becton-Dickinson). PCR is the 
amplification format that has been 
the most widely used to develop 
assays available commercially 
and as in-house assays. When 
appropriately optimized and 

Figure 10.1. Assay formats for the detection of nucleic acids in biological fluids. 1. 
Direct detection of nucleic acid (endpoint analytical sensitivity ± 105 copies per test). 
2. Signal amplification tests (endpoint analytical sensitivity ± 103 copies per test). 3. 
Genomic amplification techniques (endpoint analytical sensitivity ± 1 copy per test)
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validated, they have consistently 
proven to be highly sensitive 
and specific. They can detect 
pathogens present in low quantities 
that are slow-growing or cannot 
be cultivated, and even infectious 
agents not yet discovered. Multiplex 
PCR assays can simultaneously 
detect several pathogens. By 
adding a reverse transcription step, 
RNA viruses can be detected with 
these molecular techniques. The 
complexity of some viral families 
(e.g. enteroviruses, HPVs) requires 
the use of consensus amplification 
assays to detect all relevant 
genotypes. These techniques can 
also be quantitative (Table 10.3). 
Measures of microbial loads are 

important information that can be 
predictive of existing disease, for 
deciding on initiation of treatment, 
or assisting the follow-up of treated 
individuals to assess response or 
resistance to therapy. For some 
pathogens, such as mycobacteria, 
PCR has been used to complement 
cultivation methods.

The exquisite sensitivity of 
amplification assays can cause 
problems in less experienced 
laboratories. Contamination of 
reagents by carryover of previously 
synthesized amplicons can generate 
false-positive results, but these 
mishaps can be prevented (Table 
10.4). Good laboratory practices, 
and the use of separate working 

zones and plugged micropipette 
tips, effectively curtail the risk of 
contamination. These techniques 
are now widely employed without 
problem in accredited diagnostic 
laboratories. One limiting step 
of these assays is the extensive 
extraction procedures that are 
sometimes required to analyse 
samples. Automated extraction 
instruments resolve this issue in 
well-equipped laboratories. Finally, 
inhibitor substances that impede the 
amplification process can generate 
false-negative results, but can be 
screened for by the use of internal 
controls or amplification of human 
genes to assess specimen quality.

Table 10.3. Assay formats for amplification of nucleic acids

PCR, polymerase chain reaction; TMA, transcription-mediated amplification; NASBA, nucleic acid sequence-based amplification; SDA, strand displacement amplification

Assay Format Manufacturer  Cycling temperature Qualitative detection      Quantitation

PCR Roche Molecular Systems thermal cycling yes yes

TMA Gen-Probe isothermic yes yes

NASBA Organon Technika/ BioMérieux isothermic yes yes

SDA Becton-Dickinson isothermic yes no

Table 10.4. Most useful procedures to control false-positive results in nucleic acid amplification assays due to contamination

Good laboratory practices (supported by on-site manuals describing standard operating procedures) to prepare samples at perform testing 

Separated working zones (pre- and post-PCR areas)

Dedicated instruments for each working zone

Aliquot reagents to avoid repeated use of reagents, especially the master mix

Use of plugged micropipette tips

Avoidance of strongly reactive positive controls

Chemical or enzymatic destruction of contaminating amplicons



180

New trends in nucleic acid 
detection tests

Real-time PCR is a new 
development in the science of 
genomic amplification. Amplification 
is performed concurrently with 
detection in a closed tube, 
significantly reducing the time to 
complete the assay and potential for 
cross-contamination by carryover. 
Probes are labelled with various 
fluorophors, and multiple targets 
can thus be detected. Quantitation 
of targets is typically done in the 
logarithmic phase of amplification, 
which provides for more reproducible 
measurements of the analyte. The 
detection of a positive signal is 
obtained during amplification, as 
shown in Figure 10.2, significantly 
shortening the time required to 
complete testing.

In the future, the use of 
microarrays will allow the detection 
of panels of infectious agents that 
will be selected depending on the 
disease screened and sample tested. 
These assays are based on the 
attachment to solid supports of up to 
thousands of oligonucleotide probes, 
generating a matrix of probes. 
Labelled amplified products are then 
hybridized with these fixed probes, 
and the specific signals generated 
by fixed labelled amplicons can 
be detected and analysed with a 
computer. One system utilizes photo-
activation for the chemical synthesis 
of small DNA fragments directly 
onto a silicate solid support (silicon 
chip methodology), generating 
complex arrays of probes. After 
hybridization of labelled amplicons 
with these arrays, the silicon surface 
is screened with a scanning laser 
confocal fluorescence microscope. 
These assays can analyse complex 
mixtures of nucleic acids. The first 
systems developed using the chip 
technology successfully analysed 
HIV resistance to antiretroviral 

treatment. There are several 
drawbacks to these techniques, 
including the complexity of 
fabrication of the probe arrays, 
instruments required to perform 
these tests, and cost. These 
assays will still require extensive 
validation before application on 
populations or cohorts of individuals. 
These promising techniques are 
under investigation and could be 
applied in diagnostic and molecular 
epidemiologic laboratories in the 
next decade.

Molecular techniques 
for genotyping

Typing infectious agents requires 
additional investigations, which 

either employ serologic techniques 
to identify unique antigenic 
epitopes, or molecular techniques 
to analyse the microbial genome. 
These studies are important for 
epidemiologic purposes, and also 
for the investigation of pathogenesis, 
disease progression and the causal 
association between a disease and 
a microbial agent. Amplification 
methods are now the cornerstone 
for the molecular component of 
the epidemiologic investigation 
of infectious diseases, and are 
replacing phenotypic techniques 
(e.g. biotyping, susceptibility 
testing, serotyping, bacteriophage 
typing, and multilocus enzyme 
electrophoresis). A variety of DNA-
based methods can be used to 

Figure 10.2. Amplification and detection of human DNA by real-time PCR. A titration 
curve of human DNA was tested and results were plotted in a titration curve (shown 
above). The rising curves indicate the presence of DNA amplified and detected in the 
assay. This information is provided online during the performance of the assay. The 
triplicates for each dilution show excellent reproducibility with curves being almost 
superimposed. The regression line obtained with these dilutions was excellent, with 
r = −1.00
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study the relatedness of different 
isolates of a species. Non-genomic 
amplification methods include: 
bacterial plasmid analyses, 
restriction endonuclease analysis 
of bacterial DNA or Southern blot 
analysis of restriction fragment 
length polymorphisms (RFLP), and 
pulsed-field gel electrophoresis 
(PGFE) of chromosomal DNA. The 
latter technique includes ribotyping 
for bacteria. Ribosomal sequences 
are highly conserved and could 
react with a wide range of bacterial 
species. All bacteria carry the 
ribosomal operons and are thus 
typeable. Ribotypes are stable, 
which facilitates the investigation of 
outbreaks. Variable regions of the 
microbial genome are ideal targets 
for these analyses. The study of 
insertion sequences (e.g. IS6110 
DNA sequence for Mycobacterium 
tuberculosis) can also be used 
to investigate laboratory cross-
contamination, identify sources of 
infection in outbreaks, and assess 
if a new recurrence is due to the 
initial organism or to reinfection, or 
if an infection is caused by multiple 
isolates.

Several genotyping methods 
have been adapted to PCR. The 
amplification step obviates the 
need for isolating the agents in 
culture and can be applied directly 
on samples. PCR-RFLP involves 
the digestion of PCR-generated 
amplicons with restriction enzymes, 
and depending on the various 
restriction patterns obtained, 
polymorphism can be studied. This 
low-cost technique is simple, easy 
to perform, and can accommodate 
testing of a large number of samples 
rapidly. However, only a limited 
number of DNA sites are analysed. 
PCR-single stranded conformation 
polymorphism (SSCP) is a technique 
in which radiolabelled amplicons 
are denatured and migrated in a 
non-denaturing polyacrylamide gel. 

The conformation of the migrating 
DNA strand is dependent on 
the nucleotide sequence of the 
amplicon, which ultimately affects the 
migration pattern of the latter. Single 
nucleotide changes can be detected 
with this technique. It has the 
advantage of analysing the complete 
amplicon, in contrast to PCR-
RFLP, but it requires manipulation 
of radioactive reagents, it is more 
time-consuming, especially to 
optimize migration conditions, and 
it may miss some polymorphisms. 
Arbitrarily-primed PCR (AP-PCR), 
or randomly amplified polymorphic 
DNA (RAPD), is based on the 
observation that short non-specific 
primers of 10 nucleotides will 
hybridize and amplify random DNA 
sections of chromosomes that differ 
between genotypes. Since the 
number and locations of binding 
sites of short primers will vary, 
differences between genotypes 
can be established. Identification 
of suitable primers may require 
considerable effort. The technique 
has been described mainly for 
bacteria and fungi.

The heteroduplex mobility assay 
(HMA) is based on the hybridization 
of PCR amplicons generated from 
different isolates of a microbial 
agent. Duplexes containing 
bulges because of mismatches 
between amplicon strands from 
different genotypes will migrate 
differently during electrophoresis 
in neutral polyacrylamide gels. The 
relative retardation of migration is 
proportional to the DNA distance 
between genotypes analysed. 
This simple and rapid technique 
is limited by its capacity to detect 
genetic differences of at least 2%. 
The usefulness of this method was 
demonstrated in the analysis of viral 
quasi-species (as for HIV and HCV).

Automated sequencing 
facilities represent a significant, 
important improvement in nucleic 

acid-based tests for genotyping. 
PCR sequencing determines the 
nucleotide sequence of microbial 
DNA, thus permitting identification 
of the implicated microorganism. 
It is also essential for phylogenetic 
analysis and very useful for 
molecular epidemiology purposes, 
such as in the investigation of 
outbreaks or for examining the 
possible causal role of infectious 
agents in diseases. It is considered 
the gold standard method for 
genotyping. Although still a costly 
procedure, this has become less 
of a problem in recent years due to 
the availability of more affordable 
instrumentation. Results for each 
nucleotide position are generated. 
PCR sequencing does not require 
knowledge of the pathogen’s 
complete DNA sequence. However, 
it does generate important quantities 
of data that must be systematically 
analysed. The analysis of RNA 
genomes is further complicated 
by the existence of several viral 
species of quasi-species, which 
add complexity to the genotyping 
process.

In vitro cultivation systems

Non-cellular cultivation assays

Much of diagnostic microbiology, 
especially bacteriology, has relied 
on the growth of organisms on 
artificial media. Bacterial growth has 
been identified using biochemical 
methods with antisera more often 
using agglutination tests (e.g. latex for 
β-haemolytic streptococci or whole-
organism suspension for Salmonella 
and Shigella serogroups), or by 
nucleic acid-based tests. For most 
bacteria, cultivation on artificial 
media is the mainstay of diagnostic 
microbiology. Enriched all-purpose 
media, such as blood or chocolate 
agar, are used to grow common 
human pathogens. Selective media 
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can also be used to screen for 
pathogens in the presence of normal 
microbial flora. Subculture in broth 
media increases the sensitivity of 
culture, but decreases its specificity; 
however, the microorganism is 
isolated and can be analysed more 
easily. Antimicrobial susceptibility 
testing can also be performed and 
used as an epidemiologic marker 
on isolated bacterial or fungal 
isolates. Cultivation techniques are 
often less sensitive for fastidious 
organisms, or when patients have 
started antimicrobial therapy before 
specimens were obtained for culture. 
Prolonged periods of incubation 
may be required for pathogens 
that grow slowly, such as several 
mycobacterial species and fungal 
dimorphic agents. Unfortunately, 
some key pathogenic bacteria 
cannot be readily cultivated in 
vitro, such as Treponema pallidum, 
Mycobacterium leprae, Bartonella 
henselea and Tropheryma whippelii. 
Recovery of bacterial pathogens in 
some specimens may be impeded 
by abundant normal bacterial flora 
competing for nutrients contained in 
artificial media. Moreover, pathogens 
may have similar phenotypes as 
bacterial agents from the normal 
flora. For instance, enterotoxin-
producing strains of Escherichia coli 
(E. coli) that cause diarrhoea are 
undistinguishable from non-virulent 
E. coli strains.

Cell culture systems

Cell culture allows the detection 
of a wide range of viruses and the 
presence of mixed viral pathogens 
in specimens. After adding a 
specimen to a monolayer of cells 
obtained in vitro, the presence of a 
virus in cell cultures can be detected 
by the distinctive cytopathic effect on 
cells caused by viral replication (e.g. 
herpesviruses), by haemadsorption  
or haemagglutination (e.g. influenza 

viruses), or with virus-specific 
fluorescein-labelled antisera (e.g. 
cytomegalovirus). Viral isolates 
can be further characterized by 
molecular techniques for genotyping, 
antiviral susceptibility testing or 
immunoreagents for serotyping. 
However, the requirement for 
maintenance of several cell lines 
to support growth of most human 
viral agents limits cell culture to 
specialized laboratories. Moreover, 
propagation of some viruses, such 
as HIV, represents a significant 
biohazard for laboratory workers 
and requires Level-3 containment 
facilities. Likewise, some cell lines, 
such as Vero cells, can support the 
growth of the SARS agent, which 
represents a considerable biohazard 
for technologists. The viability of 
fragile viruses, mostly enveloped 
viruses, is adversely affected by 
inadequate transportation and 
storage conditions. For instance, 
the rate of positive cultures is 
lower in summer than in winter 
months for herpes simplex viruses. 
Also, Varicella-zoster virus is 
more frequently detected by 
direct immunofluorescent tests on 
samples than by cell culture. Some 
fastidious viruses do not grow well 
in cell culture. Furthermore, cell 
lines are not available for many 
key human pathogens, including 
rotavirus, norovirus, hepatitis A 
virus, HBV, HCV and Epstein-Barr 
virus (EBV). The delay before a 
cell culture turns positive is also 
a limitation of this procedure, as 
traditionally cell cultures are kept 
for 7 to 28 days. Shell vial spin 
amplification, most commonly used 
for cytomegalovirus and respiratory 
viruses but also for some fastidious 
bacteria (e.g. Bartonella henselae or 
Francisella tularensis), shortens this 
delay. In this procedure, specimens 
are added to a cell culture monolayer 
in a vial, centrifuged at low speed 
after inoculation, incubated, and 

reacted with a fluorescent antibody 
against viral antigens associated 
with a replicating virus. Detection 
of viral agents thus becomes 
possible before the development of 
a cytopathic effect.

Indirect detection via 
serological methods

The detection of specific host 
antibodies directed against 
pathogens is another strategy used 
to identify current or past infections. 
The detection of antibodies against 
infectious agents can be performed 
in serum, as well as cerebrospinal 
fluid (e.g. arboviruses). The 
diagnosis of acute infection is usually 
based on a four-fold increase, or 
more, of specific antibody titres 
in paired acute and convalescent 
sera obtained at two- to four-
week intervals (e.g. respiratory 
viruses), or by the presence of 
specific immunoglobulin M (IgM) 
antibodies (e.g. Human parvovirus 
B19, Toxoplasma gondii). Detection 
of IgM antibodies is less sensitive 
in immunosuppressed individuals 
or newborns, however, and it can 
also be affected by heterologous 
responses and interference with 
rheumatoid factor-like molecules 
in the serum. Direct detection or 
cultivation methods provide faster 
results for diagnostic purposes. 
Chronic infections can be diagnosed 
by testing a serum to detect specific 
immunoglobulin G (IgG) antibodies 
against a preparation of the agent’s 
antigens, such as HCV serology, 
or a panel of IgG antibodies 
directed against various microbial 
antigens that indicate current or 
resolved infection (HBV or EBV). 
For example, serologic methods 
are used for the diagnosis of acute 
primary EBV infection (by detecting 
IgG and IgM antibodies against viral 
capsid antigen, early antigen and 
Epstein-Barr nuclear antigen), and 
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for the screening of EBV-associated 
nasopharyngeal carcinoma (mainly 
immunoglobulin A (IgA) against 
early and capsid antigens), while 
molecular techniques are most 
useful for the diagnosis of EBV-
related lymphomas. Serology testing 
is very valuable for the diagnosis 
of chronic infections, such as HIV 
or viral hepatitis. In contrast with 
direct detection methods, serological 
testing provides information on past 
and current infection status of an 
infectious agent. Serological assays 
are also adequate tests to evaluate 
response to vaccination. Serology 
is most frequently used for the 
diagnosis of viral infections, but can 
be valuable in identifying individuals 
infected with protozoan or metazoan 
parasites and fungi.

Several techniques have 
been used to detect antibodies 
directed against infectious agents, 
including complement fixation, 
immunodiffusion, particle (e.g. 
latex) or erythrocyte agglutination, 
immunofluorescence, and enzyme 
immunoassays (also known as 
enzyme-linked immunosorbent 
assays (ELISAs)). In a diagnostic 
microbiology laboratory, most of 
today’s serologic tests are performed 
with commercially available EIA 
or immunofluorescence formats. 
For several agents, screening is 
performed with EIA tests because of 
the ease, rapidity and low cost of this 
assay format. Better purification of 
viral antigens has resulted in improved 
sensitivity and specificity of EIAs for 
viral hepatitis diagnosis. Improved 
assays were thus designated as 
second- and third-generation assays. 
Positive results are then confirmed 
by a more specific technique that 
is often more cumbersome and 
costly. These techniques include 
recombinant immunoblot assays, 
radioimmunoprecipitation assays or 
Western blot assays (e.g. HIV and 
HCV).

Implicating infections 
as causes of cancer 
and other chronic diseases

The operational epidemiologic 
definition of a cause is a factor 
that alters the risk of disease 
occurrence. For infectious diseases, 
the definition has been more 
mechanistic: a cause is either a 
factor that must exist for disease to 
occur (i.e. is necessary) or always 
produces disease (i.e. is sufficient). 
A microbial agent is a necessary, 
and sometimes sufficient, cause of 
an infectious disease, depending 
on the interplay between agent, 
host and environmental factors. On 
the other hand, the situation is less 
clear for cancer: a group of diseases 
of multifactorial etiology, which 
ultimately result from the interaction 
between external environmental 
causes and the internal genetic 
makeup of the individual. Few of 
the accepted causes of human 
cancer are deemed necessary (e.g. 
HPV infection in cervical cancer) 
or sufficient (e.g. possibly some of 
the high penetrance cancer genes). 
Unlike most infectious diseases, 
cancer has a long latency period, 
which underscores the succession 
of time-dependent events that 
are necessary for normal tissue 
to develop into a malignant lesion 
and ultimately progress into 
invasive cancer. Carcinogenesis 
is a multistage process where 
final onset of disease is a function 
of the combined probabilities of 
relatively rare events occurring in 
each stage. These events depend 
on a myriad of factors related to 
carcinogen absorption and delivery 
to target cells, metabolic activation, 
binding with relevant gatekeeper or 
caretaker genes, and to the ability 
of the affected tissue to reverse 
these initiating processes. Also to 
be considered is the contribution 
of promoters, which will favour 

cell proliferation with consequent 
selection of clones with selective 
growth advantage within the 
surrounding tissue. Eventually, other 
factors will facilitate progression of 
a precancerous lesion to invasive 
cancer, and thus also contribute a 
causal role in carcinogenesis.

Historically, causal relationships 
in infectious diseases have been 
assessed using the mechanistically 
based Henle-Koch's postulates, 
which are based on the expectation 
that the microbial agent must be 
necessary, specific, and sufficient 
for the disease to occur. These 
postulates are only of indirect help in 
assessing cancer or chronic disease 
etiology, since they imply the 
causation of the immediate infectious 
disease or condition that originated 
from the agent, and not the final 
malignant process at the end of a 
lengthy chain of events triggered by 
the infection itself. A case-in-point is 
the causal pathway represented by 
the acquisition of infection with HBV 
in non-immune individuals, followed 
by the development of acute 
hepatitis, chronic hepatitis, and 
finally, many years later, the onset 
of hepatocellular carcinoma. Each 
step in succession affects smaller 
proportions of patients than the 
previous. Henle-Koch's postulates 
are useful up to the first or second 
steps of this pathway, but are of no 
guidance for the imputation of a 
causal link between the pathways' 
beginning and terminal events.

The reasoning into what 
constitutes the criteria for judging 
whether or not a given risk factor 
is a cause of cancer has primarily 
evolved from the so-called Bradford 
Hill criteria (4), a subset of which are 
referred to as the Surgeon General's 
criteria (5). These criteria were first 
proposed at the time of a vigorously 
debated health issue of the early 
1960s, namely the interpretation of 
the accrued evidence on the role 
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of tobacco smoking as a cause 
of lung cancer. Hill's nine criteria 
were: strength of the association, 
consistency, specificity, temporality, 
biological gradient, plausibility, 
coherence, experimental evidence 
and analogy. In his seminal paper 
(4), he downplayed the importance 
of specificity, plausibility and 
analogy, which are viewed today 
as non-essential and can even 
be considered counter-productive 
distractions to the discussion of any 
possible cause-effect relationship 
in cancer. Unfortunately, however, 
he also concluded that “…none 
of my nine viewpoints can bring 
indisputable evidence for or against 
the cause-and-effect hypothesis 
and none can be required as a sine 
qua non” (4). If published today, the 
second part of that statement would 
have been disputed immediately. 
Clearly, temporality is a necessary 
causal criterion, and biological 
gradient, consistency, and strength 
of the association are among the 
most frequently used in cancer risk 
assessment (reviewed in (6)).

Although highly persuasive in 
establishing causality, the availability 
of experimental evidence from 
randomized controlled trials is more 
the exception than the rule in public 
health. In the case of an infectious 
cause of cancer, one may include 
the results from vaccine trials of 
HPV and HBV, as well as post-
deployment surveillance of these 
vaccines in different populations, 
which have provided strong evidence 
that these agents are unequivocally 
causal regarding their respective 
malignant diseases (i.e. cervical 
neoplasia) (7,8). (As of this writing, 
trials have shown a reduction in 
risk of precancerous lesions only, 
and not yet of cervical cancer and 
hepatocellular carcinoma (9)). 
Typically, the change in prevalence 
of a disease is observed after the 
prevalence of a causal determinant 

has been modified, subsequent 
to allowing for sufficient latency. 
More often, epidemiologists derive 
evidence from observational 
studies, such as case–control and 
cohort studies, which are prone to 
biases in interpretation because of 
confounding, measurement error 
(see below), and other issues that 
preclude isolating the effect of a 
single factor on causation.

Although useful for 
environmental, occupational 
and lifestyle determinants, Hill's 
criteria do not capture very well 
the evidential foundation of causal 
claims for microbial agents and 
their respective malignant diseases. 
Fortunately, useful guidelines 
for causal attributions involving 
infectious agents have been 
proposed (10–12). Summarized 
in Table 10.5, they are correlated 
with the original criteria formulated 
by Hill. These causal criteria take 
into account the knowledge about 
the timing, specificity and level of 
immune response against putative 
viruses, or the advances in nucleic 
acid detection methodology as used 
in modern molecular epidemiologic 
investigations.

In summary, what prevails 
today is an operational definition 
of cause, which incorporates the 
criteria required in different settings. 
Determining an exposure and 
intermediate endpoints related to an 
infectious agent depends on the type 
of mechanism being studied and its 
particular set of circumstances (13). 
Decisions concerning the etiologic 
role of specific infectious exposures 
must be a dynamic process that 
entertains both scientific and public 
health issues, and is constantly 
updated as new knowledge 
from more insightful and valid 
epidemiologic studies becomes 
available.

Epidemiologic pitfalls due 
to measurement error

Epidemiologic common sense 
has it that improper ascertainment 
of exposure variables will bias 
the relative risk (RR) estimates, 
generally towards the null 
hypothesis, if the misclassification 
is random and nondifferential with 
respect to the outcome (being a 
case of the disease or not). If the 
measurement error is not random 
or nondifferential with respect to the 
outcome, the direction and degree 
of the bias are difficult to predict. 
Although modern molecular methods 
to determine exposure to infectious 
agents have attained a substantial 
degree of accuracy, errors related 
to sampling, variations in viral load, 
and other mishaps all contribute 
to exposure misclassification. The 
following paragraphs describe 
the effects of misclassification in 
specific circumstances typical of 
epidemiologic studies, which attempt 
to examine the putative causal role 
of an infectious agent for a chronic 
disease such as cancer. In particular, 
the impact of measurement error on 
the prevalence of infection in field 
surveys, and on the magnitude 
of the association between the 
infectious agent and cancer in 
epidemiologic studies, is illustrated. 
Both of these issues are germane 
to our interpretation of the putative 
causal role of an infectious agent 
in a chronic disease that follows 
the exposure after a long latency 
period. (See Chapter 8 for additional 
discussion of misclassification and 
measurement error.)
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Bias in prevalence surveys

The effect of misclassification on 
the presumed prevalence of an 
infectious agent can be understood 
if the diagnostic performance of the 
chosen laboratory test is known, 
particularly its sensitivity (S) and 
specificity (W) with respect to the 
true exposure or infection status. 
The formula (14) to correct for the 
bias is as follows:

Pc = (Pu + W – 1)/(S + W −1)
where Pc and Pu are the 

corrected and uncorrected 
prevalence rates, respectively.

Depending on the true prevalence 
rate that must be estimated via the 
test and its diagnostic performance, 
the estimated rate can be a 
gross overestimation of the true 
prevalence rate. For instance, for a 
rare infectious exposure prevalent 
among 2.5% of the individuals in the 
target population, a test with false-
negative and false-positive rates of 
10% (S = W = 90%) and 20% (S = 
W = 80%) will be positive 12% and 
21.5% of the time in the survey, 
respectively, thus substantially 
overestimating the true rate. 
Under such conditions, the bias 
always results in overestimation 
of the prevalence rate and is more 
influenced by the specificity than by 
the sensitivity of the assay. Lowering 
sensitivity has only a moderate 
biasing effect on the presumed rate.

Bias in the magnitude 
of the association

As above, if the diagnostic 
properties of the assay that were 
used to ascertain exposure to an 
infectious agent are known, one can 
correct the estimated measure of the 
association for the relation between 
agent and disease. For instance, in 
a case–control or cross-sectional 
study, the formula (14) for correcting 
the odds ratio (OR) is as follows:

(W1n1 - b)(S2n2 - c)
OR = 		     
          (W2n2 - d)(S1n1 - a)

where S = sensitivity, W = 
specificity, n is the number of 
subjects, and the subscripts 1 and 
2 indicate that the information is 
for cases or controls, respectively. 
The frequencies a, b, c, and d are 
the study's 2x2 table frequencies 
as follows: a = exposed cases, b 
= unexposed cases, c = exposed 
controls and d = unexposed controls.

It is possible to simulate the 
impact of measurement error 
of an infectious exposure that 
causes a precursor cancerous 
lesion, affecting 2.5% of the 
population after a specified period 
of time (e.g. high grade cervical 
intraepithelial neoplasia (HGCIN)) 
(15). For illustration, assume that the 
prevalence of the putative agent (i.e. 
HPV) is 20%, and the underlying 
RR for the relation with the lesion 
outcome is 100. Under conditions 
of perfect measurement of lesion 
outcome (HGCIN and non-HGCIN), 
increasing misclassification of HPV 
status leads to biased estimates of 
RRs towards unity. For instance, 
at 10% misclassification (S = W 
= 90%), the original RR of 100 is 
erroneously measured as RR = 19. 
At 30% misclassification, the bias is 
so severe that the measured RR is 
just below 4.

In practice, study validity is 
further aggravated by concomitant 
misclassification of the outcome, 
which is a real concern in cohort 
studies, as for ethical and practical 
reasons they may have to rely on 
pre-invasive lesions as endpoints. 
On the other hand, case–control 
studies of invasive cancer are 
far less likely to be affected by 
outcome misclassification, but 
are prone to differential exposure 
misclassification, as detection of 
the infectious exposure may vary 

between cases and controls. In 
the case of HPV infection and 
cervical cancer, detection of the 
former is done in exfoliated cervical 
cells, which results in sampling 
differences between cases and 
controls. Moreover, the effects of 
fluctuation in viral load, transience 
of HPV infection, and other factors 
inherent to the dynamics of the 
infection make single testing for a 
virus, such as HPV, less likely to 
represent past exposure for controls 
than for invasive cancer cases. 
Capturing the actual exposure 
experience to HPV that led to cancer 
would have required sampling the 
cases’ cervix earlier, when the 
infection was at a comparable state 
to that of the controls. The biasing 
effects of these two errors are in 
the same positive direction away 
from the null hypothesis (i.e. they 
produce RRs that are higher than 
the one truly underlying the relation 
between HPV and cervical cancer in 
the same population).

There is one important source 
of misclassification that cannot 
be corrected by knowledge of test 
parameters: it is caused by the 
biological variation in the ability to 
detect exposure to the agent over 
time. Again, the HPV–cervical 
cancer example is illustrative. 
Most instances of HPV infection 
are transient. It is clear, therefore, 
that collection of a single cervical 
specimen at the time of enrolment 
in a cohort study, or at the time of 
diagnosis of HGCIN, or of invasive 
cervical cancer in a case–control 
study, provides little assurance that 
the laboratory determination of the 
HPV positivity of that specimen 
accurately reflects the relevant 
past exposure to HPV infection 
that the subject may have had. 
Infections with low viral load may 
be labelled erroneously as HPV-
negative. A subject with a mildly 
productive transient infection at the 
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time of testing may be classified 
as HPV-positive in epidemiologic 
studies based on single-specimen 
assessment of exposure, regardless 
of whether the design is cohort or 
case–control. Such studies will 

also attribute exposure status to 
false-positive specimens resulting 
from contamination. The latter 
subjects’ non-exposed status can 
be ascertained with greater validity 
if one determines a cumulative 

exposure status based on detection 
of HPV in multiple specimens 
collected over time in repeated 
measurement studies (16).
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Summary

Though dietary factors are 
implicated in chronic disease risk, 
assessment of dietary intake has 
limitations, including problems 
with recall of complex food intake 
patterns over a long period of 
time. Diet and nutrient biomarkers 
may provide objective measures 
of dietary intake and nutritional 
status, as well as an integrated 
measure of intake, absorption and 
metabolism. Thus, the search for 
an unbiased biomarker of dietary 
intake and nutritional status is an 
important aspect of nutritional 
epidemiology. This chapter reviews 
types of biomarkers related to 
dietary intake and nutritional status, 
such as exposure biomarkers of diet 
and nutritional status, intermediate 
endpoints, and susceptibility. Novel 
biomarkers, such as biomarkers 
of physical fitness, oxidative DNA 

damage and tissue concentrations 
are also discussed.

Biomarkers of nutritional 
exposure and nutritional 
status: An overview

Food frequency questionnaires 
(FFQ), multiple food records, and 24-
hour recalls are the most common 
methods to assess dietary intake 
in nutritional epidemiologic studies 
(1). The strengths and limitations of 
dietary assessment methods, as well 
as nutritional status biomarkers, are 
summarized in Table 11.1. Generally, 
the accuracy of the information 
collected depends on the ability to 
integrate complex eating patterns 
concisely and the subject’s memory. 
Current dietary assessment 
methods may not completely 
capture nutrient interactions and 

metabolism, as food is a complex 
mixture; thus, the absorption and 
metabolism of any single nutrient is 
affected by the presence of another. 
For example, iron taken with vitamin 
C is absorbed more efficiently than 
by itself, but phytate can bind iron 
and make it unavailable. Cooking 
is another important factor that can 
change concentrations of nutrients 
or can form compounds not normally 
present in foods. Obtaining this level 
of detail using dietary assessment 
instruments is generally not feasible. 
Furthermore, food composition 
tables are not available for all 
nutrients, limiting the assessment 
of many of them. Finally, there 
are numerous nutrients, such as 
selenium and vitamin D, that cannot 
be measured adequately in the food 
source.
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Table 11.1. Strengths and limitations of intake assessment methods and nutritional status biomarkers

Assess by Limitations Strengths

Estimate of dietary intake Questionnaire
FFQ
Food records
24-hour recall
Diet history
Food composition table

- Prone to different types of bias
- Dependent on memory
- May not capture variability in 
eating pattern
- does not account for absorption 
or bioavailability when foods 
are cooked or eaten as complex 
mixtures
- Not comprehensive especially 
for diaries and recalls
- Focused on specific nutrient
- Many newer dietary compounds 
of interest not covered

- Easier to administer in 
population-based
studies
- Long-term intake
estimate

Nutritional status Biomarker of:
- absolute intake
- correlated intake

- Collection
- Storage
- Sensitivity
- Specificity
- Laboratory variability
- Single measure may not be 
representative of usual

- Objective measure
- Error structure
different than
questionnaire-based
information
- Integrated measure

Diet and nutrient exposure 
biomarkers may be independent 
of the subject’s memory or 
the capacity to describe foods 
consumed. Biomarkers may provide 
an integrated measure of intake, 
absorption and metabolism, which 
may improve the accuracy of 
the estimation of the association 
between the nutrient and disease, 
but limit the direct interpretation of 
the connection between intake and 
disease. However, since biomarkers 
may be affected by biospecimen 
collection methods, storage 
conditions and laboratory variations, 
these factors must be carefully 
considered in the study design.

Types of biomarkers

Exposure biomarkers

Biomarkers of absolute intake: 
Recovery biomarkers

Biomarkers of absolute intake, 
or recovery biomarkers, reflect 
a balance between intake and 
output over a defined period, with 
relatively high correlation between 
the absolute dietary intake and the 

biomarker (> 0.8) (2). The two well-
studied recovery biomarkers are 
urinary nitrogen and doubly-labelled 
water. Urinary nitrogen is an example 
of a recovery biomarker of protein 
intake. A 24-hour urine collection is 
required, and subjects should take 
para-aminobenzoic acid (PABA) 
tablets with the three main meals of 
the day to validate the completeness 
of the collection (3). The amount of 
nitrogen recovered in a 24-hour 
urine collection can be converted 
to protein intake using estimates of 
the percent of nitrogen excreted in 
urine (~81%). Doubly-labelled water 
is another example of a recovery 
biomarker for energy expenditure, 
in which the average metabolic 
rate of a human is measured over 
a period of time. A dose of doubly-
labelled water, in which both the 
hydrogen and the oxygen have 
been partly or completely replaced 
for tracking purposes (i.e. labelled) 
with an uncommon isotope of these 
elements, is administered to the 
individual. The loss of deuterium and 
O-18 is then measured over time by 
regular sampling of heavy isotope 
concentrations in the body water 
(by sampling saliva, urine or blood); 

the methods used to measure the 
recovered products are technically 
challenging (4).

Urinary nitrogen and doubly-
labelled water are the only validated 
recovery biomarkers, but it must 
still be assumed that the testing 
period is representative of the 
subjects’ usual habits. The relative 
complexity and high cost of these 
methods prevents these biomarkers 
from being applied to large cohort 
studies. Thus, these biomarkers 
are often used as gold standards 
for validating dietary questionnaires 
or developing correction factors to 
estimate measurement attenuation.

Biomarkers of correlated intake: 
Concentration biomarkers

Biomarkers of correlated intake are 
based on concentrations in the body 
(i.e. in blood, urine, saliva, hair, nails 
or tissue), reflecting current intake 
status. Concentration biomarkers 
are correlated with intake, such 
that higher concentrations of these 
biomarkers result from higher 
intake. The measured concentration 
is a consideration of intake, uptake, 
and metabolism. Concentration 
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biomarkers can enhance dietary 
assessment, or in some cases be 
the primary method of assessment 
of nutrient exposure.

Nutrients

This type of biomarker may be 
used to enhance assessment and 
measurement of dietary components 
that are currently captured by dietary 
questionnaires. Vitamin C is thought 
to protect against oxidative stress, but 
assessment of intake is complicated 
by the varying concentration in foods 
and the widespread and episodic 
use of vitamin C supplements. 
Vitamin C is water soluble and 
responsive to short-term changes 
in intake; any single measure of 
vitamin C may not accurately rank 
subjects’ typical exposure. Because 
the serum or plasma must be stored 
using metaphosphoric acid or other 
preservatives, few epidemiologic 
studies use vitamin C biomarkers 
(5).

Vitamin E, especially 
α-tocopherol, has been the focus of 
a great deal of scrutiny because of 
its potential benefits in reducing the 
risk of cancers and cardiovascular 
diseases (6,7). The correlation 
of estimates of vitamin E intake 
from questionnaires with serum 
concentrations is highly variable, 
since most dietary vitamin E is 
obtained from vegetable oils used in 
cooking (8) and intake of such oils is 
not estimated well by food frequency 
questionnaires (FFQs)(9). For 
example, the correlation between 
the FFQ-estimated vitamin E intake 
and serum α-tocopherol ranged from 
0.47 in Dutch men to −0.08 in Italian 
men in the European Prospective 
Investigation into Cancer and 
Nutrition (EPIC) (10). Many studies 
have found an association between 
serum α-tocopherol levels and 
chronic disease risk, but not with 
dietary estimates of vitamin E. 

For example, in the EPIC study, 
high serum concentrations of 
α-tocopherol were associated with 
significantly lower risks of gastric 
cancer, but estimated dietary intake 
of vitamin E was not (11).

Biomarkers as the primary 
method of assessment. This type of 
biomarker may be used to measure 
intake for dietary components that 
are not currently captured by dietary 
questionnaires. The selenium 
content of foods is highly dependent 
on local soil concentrations, 
which range over several orders 
of magnitude. Wheat is an 
important selenium source in many 
populations, but the selenium content 
of wheat can vary considerably; 
therefore, wheat used to produce 
flour, bread, pasta and other noodles 
from different geographic areas can 
result in variable levels of selenium. 
Several well-established biomarkers 
of selenium have been developed, 
including serum and toenail 
selenium, which provide a valid 
estimate of selenium status. More 
than 20 studies have examined the 
association between serum, plasma 
or nail selenium and risk of prostate 
cancer; a meta-analysis concluded 
that serum and plasma selenium 
were consistently lower in cases 
compared with controls (12). Serum 
and toenail selenium are common 
validated biomarkers of selenium 
status (9).

Iron is another example of a 
concentration biomarker than may 
better reflect exposure and provide 
a more informative assessment of 
the association between iron and 
disease than intake estimates. 
Dietary iron is acquired from plant 
and animal sources, as well as 
fortified grain in some countries. 
There are large differences in 
the bioavailability and absorption 
pathways of heme and non-heme 
iron, suggesting that estimating 
total iron intake will not give a 

useful estimate of true exposure. 
In addition, because menstruation 
can lead to very different amounts 
of iron loss in women, the estimation 
of intake may not be biologically 
relevant. There are several 
biomarkers for iron, including 
serum iron and serum ferritin; both 
are subject to homeostatic control 
and influenced by inflammation, 
respectively.

Vitamin D is a third example of 
a nutrient that is not well measured 
by intake estimates. Liver, fatty 
fish, ergocalciferol in mushrooms, 
and fortified milk are major dietary 
sources of vitamin D; however, for 
most people, the primary source of 
vitamin D is produced internally upon 
exposure of the skin to ultraviolet B 
(UVB). This production depends 
on the melanin content of the skin 
and the amount of UVB exposure. 
Estimating sun exposure is complex, 
because of differences in time spent 
outside, amount of exposed skin, 
weather conditions and sunscreen 
use. Thus, circulating 25-hydroxy 
vitamin D is considered a more 
reliable indicator of vitamin D status, 
capturing both dietary intake and 
endogenous production. 25-hydroxy 
vitamin D has been used in several 
prospective epidemiologic studies 
to assess the role of vitamin D in 
chronic disease prevention (13).

Non-nutritional components

An important aspect of the 
connection between diet and 
chronic disease is the assessment 
of potentially hazardous dietary 
components. The human diet may 
contain inadvertent contaminants 
that are formed during food 
processing or cooking. Examples of 
contaminants formed during cooking 
are heterocyclic amines (HCAs) and 
polycyclic aromatic hydrocarbons 
(PAHs). Some developing countries 
lack an integrated food delivery 
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system that affords the chance to 
regulate some undesirable food 
contaminants, such as mycotoxins 
or by-products of processing 
(e.g. silica from grinding grain or 
nitrosamines in salted fish).

Food-cooking by-products. 
HCAs and PAHs, both known 
carcinogens in animal models, are 
formed in the highest concentrations 
in meat cooked well-done using 
high-temperature cooking methods, 
such as pan-frying or grilling. The 
assessment of exposure to these 
compounds can be estimated 
using questionnaires, but may 
benefit from the use of biomarkers 
of exposure. Moreover, there is 
no national database available for 
food by cooking methods. A limited 
database, CHARRED, has been 
created that is based on the type 
of meat, cooking method and the 
degree of doneness (http://charred.
cancer.gov/).

HCAs are formed from the 
reaction at high temperatures 
between creatine or creatinine 
(found in muscle meats), amino 
acids, and sugars (14–17). HCAs 
undergo extensive metabolism by 
phase I and II enzymes. Various 
biomarkers of HCAs have been 
investigated in urine, blood and hair, 
with each having advantages and 
limitations.

Urine is a useful biological fluid 
for the measurement of exposure to 
various classes of carcinogens, since 
large quantities may be obtained 
non-invasively. HCAs are rapidly 
absorbed from the gastrointestinal 
tract and eliminated in urine as 
multiple metabolites, with several 
percent of the dose present as the 
unmetabolized parent compound 
within 24 hours of consuming grilled 
meats. HCAs in urine have short 
half-lives, however, and may not be 
ideal measures of “usual” intake in 
etiologic studies, especially if there 
is substantial day-to-day variability. 

With a large sample size, though, 
urinary HCAs could still be used to 
validate intake of HCAs as estimated 
by questionnaires.

HCA-DNA adducts can be 
measured in lymphocytes and HCA 
metabolites bound to circulating 
blood proteins, such as haemoglobin 
(Hb) or serum albumin (SA). The 
measurement of these biomarkers 
can provide an estimate of exposure 
and the biologically effective dose, 
but they do not provide a measure of 
genetic damage directly in the target 
tissue. DNA and protein adducts 
of HCAs have been detected in 
experimental animal models by 
32P-postlabelling. There is a paucity 
of data on HCA biomarkers in 
humans, however, as their detection 
and quantification remains a 
challenging analytical problem: the 
concentration of HCAs in the diet is 
at the parts-per-billion level, and the 
quantity of HCA biomarkers formed 
in humans occurs at very low levels. 
Accumulation of HCAs in human 
hair, which may serve as a potential 
long-term biomarker to assess 
chronic exposure of HCAs, has 
been suggested but not yet validated 
(18,19). Similar, but larger, issues 
exist for PAHs, as these compounds 
are even more ubiquitous in the food 
source and environment.

Mycotoxins. Fungal carcinogens 
are another example of a food 
contaminant whose study may 
benefit from the use of an exposure 
biomarker. Aflatoxin (AFB1) is 
produced by Aspergillus flavus and 
other related species, and plays an 
important role in the high rates of 
hepatocellular carcinoma seen in 
southern China and parts of Africa 
(20). Assessment of AFB1 exposure 
by questionnaire is very limited, 
as the amount of infection in grain 
and the amount of toxin produced 
varies by locality, crop and storage 
conditions. In communities where 
most food is grown and stored at 
home, the ability to develop general 
exposure metrics applicable to 
questionnaire data is minimal. 
Therefore, the development of 
biomarkers of exposure to these 
dietary contaminants is critical.

Extensive work on the 
metabolism of AFB1 led to the 
identification of AFB1 adducts 
with DNA and albumin, including 
AFB1-DNA adducts in urine (21), 
as correlates of the effective dose 
of AFB1. Using urinary AFB1-DNA 
adducts as a biomarker, a nested 
case–control study demonstrated a 
5-fold increased risk of liver cancer 
in subjects who had measurable 
levels of these adducts (22). In the 
same study, dietary aflatoxin intake 

Figure 11.1. Potential heterocyclic amines (HCAs) biomarkers (71)
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was estimated by crossing the 
concentration of directly measured 
aflatoxin in food samples and typical 
intake by questionnaire for each 
of the contaminated food items. 
The intake estimates showed no 
association with risk of liver cancer 
(22).

Biomarkers of intermediate 
endpoints

Biomarkers of intermediate endpoints 
are defined as “…an exogenous 
substance or first metabolite or the 
product of an interaction between 
nutritional exposure and some target 
molecule or cell that is measured in 
a compartment within an organism.” 
(23).

Biomarkers of intermediate 
endpoints have been used 
extensively to address the 
association between energy 
balance and chronic disease. 
There are multiple serologic indices 
able to reflect a state of obesity 
and/or physical activity, including 
circulating sex steroid and metabolic 
hormones, as well as inflammatory 
markers. Serum estradiol levels 
are higher in obese, compared to 
lean, post-menopausal women 
(24). Obesity is also associated with 
increased levels of adipokines (e.g. 
leptin and adiponectin), which can 
be related to insulin resistance (25), 
characterized by elevated insulin 
and glucose levels. Inflammatory 
markers, such as C-reactive protein 
and adiponectin, are suspected to 
be on the causal pathway between 
obesity and chronic disease. 
Obesity results in excessive 
production of storage lipids and high 
circulating levels of glucose, both 
of which create a proinflammatory 
oxidative environment (26,27). 
In addition, individuals who are 
physically active, after adjustment 
for body mass index (BMI), have 
decreased serum estradiol, estrone 

and androgens (28,29), and male 
athletes have low testosterone levels 
(30). Physical activity can improve 
insulin sensitivity, and thus decrease 
insulin levels (31). Proinsulin is 
enzymatically cleaved into insulin 
and C-peptide in the pancreas (32), 
and as C-peptide has a longer half-
life than insulin (32), it is a better 
measure of insulin secretion (33–
35). Increased physical activity has 
been associated with a reduction 
in inflammatory markers in many 
studies (36–39).

Other examples of biomarkers 
of intermediate endpoints include 
blood cholesterols, which are related 
to risk of cardiovascular disease and 
also related to saturate fat intake, 
and blood pressure, which is related 
to hypertension and also related to 
sodium intake.

Biomarkers of susceptibility

Humans have a myriad of 
enzymes that have evolved to 
maintain cellular homeostasis, 
including enzymes that metabolize 
exogenous environmental 
compounds and nutrients ingested 
in food. This metabolism allows 
the utilization of nutrients and the 
subsequent detoxification and 
excretion of potentially harmful 
compounds and metabolites. The 
genes encoding metabolic enzymes 
are polymorphically expressed in 
humans; molecular biology and 
enzymology studies have shown that 
there are many polymorphisms that 
have a functional consequence for 
the expressed protein. Therefore, the 
interaction of genetic polymorphisms 
with consumed nutrients or with 
foodborne promutagens could 
serve to modulate diet-influenced 
disease etiology. Including genetic 
heterogeneity may provide a better 
characterization of nutrient exposure 
and disease risk relationship. 
Several areas in which genetics may 

influence relationships between 
diet and disease risk are described 
below.

While there is limited evidence 
that fruit and vegetable intake 
is associated with risk of breast 
cancer (40), it is possible that this 
association may differ according 
to an individual’s genetic profile. 
This is because fruits and 
vegetables contain compounds 
that serve to decrease oxidative 
load; reactive oxygen species are 
also endogenously generated or 
neutralized by numerous enzymes. 
Studies reported that a reduced 
breast cancer risk was particularly 
evident in women who had greater 
fruit and vegetable consumption and 
were among a subgroup with genetic 
variants in catalase (rs1001179) (41) 
and myeloperoxidase (rs2333227) 
(42), which is related to higher 
antioxidant capabilities.

A polymorphism of manganese 
superoxide dismutase (MnSOD) 
(rs1799725, Ex2+24T > C) in the 
mitochondrial targeting sequence 
results in a change of amino acids 
that is thought to alter antioxidant 
capacity. In the Physicians Health 
Study, investigators found that 
there was a significant interaction 
between prostate cancer risk, the 
MnSOD CC genotype, and low 
baseline plasma antioxidant levels; 
those with the CC genotype and 
low antioxidants had almost a 
four-fold increased risk of prostate 
cancer (43). These findings are also 
replicated in the Prostate, Lung, 
Colorectal and Ovarian (PLCO) 
study, where the MnSOD variant 
genotype was associated with 
increased risk of prostate cancer, 
particularly among men with lower 
intakes of dietary and supplemental 
vitamin E (44).

The Human Genome Project 
has opened unprecedented 
opportunities to comprehensively 
investigate inherited genetic 
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variations. Ongoing work is 
exploiting these opportunities 
through the National Cancer 
Institute’s Cancer Genetic Markers 
of Susceptibility (CGEMS) to 
characterize vitamin D/calcium-
related pathway genetics and 
prostate cancer risk in the PLCO 
trial. Several single nucleotide 
polymorphisms that predicted serum 
25(OH)D concentrations were 
identified (45). Studies of genetic 
variants that determine serum 
micronutrient concentrations, as well 
as adiposity and height, are ongoing 
with genome-wide scan data (46–
52). Exploiting this information would 
provide a more coherent measure 
of chronic disease risk associated 
with dietary and nutrition exposures. 
Also, individualising dietary 
recommendations necessitates a 
detailed understanding of all genetic 
and physiological variables that 
influence the interaction of gene-diet 
and their relation to disease process. 
Thus, the potential benefits of 
understanding the interrelationships 
between genetic variation and 
nutrition are enormous.

Novel biomarkers

Physical activity as measured 
by markers of physical fitness

There has been a great deal of 
effort to expand studies of energy 
balance and its role in health and 
disease using both estimates of 
caloric intake and BMI. Recently, 
more attention has been paid to the 
other side of the energy balance 
equation, namely physical activity. 
Assessment of physical activity 
has primarily used questionnaire 
assessments of physical activity 
at work, during leisure time, and 
increasingly, activities of daily 
living (housework, etc.). Although 
physical fitness can be measured 
using factors such as resting pulse 

or aerobic capacity, this captures 
neither the amount of energy 
expended by a subject nor the 
amount of low-intensity activities, 
which may have health benefits 
(53). Epidemiologists are starting 
to use accelerometers to accurately 
capture activity over a test period. 
However, further work will be 
required to deploy these devices on 
a large scale; measurements will be 
restricted to a small number of days, 
and for etiologic studies this could 
only be meaningful in prospective 
studies.

Alternatively, biomarkers of 
effect have been examined to 
explore physical activity hypotheses. 
For example, one hypothesis for the 
protective effect of physical activity 
on breast cancer is the alteration 
of circulating hormone levels (54). 
Post-menopausal women with 
lower serum levels of sex steroid 
hormones have lower risk of breast 
cancer. Physical activity may lower 
these serum concentrations, but 
whether this is dependent on greater 
physical activity leading to lower BMI 
is unclear. Because adipose tissue 
is an important source of sex steroid 
hormones in post-menopausal 
women, determining whether the 
effect of physical activity on breast 
cancer risk is independent of BMI 
will require careful evaluation of 
serum sex steroid levels to assess 
the mechanism of action (54). 
Assessing the other potential 
mechanisms of action for the 
association of physical activity 
and cancer will require the use of 
molecular markers for inflammation 
and immunity (53).

Oxidative capacity of diet 
as measured by markers of 
oxidative DNA damage

The impact of dietary antioxidants 
on the incidence of cancer has 
been widely studied by assessing 

intake using FFQs or food records, 
as well as by status biomarkers, 
such as serum vitamin measures. 
An alternative biomarker strategy 
is to measure the amount of 
oxidative stress in an individual 
with a biomarker that integrates 
antioxidant intake, oxidative stress 
from exogenous and endogenous 
sources, and individual response to 
this stress (genetic and epigenetic 
factors). Oxidative stress can lead 
to modification of DNA nucleotides. 
The DNA adduct 7,8-dihydro-
8–2'-deoxyguanosine (8-oxodG) 
has been widely used as a marker 
of oxidative stress (55). Direct 
measurement of this DNA adduct in 
peripheral blood mononuclear cells 
or urine reflects the sum of oxidative 
damage and the repair of this 
damage. Oxidative stress can also 
lead to the oxidation of thymine and 
the formation of 5-hydroxymethyl-
2’deoxyuridine (HMdU). This 
adduct is immunogenic, and 
autoantibodies against it can be 
monitored as a marker of oxidative 
stress (56). Several studies have 
investigated the responsiveness of 
these markers to dietary intake and 
modification (57,58). Observational 
and intervention studies suggest 
that diet can significantly modify 
the amount of oxidative stress as 
measured by the DNA modification 
markers. Moreover, these markers 
can be employed directly, or 
alternatively used in conjunction with 
a diet/behaviour index. For example, 
the concentration of 8-oxodG could 
be measured in a subset of a 
cohort, and the dietary and other 
questionnaire data examined to build 
a predictive model for this oxidative 
stress marker. If a sufficiently 
powerful model can be built, it 
can then be used to examine the 
association between the index and 
the disease in the full cohort. This 
may be a more powerful technique 
for the integration of antioxidant and 
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prooxidant exposures than is an 
index that arbitrarily assigns points 
based on median splits of intake for 
purportedly antioxidative foods or 
nutrients.

Exposure status as measured 
by tissue concentrations

Most previous biomarker studies 
of nutrient status or carcinogen 
exposure have used easily 
accessible biological compartments 
(e.g. serum, urine, hair or nails) to 
assess the association between 
exposure and cancer risk. Recently, 
the developing interest in molecular 
epidemiology has provided the 
impetus to use tissue banks to 
provide measures of exposure 
directly in the target tissue.

Large numbers of studies 
have examined the association 
between nutrient intake and the 
risk of disease. Some nutrients 
such as trace elements or minerals, 
however, are not amenable to intake 
estimation. For example, meaningful 
estimates of zinc intake are difficult 
because the bioavailability varies 
strongly with the other dietary 
constituents in the same meal; 
phytate from whole grain can almost 
completely block zinc absorption. 
Also, serum zinc may not be a 
sensitive indicator of status, because 
serum zinc concentration is under 
tight homeostatic control. Therefore, 
an alternative method has been 
devised whereby the concentration 
of zinc in the target tissue of interest 
is measured directly (59). This uses 
a sensitive technique to measure 
the zinc concentrations in the biopsy 
tissue directly, thus giving a clearer 
assessment of the importance of the 
element in the studied tissue.

An alternative use of tissue 
biomarkers is to directly assess 
the exposure to carcinogens that 
is derived from the diet. Antibodies 
against the adduct created when 

activated benzo[a]pyrene interacts 
with DNA have been used to 
assess the association between 
PAH exposure and breast cancer 
using breast biopsies. Using an 
immunohistochemical assay, an 
association was found between 
PAH-DNA adducts in breast tissue 
and the risk of breast cancer (60), 
but this work requires careful 
interpretation (61).

Studies using target tissue may 
be restricted to easily or routinely 
biopsied organs, such as those 
often biopsied during screening 
exams or positive exam work-ups 
(e.g. colon, prostate or breast). 
The direct assessment of nutrient 
status or carcinogen exposure in the 
target tissue may lead to a clearer 
understanding of the nutrient or 
exposure in the disease process.

Urinary mutagenicity

A urinary mutagenicity test using 
Salmonella typhimurium indicator 
strains (Ames test) has been used to 
monitor populations occupationally 
or environmentally exposed 
to genotoxic compounds (62). 
Genotoxic compounds in the diet 
may originate from contaminants in 
the food chain or from by-products 
of food preparation; for example, the 
urine of individuals who consumed 
well-done meat can be highly 
mutagenic (63). Mutagenic activity of 
the urine is substantially increased 
when the urine is acid-hydrolysed. 
Mutagenicity of unhydrolysed 
urine likely reflects excretion of 
unmetabolized mutagens, whereas 
the mutagenicity of hydrolysed 
urine reflects the excretion of both 
metabolized and unmetabolized 
mutagens. Other dietary 
components, such as cruciferous 
vegetables or parsley, may decrease 
urinary mutagenicity by enhancing 
the level of conjugation.

Current challenges and future 
directions

Dietary assessment

Food frequency questionnaires 
(FFQs) are the main dietary 
instrument used by nutritional 
epidemiologists, but in recent 
years this method has become 
controversial. Whether or not it is 
time to abandon the use of FFQs 
has been discussed (64,65). 
The inconsistencies in diet–
disease associations observed in 
epidemiologic studies have been 
highlighted. Further emphasized 
were results from a methodologic 
study that used doubly labelled 
water as a gold standard for energy 
intake and urinary nitrogen for 
protein intake (4). Both energy and 
protein estimated by the FFQ were 
measured very poorly. The authors 
also argue that the associations 
observed using dietary biomarkers 
and food diaries are not detectable 
when FFQs are used (66,67). These 
assertions have been questioned, 
and it has been stated that some 
inconsistencies are to be expected 
in an area as complex as diet both 
due to chance and real biological 
interactions (68). The authors further 
assert that when large numbers of 
studies have been pooled the data 
are consistent, and the ability of 
the doubly-labelled water study to 
measure within-person variability 
has been questioned (68). The 
association between fat and breast 
cancer using food records has been 
seen in two cohort studies, one in 
the United Kingdom and the other in 
the Women’s Health Initiative (69), 
in contrast to the null results using 
a FFQ (70). Further discussion 
must be undertaken to decide 
how to estimate dietary intake. 
For example, are all foods and 
nutrients substantially misclassified 
as observed for energy and protein 
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intake? Should we use other forms 
of dietary instruments or possibly 
a combination of instruments? It is, 
however, crucial that dietary intake 
be estimated with less error if we are 
to correlate intake to a biomarker. 
An automated, web-based FFQ or 
24-hour recall is currently being 
developed, and these new tools may 
help to improve dietary assessment.

Dietary biomarkers

There are several important issues 
that need consideration when 
deciding whether to use dietary 
biomarkers in an epidemiologic 
study. The application of dietary 
biomarkers is most likely to be 
useful in prospective cohort studies, 
as the biological samples will be 
collected and stored before the 
clinical manifestation of the disease.

In general, there are limited 
types of biospecimens that are 
easily available and can be used for 
measuring nutrients such as blood, 
urine, hair, nail, faeces, saliva, and 
tissue biopsies. These may not be 
specimens from the organ or site 
of interest; for example, fat soluble 
vitamins are stored in the liver, 
adipose tissue, cell membrane, 
and with smaller amounts in blood 
components.

Sample collection and storage 
of biospecimens in an appropriate 
manner is crucial for nutritional 
biomarkers. Certain nutrients 
must be collected under specific 
conditions (e.g. trace mineral-free 
tubes for zinc). Zinc contamination 
can be in dust, thus stringent 
laboratory conditions must be used 
to measure this mineral in biological 

samples. Other nutrients need 
to be stored with preservatives 
to maintain their integrity, such 
as vitamin C, which needs to be 
preserved with metaphosphoric 
acid. Such stringent control may 
not be a problem in smaller studies 
with targeted hypotheses, but it 
can become a constraint in large, 
prospective studies with competing 
interests and limited amounts of 
biological material.

Measurement of nutritional 
biomarkers in repeat samples 
is important for many dietary 
components that have short half-
lives, such as water-soluble vitamins 
and meat-cooking carcinogens. 
Therefore, it is preferable to have 
biological specimens from multiple 
days to derive an estimate of usual 
nutritional status. A related issue to 
a short half-life is the need to collect 
fasting samples as certain nutrients 
respond with a postprandial spike for 
several hours. It is important to take 
into consideration the metabolism of 
the nutrient with the study aims and 
design.

The data generated from the 
Human Genome Project offer great 
opportunities to utilize genetic 
information. This rapidly expanding 
technology will provide valuable 
information to help understand 
disease etiology in a comprehensive 
way, but it will also provide a 
formidable challenge in design, 
analysis and implementation of 
molecular epidemiology studies. 
The application of molecular 
epidemiology to nutrition and 
disease prevention is in its infancy. 
Further investigations of diet, genetic 
variability, and disease risk will better 

elucidate the complex relationships 
between diet and disease risk, 
and support recommendations for 
healthful eating.

Conclusions

This chapter reviews types of 
biomarkers related to dietary 
intake and nutritional status. 
Exposure biomarkers include 
biomarkers of absolute intake and 
correlates of intake. Absolute intake 
biomarkers are often thought of as 
a gold standard to validate dietary 
questionnaires, with relatively high 
correlation with dietary intake. 
Concentration biomarkers reflect 
intake status, with moderate 
correlations in relation to nutritional 
(e.g. serum vitamin D, serum 
vitamin E, and toenail selenium) 
or non-nutritional components 
(e.g. food-cooking by-products, 
and mycotoxins). Intermediate 
biomarkers of biologic effect have 
been used extensively to address 
the association of surrogate 
endpoints of nutritional exposures. 
Biomarkers of susceptibility often 
include genetic heterogeneity, 
which may help better characterize 
nutrient exposure and disease–risk 
relationship. Novel biomarkers, 
such as biomarkers of physical 
fitness, oxidative DNA damage, and 
urinary mutagenicity, have been 
developed in this rapidly growing 
field. As analytic methods improve 
and more biochemical indicators 
are validated as measures of 
dietary intake, their use in nutritional 
epidemiology is likely to expand.
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Assessment 
of the hormonal milieu

Susan E. Hankinson and Shelley S. Tworoger

Summary

The hormonal milieu has been 
hypothesized to play a role in a range 
of human diseases, and therefore has 
been a topic of much epidemiologic 
investigation. Hormones of particular 
interest include: sex steroids; growth 
hormones; insulin-like growth factors; 
stress hormones, such as cortisol; 
and hormones produced by the 
adipose tissue, termed adipokines. 
Depending on the hormone, levels 
may be measured in plasma or serum, 
urine, saliva, tissue, or by assessing 
genetic variation in the hormone 
or hormone metabolizing genes. 
Sample collection, processing, and 
storage requirements vary according 
to the type of sample collected (e.g. 
blood or urine) and the hormone 
of interest. Laboratory analysis of 
hormones is frequently complex, 
and the technology used to conduct 
the assays is constantly evolving. 

For example, direct or indirect 
radioimmunoassay, bioassay or 
mass spectrometry can be used to 
measure sex steroids, each having 
advantages and disadvantages. 
Careful attention to laboratory issues, 
including close collaboration with 
laboratory colleagues and ongoing 
quality control assessments, is 
critical. Whether a single hormone 
measurement, as is frequently 
collected in epidemiologic studies, 
is sufficient to characterize the 
hormonal environment of interest 
(e.g. long-term adult hormone 
exposure) is also an important issue. 
While the assessment of hormones 
in epidemiologic studies is complex, 
these efforts have, and will continue 
to, add importantly to our knowledge 
of the role of hormones in human 
health.

Introduction

The study of hormones and their 
involvement in human health has 
been considered for many years, and 
their measurement has increasingly 
become an important part of many 
epidemiologic studies. Examining 
how various endogenous and 
exogenous hormones are related to 
disease increases our understanding 
of disease etiology, which may 
ultimately lead to improved prevention 
recommendations for both high-risk 
groups and the general population. 
Issues surrounding the appropriate 
use of hormone measures in 
epidemiologic studies are complex 
and require careful planning by 
study investigators. Many choices 
must be made, including the type 
of biospecimen to collect from 
participants, the timing and conduct 
of sample collection, the choice of 
hormones and assay modalities, 
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and ultimately how to interpret the 
results. While several of these issues 
are dealt with in previous chapters 
(sample collection and processing 
in Chapter 3 and interpretation of 
assay results in Chapter 8), here 
the focus is on examples and 
concerns in measuring hormones. 
Because of the broad range of 
hormones found in humans, this 
chapter cannot cover every aspect 
of hormone measurement. However, 
general issues are addressed 
that should be considered when 
designing epidemiologic studies of 
hormones, such as the importance 
of hormones in medical research, 
their measurement in human 
samples, and issues regarding assay 
development and interpretation.

Context and public health 
significance

Hormones are chemicals produced 
by living cells that act as chemical 
messengers or signal molecules 
(1). The hormonal environment 
is a critical regulator of many 
physiologic processes, including 
growth, energy metabolism, 
fertility and the stress response. 
A wide range of well-documented 
diseases are linked to changes, 
either increases or decreases, in 
the hormonal milieu (Table 12.1). 
The role of hypoinsulinemia and 
insulin resistance in diabetes, excess 
insulin-like growth factor (IGF I 
in acromegaly and deficiency in 
dwarfism, excessive production of 
thyroid hormone in Graves disease, 
and overproduction of cortisol in 
Cushing syndrome are all examples. 
In addition to these well-established 
causal relationships, the hormonal 
milieu has been hypothesized to play 
a role in a range of other diseases, 
which have been the focus of many 
epidemiologic studies. Several 
examples, described further below, 
include the association of sex steroid 

hormones and breast cancer, the 
IGF system and cognitive function, 
and the role of adipokines such as 
adiponectin in both diabetes and 
heart disease.

This chapter focuses on the 
measurement of endogenous 
hormones (i.e. hormones produced 
by the body). The role of exogenous 
hormones (i.e. originating outside 
the body), particularly the use of oral 
contraceptives and postmenopausal 
hormones by millions of women 
worldwide, also has been the 
subject of substantial scientific 
study. The evaluation of exogenous 
hormones is not addressed here, 
largely because characterizing 
exposure to these agents is routinely 
accomplished via administration 
of questionnaires or tallying of 
pharmacy prescription records. 
However, any epidemiologic study 
of endogenous hormones must take 
into account sources of exogenous 
exposure that may influence 
endogenous hormone levels.

Examples/case studies

Sex steroids and 
breast cancer risk in 
postmenopausal women

Substantial data support a role of 
hormones, particularly sex steroids, 
in the etiology of breast cancer. 
There are consistent associations 
with reproductive factors, and 
increased risks associated with 
postmenopausal obesity and use 
of postmenopausal hormones (2). 
Further, drugs that either block 
estrogen binding to the estrogen 
receptor (selective estrogen receptor 
modulators, such as tamoxifen) or 
prevent the production of estradiol 
(aromatase inhibitors) are effective 
both in preventing breast cancer and 
improving survival of women with 
the disease (3–5). Considerable 
data assessing circulating sex 
steroids in postmenopausal women 
and breast cancer risk have accrued 
from prospective epidemiologic 
studies, where circulating levels 
of endogenous hormones are 
measured in study subjects before 

Table 12.1. Examples of diseases potentially caused (at least in part) by hormones 
that have been the subject of epidemiologic study

Hormone Conditions known or hypothesized to be related

Sex steroids (e.g. estradiol and 
testosterone)

Infertility, osteoporosis, cancer (e.g. breast, 
endometrial and prostate cancers)

Vitamin D metabolites Hypertension, osteoporosis, cancer (e.g. colon and 
breast cancer)

Insulin Diabetes, heart disease, cancer (e.g. colon and 
endometrial cancers), cognitive function

Insulin-like growth factor/
Growth hormone axis

Cancer (e.g. colon, prostate and breast cancers), heart 
disease, cognitive function, osteoporosis

Prolactin Immunologic diseases (e.g. rheumatoid arthritis and 
systemic lupus erythematosus), breast cancer

Adiponectin and other adipokines Diabetes, heart disease, cancer (e.g. colon and breast 
cancers)

Stress hormones (e.g. cortisol) Heart disease, cancer (e.g. breast cancer)

Melatonin Breast cancer, sleep disorders
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disease diagnosis (6). Overall, a 
strong positive association exists 
between breast cancer risk and 
circulating levels of both estrogens 
and androgens. Women in the top 
versus bottom 20% of estrogen 
levels have a two- to three-fold 
higher risk of breast cancer (7). The 
associations are similar for several 
forms of estrogen (e.g. estradiol, 
estrone, estrone sulfate). Although 
additional confirmation is required, 
the association appears strongest 
for estrogen receptor-positive 
breast tumours and is robust 
across groups of women at varying 
risk of breast cancer (e.g. defined 
by family history). Also, a single 
blood estrogen measure predicts 
subsequent breast cancer risk for 
at least 8–10 years. Generally, 
the more limited data available on 
urinary estrogens suggests similar 
predictive ability. For testosterone, 
a commonly measured androgen, 
the data are very consistent, with 
a significant positive association 
between circulating levels and 
postmenopausal breast cancer; 
the magnitude of the association is 
similar to that observed for estrogens 
(7). Most studies also noted a similar, 
although somewhat modest, positive 
association with other androgens, 
such as androstenedione, 
dehydroepiandrosterone (DHEA) 
and DHEA sulfate.

The insulin-like growth factor 
(IGF) axis and cognitive 
function

Insulin-like growth factor I (IGF-I) 
is a protein hormone that mediates 
many actions of growth hormone 
and plays a key regulatory role in cell 
growth and proliferation (1). Tissue 
bioavailability of IGF is regulated 
in large part by its binding to six 
known IGF binding proteins. Insulin-
like growth factor binding protein 3 
(IGFBP-3) is the most abundant of 

these, and it substantially prolongs 
the circulating half-life of IGF-I. Most 
circulating IGF is produced by the 
liver, although it can be produced 
locally in other body tissues. IGF 
is known to play a role in brain 
development and function (8); it is 
produced in the brain and can pass 
through the blood-brain barrier. 
In animal studies, IGF improves 
memory and learning (8), and raising 
IGF levels was found to decrease 
formation of amyloid β (9), a major 
constituent of the neural plaques 
that are a hallmark of Alzheimer's 
disease. In several recent cross-
sectional and prospective studies, 
the association between circulating 
levels of IGF-I, IGFBP-3, or 
free (unbound) IGF-I have been 
assessed in relation to cognitive 
function. Although results have not 
been entirely consistent, it appears 
that older adults with higher levels 
of IGF, the IGF-1:IGFBP-3 ratio, or 
free IGF-1 tended to have better 
cognitive function as assessed by 
several cognitive tests (10–13).

Adiponectin and risk 
of diabetes and heart disease

In recent years, adipose tissue 
has been recognized as an active 
endocrine organ that secretes many 
biologically active substances, 
termed adipokines. Although 
adipokine research is relatively new, 
accruing laboratory and human 
data on adiponectin, one of the 
most abundant adipokines, support 
a role in diabetes and possibly 
heart disease (14–16). Adiponectin 
functions as an insulin-sensitizer, and 
also has important anti-inflammatory 
and anti-atherogenic actions. For 
example, adiponectin increases 
insulin sensitivity in animal models 
of insulin resistance, and reverses 
diet-induced insulin resistance in 
adiponectin knockout mice. The 
protein is inversely associated with 

body mass index (BMI) and insulin, 
and positively associated with serum 
lipids. Several cross-sectional, case–
control, and prospective studies have 
reported either a strong significant 
inverse association for diabetes, or a 
modest inverse or no association for 
heart disease (17–21).

Predictors of hormone levels

In addition to the role of hormones 
in human health and disease, many 
studies have evaluated how the 
external environment influences 
the endogenous production of 
hormones in an effort to determine 
potential modes of action in causing 
(or preventing) disease. Examples 
include assessments of body size, 
physical activity and diet in relation 
to circulating hormone levels. The 
influence of alcohol intake on the 
hormonal milieu provides a good 
example. Both small randomized trials 
(22,23) and cross-sectional studies 
(24,25) have confirmed that alcohol 
intake increases estrogen levels 
in women, providing one potential 
mechanism for the positive association 
between alcohol intake and breast 
cancer risk. Further, alcohol intake 
has been found to increase insulin 
sensitivity (26) and HDL levels (27) 
and decrease fibrinogen levels (27), 
providing several mechanisms for the 
well-confirmed inverse association 
between alcohol intake and heart 
disease risk.

Strengths, limitations 
and lessons learned

Biologic samples for hormone 
evaluation

Many types of biologic specimens 
have been collected in epidemiologic 
studies where hormones are of 
interest (Table 12.2). In this section 
is a brief discussion of common 
sample types, and their advantages 
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and disadvantages, with respect to 
measuring the hormonal milieu.

Blood 

Blood specimens, collected by 
venipuncture, are the most common 
and flexible sample type collected 
in epidemiologic studies. Levels of 
many hormones can be determined 
in blood, primarily because assay 
development traditionally has 
focused on this sample type. 
Various kinds of blood samples can 
be collected, including serum and 
plasma (e.g. EDTA, sodium heparin, 
citrate); each has advantages 
and disadvantages depending 
on the biomarker(s) of interest 
(28,29). For example, sex hormone 
levels generally are similar when 
comparing serum with EDTA or 
heparin plasma (30–33). However, 
most studies suggest slightly higher 
levels of sex hormones in plasma 
versus serum; despite this, both are 
acceptable (30,31,33).

The primary advantages of blood 
collected using venipuncture include 
the capability to measure many 
hormones, as well as the ability to 
collect multiple blood specimens 
simultaneously (e.g. plasma and 
serum) (34). Additionally, if collecting 
plasma, both red and white blood 
cells can be saved; the latter can be 
used to isolate DNA. Also, relatively 
large sample volumes can be 
collected at one time, allowing for 
many assays to be conducted per 
participant.

Despite these advantages, 
venipuncture is expensive, as it 
requires a trained phlebotomist and 
extensive equipment (e.g. needles, 
appropriate collection tubes, gloves, 
etc.) (34). Thus, it generally is not 
feasible to collect specimens using 
this method in very large studies, 
or studies where the population 
is geographically dispersed. One 
exception to this rule is studies of 

medical professionals who have 
training in phlebotomy, or are well 
connected to the medical care 
system, such as when nearly 33 
000 blood samples from nurses 
who live across the United States 
were obtained in the Nurses’ Health 
Study (NHS) cohort (24). After pilot 
testing for feasibility, women were 
mailed a blood collection kit with 
instructions, and asked to have 
someone draw the blood and ship 
it back, with a chill pack, to the 
study laboratory via overnight mail. 
Mobile clinics also have been used 
successfully, such as in the National 
Health and Nutrition Examination 
Survey (NHANES) (35). Another 
disadvantage of venipuncture is 
low participation rates because of 
its invasive nature. Specifically in 
the NHS, it was noted that among 
women who had declined giving 
blood, 50% agreed to give a cheek 
cell specimen (36). Further, liquid 
blood specimens have biohazard 
potential, requiring special training 
and storage conditions.

To overcome difficulties with 
venipuncture, several recent studies 
have focused on collecting blood 
on filter paper using a finger prick 
(34,37–43). This method has been 
used for years to test for uncommon, 
but treatable, genetic conditions in 
infants (38). Recently, extraction 
methods have improved such that 
many hormones can be assayed 
from blood spots, including thyroid 
hormones, prolactin, sex hormones, 
gonadotropins, growth factors, leptin 
and stress hormones (37,39–43). 
The primary advantages include 
that the method is relatively non-
invasive, can be conducted serially, 
presents a reduced biohazard 
potential when dry, and is feasible to 
collect on a large scale (40–43). One 
study reported that women found 
repeated blood spot sampling to be 
less troublesome than venipuncture 
or saliva collection (40).
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However, there are several 
disadvantages of blood collection 
via finger prick. The most important 
is that only a limited number of 
hormones can be assayed from one 
collection. In addition, differences in 
haematocrit between participants 
can introduce systemic or random 
measurement error in hormone 
levels, since the sample is whole 
blood (37,41). Some evidence 
suggests, however, that the filter 
paper can partially ameliorate 
this problem, as blood with high 
haematocrit tends to impregnate a 
smaller volume on the filter paper 
(37). Further, some studies have 
reported that while correlations for 
sex hormones between venipuncture 
and filter paper are high for women, 
the correlations appear lower in men 
(40,41); the mechanism behind this is 
unclear. When measuring estradiol, 
testosterone and progesterone in 
men and premenopausal women, 
blood spot hormone levels explained 
89% of the variance of serum levels 
in women, but only 46% in men 
(41). Other issues to note are that 
certain filter paper types may inhibit 
some assays (38), clear participant 
instructions are important for 
obtaining reliable samples (34), and 
the filter paper must be kept at a 
relatively low humidity (38).

Urine

Urine specimens are another 
commonly collected biological 
specimen, particularly because 
their collection is non-invasive (34). 
It also can be easily collected in 
infants and toddlers by putting a pad 
in the child’s diaper. In general, urine 
contains hormone metabolites, 
rather than primary hormones, and 
reflects excretion over the period 
of the collection. Therefore, it can 
be difficult to determine over what 
time period to collect the urine (e.g. 
24 hours, overnight, first morning 

sample, or spot collection (34). 
The timing of urine collections 
depends on the hormone of 
interest. For example, the intraclass 
correlations (ICC) for a morning-
spot versus 24-hour urine were 
0.78 for estrone-3-glucuronide and 
0.46 for pregnandiol-3-glucuronide; 
similar ICCs were observed for 
overnight versus 24-hour urines. 
This suggests that a morning 
spot urine was acceptable for the 
estrone metabolite, but neither the 
spot nor overnight urine appear to 
capture all the circadian variation 
for pregnandiol. Morning urines are 
acceptable for assessing nocturnal 
urinary melatonin production (44). 
Urine can be collected serially 
and in large volumes, allowing for 
multiple assays to be run. It can 
also be collected on filter paper to 
minimize storage needs and reduce 
the biohazard potential (34).

A primary disadvantage of urine 
is that its concentration varies 
substantially both between persons 
and within the same person over time 
(45). Creatinine is commonly used to 
measure urine concentration. Most 
studies have calculated the analyte/
creatinine ratio to adjust for volume. 
However, it has been reported that 
creatinine levels should be included 
in the regression model as an 
independent variable. This adjusts 
for concentration while allowing 
one to assess the significance 
of other predictors in the model 
independently of creatinine levels 
(45). One other disadvantage 
of urine is that most hormones, 
or their metabolites, exist in low 
concentrations, often necessitating 
large volumes to conduct the 
assays.

Saliva

More recently, saliva has been used 
for measuring hormones. Generally, 
plasma and salivary hormone values 

were highly correlated, including 
for cortisol, androgens, estrogens 
and progesterones (46). These 
hormones enter the saliva by passive 
diffusion, thus the levels specifically 
reflect the free, unbound, circulating 
fraction (47,48). Melatonin levels 
also correlate well between plasma 
and saliva (49). However, for several 
protein hormones, such as thyroid 
hormones, prolactin, or IGF-1, the 
salivary level bears little relationship 
to plasma levels and is unlikely to be 
of any research value (47).

Advantages of saliva sampling 
include: it is non-invasive, painless, 
easily performed, relatively 
inexpensive, has higher rates 
of compliance, and can provide 
quantitative data of biologically 
active hormone levels in circulation 
(40,46). Salivary sampling also 
avoids stress sometimes associated 
with venipuncture, which can 
elevate some hormones, particularly 
cortisol (50). Another benefit is that 
saliva samples can be collected at 
home with minimal training (40,50); 
further serial collections are easily 
conducted.

Despite these advantages, 
a major disadvantage of saliva 
is that hormone concentrations 
are much lower than in plasma, 
because salivary hormone levels 
reflect the free levels, which is 
typically 1–10% of the total plasma 
level (40). Therefore, saliva assays 
often require large sample volumes 
and highly sensitive (and thus 
expensive) assays (50). Further, 
blood contamination in the oral 
mucosa can lead to substantial 
measurement error by increasing 
measured levels. Stimulated saliva 
collection methods, additionally, 
can bias hormone assays. For 
example, the use of cotton-based 
absorbent materials, or chewing 
gum, to stimulate saliva flow can 
artificially elevate assay results 
(40). Therefore, it is important to 
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pilot sample collection techniques to 
ascertain whether such procedures 
interfere with the assays of interest.

One lesser known method of 
saliva sampling is a diffusion-sink 
device (51). This device is a small 
ring that the participant places 
orally for some set time period. The 
sink has a membrane that allows 
diffusion of free hormones, and 
thus measures the average freely 
diffusing concentration of an analyte 
over time. These devices reject 
artefacts arising from blood plasma 
contamination of saliva and provide 
a time-averaged sample, without 
requiring the subject to adhere to a 
frequent-sampling schedule (51).

Other sample types

Other specimen types, such as 
breast milk, breast nipple aspirate 
fluid and other tissues (e.g. tumour, 
adipose, colon polyps) can be 
obtained (34,52); however, they 
often are difficult to collect or 
require invasive procedures. The 
greatest disadvantage, though, 
is that it can be hard to conduct 
assays on these specimen types. 
Despite this, measuring hormones 
in these specimens may reflect true 
exposure at the tissue level better 
than from other sampling types.

Collection, processing 
and storage

As discussed in Chapter 3, the 
collection, processing, and storage 
of samples may affect the ability to 
accurately measure the hormonal 
milieu (36,53–56). Several factors 
for sample collection must be 
considered, including the study 
population, timing and location 
of the collection. Depending on 
these factors, the samples may 
need to be processed in a non-
standard manner. A common issue 
in epidemiologic studies is that 

of delayed processing or delayed 
freezing. The effects of such 
protocols on the hormone of interest 
must be evaluated before assaying. 
Finally, storage of study specimens, 
particularly long-term storage in 
prospective studies, is an important 
and complex issue requiring 
appropriate acquisition of space and 
resources to maintain freezers and 
other related equipment.

Sample collection

Selection of the appropriate study 
population for any epidemiologic 
study is important. However, when 
studying hormone levels, careful 
consideration of the participants 
is often necessary to reduce 
bias. For example, in a study of 
predictors of estrogen levels, it 
would be inappropriate to combine 
men and women, premenopausal 
and postmenopausal women, or 
postmenopausal women taking 
hormones (PMH) versus not, as 
these groups have different mean 
estrogen levels. In this case, if 
gender, menopausal or PMH status 
was associated with the exposure, 
the observed association will be 
biased. Statistical adjustment 
alone generally cannot correct for 
this strong bias, particularly if the 
association varies across these 
subgroups.

The following example of the 
relationship between adiponectin 
and estradiol levels illustrates how 
combining inappropriate populations 
can alter study results. Experimental 
data suggest that adiponectin may, 
in part, regulate estradiol levels. But 
because adiponectin and estradiol 
are both derived primarily from 
adipose tissue in postmenopausal 
women, it is important to study this 
association on a population level, 
including adjustment for body mass 
index (BMI). One study observed 
no relationship after adjustment for 

BMI in postmenopausal women not 
using PMH (57). This contradicted 
two previous studies, which 
reported that additional adjustment 
for BMI did not attenuate the 
relationship (58,59). However, one 
study (59) combined PMH users 
and non-users, likely biasing the 
results, since PMH users had higher 
estrogen and lower adiponectin 
levels than non-users. The other 
study combined premenopausal and 
postmenopausal women (58). Given 
that premenopausal women have 
higher estradiol levels, and that the 
primary sources of estradiol are the 
ovaries in premenopausal women 
and body fat in postmenopausal 
women (1), the results of this study 
likely were biased as well.

Also important is the timing of 
the sample collection, since some 
hormones can fluctuate yearly, 
seasonally, monthly, daily, hourly 
and even from minute to minute 
(Figure 12.1). Other factors that 
can influence some hormones 
include fasting, alcohol intake, 
physical activity and medications. 
Understanding the underlying 
biology of the hormone(s) of interest 
is important to determining the 
optimal timing of sample collection. 
Three examples of this issue are 
elaborated upon.

Estrogen and progesterone are 
known to vary widely during the 
menstrual cycle in premenopausal 
women (1). Sample collection in 
this population, therefore, should 
either standardise the day(s) in the 
cycle on which samples are drawn, 
or collect detailed information about 
menstrual cycle start dates before 
and after the collection. In the 
NHSII, premenopausal women were 
asked to collect two blood samples, 
one in the early follicular phase and 
one in the mid-luteal phase, times 
when sex hormones are relatively 
stable from day to day (60). Women 
also returned a postcard with the 
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date their next menstrual cycle 
began. This information, along with 
the date of their previous cycle, 
allowed calculation of the cycle 
day on which the blood samples 
were drawn. One disadvantage of 
this method is that the investigator 
is reliant on women to remember 
when to collect the blood samples. 
Another method is to have women 
use home-based ovulation kits to 
time sample collection for a certain 
number of days after ovulation 
(61). The major disadvantages 
of this method are cost and the 

need to train women to use the 
kits appropriately. An alternative 
approach is to ask women to 
collect a sample on any day of their 
menstrual cycle and then provide 
specific dates of their cycle before 
(and if possible, after) collection 
and their average cycle length 
(62). This allows estimation of the 
cycle day. The main disadvantage 
of this method is that it reduces 
power to examine menstrual phase-
specific associations. Ultimately, the 
collection method is dependent on 
the population and resources.

Several hormones have a 
circadian rhythm, with the most 
well characterized being melatonin. 
Levels are high at night while 
sleeping, and decrease during 
the daylight hours (44). In small, 
laboratory-based studies, the most 
common method of assessing 
melatonin has been to collect serial 
blood samples over a 24-hour period. 
However, this method is too labour-
intensive for large epidemiologic 
studies. One alternative is to collect 
a blood sample at the same time of 
day for each participant. The utility 

Figure 12.1. Four types of hormonal variation. Graph (a) shows how estradiol changes by day of the menstrual cycle with day 
0 being the day of ovulation among 20–34 year olds ( ) and 35–46 year olds (•) cycling women (adapted from (116)). Graph (b) 
provides an example of how vitamin D concentrations vary over the course of one year (i.e. by season) among postmenopausal 
women living in New Zealand (adapted from (117)). Graph (c) demonstrates circadian variation across 3 days of a commonly 
measured urinary metabolite of melatonin, 6-sulphatoxymelatonin, in both young and elderly individuals (adapted from (118), 
copyright © 2005, Informa Healthcare. Reproduced with permission of Informa Healthcare). Graph (d) shows how IGF-1 levels 
vary by age in men and women, with a sharp increase early in life and a slow decline later in life (adapted from (119))
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of this method is limited, though, 
since the circadian pattern is not 
entrained to the same time of day 
for everyone (63). Another option is 
to collect urine to assay melatonin 
metabolites. Studies indicate that 
urinary levels, from either a 24-hour 
or first morning urine, or sequential 
saliva samples, are highly correlated 
with plasma melatonin (44,64,65).

A third example is that of plasma, 
or serum insulin, which is strongly 
affected by the number of hours 
since last eating (1). At minimum, 
time of last food consumption should 
be collected at the blood draw. 
However, if these hormones are 
important biomarkers, investigators 
should instruct participants to not 
consume any food or drink for 
at least 8 to 10 hours before the 
blood draw. Study staff should 
carefully ask participants about 
their food intake during that time 
and reschedule the collection if 
necessary. Of note is that for some 
diseases an alternative hypothesis 
exists: that the postprandial insulin 
response is most relevant to disease 
risk (66). If so, collecting a blood 
sample soon after eating would be 
preferred.

Sample processing

Sample collection and its 
processing should be conducted 
in a rigorous and standardized 
manner. In general, certain methods 
are preferred (e.g. immediate 
processing of samples); however this 
may not be feasible in some studies, 
particularly when participants are 
dispersed geographically. While this 
topic is covered in detail in Chapter 
3, two issues are highlighted which 
are often faced when assessing 
hormones: delayed processing and 
delayed freezing.

Extensive pilot testing has 
shown that many hormones, 
including estrogens, androgens, 

prolactin, IGFs and gonadotropins, 
are not substantially affected by 
blood remaining unprocessed for 
24 to 48 hours, while others, such 
as adrenocorticotropic hormone 
(ACTH), arginine vasopressin and 
free PSA, cannot be assessed 
with this protocol (31–33,67–70). 
Interestingly, several studies 
reported increasing testosterone 
levels with delayed processing, 
likely due to ex vivo conversion of 
precursor hormones (32,68,70). 
However, levels across delayed 
processing times remained highly 
correlated, suggesting that this 
approach is acceptable. Thus, each 
hormone of interest should be pilot 
tested for stability of the analyte 
over increasing time of delayed 
processing.

A delay in freezing can occur 
if there is delayed processing or if 
samples are processed immediately 
and frozen at a later time. For blood 
specimens, most hormones are 
stable if kept chilled (~4 °C) for up 
to 3 days before freezing; however, 
others, such as free PSA and ACTH, 
should be processed and frozen 
immediately (31,33,67,69). Urinary 
catecholamine levels appear to be 
stable when stored for 24 hours 
at room temperature or chilled, 
provided that samples are acidified 
at once (71). Saliva hormones tend 
to be stable, and can be stored at 
room temperature for at least one 
week without degradation (47). 
However, these samples can mould 
after 4–7 days; thus they should be 
frozen or refrigerated if possible (34). 
In general, filter paper collections 
need to be kept refrigerated at a 
low humidity to maintain hormone 
stability (38).

Storage options

Freezing and refrigeration are 
the most commonly used storage 
modalities; the merits of these 

options are enumerated in Chapter 
3. In general, liquid nitrogen freezers 
(≤ 130 °C) are the best choice for 
long-term storage of samples, 
since temperatures in mechanical 
freezers can vary widely (72). 
Unfortunately it is difficult to directly 
assess the effects of long-term 
storage on hormone degradation. 
Two study designs can be used. 
One method is to collect samples 
at one time point and then measure 
the hormone(s) of interest several 
times over a period of years. Thus, 
baseline biomarker levels are the 
same for each person, but laboratory 
drift can make comparison of assay 
results over time difficult, especially 
if the assay changes. Interpretability 
strongly depends on the reliability 
of the assay. The second method 
is to collect samples from the same 
individuals, or population, over a 
period of years, storing them at 
each time point. Then, assay the 
samples together at the end of the 
study, reducing issues with assay 
variability. However, within-person 
changes in levels over time means 
that it is unclear whether the levels 
at each time are the same. Despite 
this, degradation of samples stored 
for long periods is an important 
issue.

There is some evidence that 
storage at −20 °C may not be 
acceptable for sex hormones (73,74). 
In particular, sex hormone binding 
globulin (SHBG) may dissociate 
from estradiol and testosterone, 
decreasing measurable non-
bound levels of these hormones 
(73). However, long-term storage 
for blood at −70 °C or colder 
appears to be acceptable for 
estradiol, testosterone, DHEAS, 
prolactin, IGFs, TGF-β1 and urinary 
6-sulfatoxymelatonin, among others 
(30,74–79). If degradation is at issue, 
samples should be transferred to 
a colder storage modality. Given 
that modest levels of degradation 
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can be difficult to detect, another 
approach is to match the samples 
being compared (e.g. cases and 
controls) on storage time. This will 
reduce the effect of measurement 
error. Statistical modeling can also 
adjust for storage time or freezer 
temperature.

Overall issues surrounding 
sample collection, processing and 
storage are vital considerations 
when using hormone samples 
in epidemiologic studies. In 
particular, pilot studies that test 
sample collection and processing 
procedures are needed to 
determine feasibility and participant 
acceptability. Furthermore, if any 
non-standard protocols are used, it 
is important to test the effect of this 
on the hormones of interest before 
sending study samples for assay. 
In studies with long-term storage of 
samples, it is important to be aware 
of possible sample degradation 
over time and how that may affect 
the study design, analysis and 
interpretation.

Laboratory measurement 
issues

Three common sources of error are 
introduced when using biomarkers: 
issues related to specimen 
collection, processing, and storage 
(discussed in the previous section) 
(30,53,80); laboratory error and 
variability (36); and within-person 
variability over time (81). Since 
Chapter 8 discusses these latter 
two issues in detail, this chapter 
focuses specifically on hormone 
assays. In particular, there are often 
multiple methods for assaying a 
hormone, each with advantages and 
disadvantages. For example, one 
assay may require a large volume 
but have a higher sensitivity, while 
another uses a smaller volume but 
has lower sensitivity. Two examples 
are illustrated below.

The first example relates to 
measurement of sex hormones 
such as estradiol and testosterone. 
Three classes of assays are 
available to measure these 
hormones: mass spectrometry (MS); 
indirect radioimmunoassay (RIA), 
including a pre-extraction step; 
and direct immunoassays using 
chemiluminescent, colorimetric or 
fluorescent markers (82). When 
choosing which assay to use in a 
study, several factors should be 
taken into account, such as the 
amount of sample used, cost per 
sample, ease of assay, comparability 
with previous studies, and most 
importantly the assay reliability, 
validity and sensitivity in the hormone 
value range of the population under 
study (especially of concern if the 
values are low). Other issues are 
the abundance of structurally similar 
hormone metabolites that can 
cross-react with assay antibodies, 
and the binding of some hormones 
by SHBG, which can interfere with 
antibody binding (83,84). Differences 
in assays can be observed merely 
by noting the very different median 
levels of sex hormones measured in 
postmenopausal women across nine 
studies of breast cancer risk (7).

For sex hormones, the MS 
method obtains the highest marks 
for reliability, sensitivity and 
cross-reactivity (83). This method 
can measure multiple hormone 
metabolites simultaneously with a 
moderate amount of serum, plasma, 
or urine (~0.5mL). While MS is 
thought to be the gold standard 
for hormone measurement, 
recent analysis of inter-laboratory 
variation suggests that further 
standardization across laboratories 
is needed (83). This assay also 
is not widely available due to the 
expensive equipment and the need 
for highly-trained personnel to run 
the assays. The indirect assay 
methodology employs an extraction 

step before RIA to remove hormone 
metabolites that can cross-react 
with the antibody. This method 
has a high correlation with MS 
measures, although values tend 
to be slightly higher than those 
measured by MS, and uses a similar 
sample volume (85,86). The primary 
disadvantage of this method is 
that it cannot be easily automated 
and is thus labour-intensive and 
expensive (83). Direct assays, in 
general, do not have an extraction 
step before antibody binding. While 
these assays are high-throughput, 
easily available, inexpensive and 
use low volume, they may have only 
modest correlations with MS and 
indirect assays, and substantially 
overestimate hormone values, as 
well as a poor sensitivity for samples 
with low hormone concentrations 
(82–86). In general, these assays 
are not useful for clinical applications 
where precise levels must be 
determined, and are likely a major 
source of variability in epidemiologic 
study results (for a thorough review 
of this topic, see (83)).

The second example exemplifies 
the importance of understanding 
the biology of the hormone being 
measured, in this case prolactin. 
One limitation of the prolactin 
assay used in most epidemiologic 
studies to date (an immunoassay) 
is that it measures multiple forms 
of prolactin circulating in plasma 
(87). However, these forms likely 
have different biological activities 
(88,89). For example, glycosylated 
prolactin appears to have a higher 
metabolic clearance rate and lower 
biologic activity than the non-
glycosylated form (89,90). Assays 
to specifically measure particular 
prolactin isoforms are difficult, time-
intensive and require large amounts 
of plasma, and hence are not 
feasible in epidemiologic studies. 
The Nb2 lymphoma cell bioassay, 
however, is a sensitive measure of 
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overall somatolactogenic activity 
in biological fluids. This assay 
measures the activity of both 
prolactin and growth hormone 
(91), although a modification of 
the assay, including anti-growth 
hormone antibodies, allows for 
specific evaluation of prolactin 
bioactivity. This measure and 
the ratio between the prolactin 
bioassay and immunoassay have 
been evaluated in several studies 
of systemic lupus erythematosus 
and found to be of importance 
(90,92,93). A breast cancer case–
control study reported that prolactin 
levels measured by bioassay, but 
not immunoassay, were significantly 
higher in cases versus controls 
(94). The correlation between the 
immunoassay and bioassay is about 
0.50, suggesting that the bioassay 
provides additional information 
beyond the immunoassay (94).

Another important issue arises 
when pooling data from multiple 
different studies, such as in the 
sex hormone-breast cancer study 
mentioned above (7). Since each 
study conducts assays at various 
laboratories and times, frequently 
the distribution of the analyte (e.g. 
hormone levels) differs across 
studies (95). Various analytic 
techniques are available to deal with 
this problem (96). One method is 
to use study-specific quantile cut-
points to determine risk estimates 
comparing high versus low values 
for each study, which can then be 
pooled. The major drawbacks of 
this method are that it is difficult to 
evaluate what absolute hormone 
levels are related to disease, 
and to assess dose–response 
relationships. Another method 
used is to pool the risk estimates 
for a doubling (or tripling, etc.) of 
sex hormone concentrations within 
each study and then pool the risk 
estimates. However, the only way 
to assess how the absolute levels 

of a hormone compare across 
studies is to reassess a subset of 
samples from each laboratory used 
in each of the different studies (i.e. 
a calibration study) using a gold-
standard assay.

Another approach to evaluating 
hormone levels is to assess genetic 
variation (e.g. single nucleotide 
polymorphisms (SNPs)), in the 
gene(s) associated with the 
hormone. Although estimates vary by 
hormone, a substantial component 
of the between-person variation 
observed in circulating hormone 
levels is genetically determined (e.g. 
~40% for IGF-I (97)). For example, to 
assess the role of the steroid vitamin 
D in osteoporosis, several studies 
have evaluated SNPs in the vitamin 
D receptor (98). Furthermore, 
many studies have assessed 
variation in the sex steroid hormone 
metabolizing pathway in relation to 
cancer risk (99–101). Advantages to 
this approach include: retrospective 
case-control designs can be used 
without concern of the disease 
altering circulating hormone levels, 
genetic variation may provide 
information on the tissue hormonal 
environment, and genetic assays 
tend to be robust and with little to no 
variation in measures across studies. 
Disadvantages include not knowing 
the function (if any) of the SNPs 
measured, and small effect sizes. 
Ultimately, clearer answers likely will 
be obtained with approaches that 
evaluate multiple SNPs in a gene or 
across multiple genes in a pathway, 
but this requires extremely large 
sample sizes and complex statistical 
tools that are still in development. 
Although promising, this approach to 
evaluate the hormonal milieu has yet 
to provide substantial insight into the 
hormone-disease relationship (102). 
Yet with increasing sample sizes and 
method development, the potential 
of this approach should be realized 
soon.

Within-person stability over 
time

A particularly important source of 
measurement error in hormone 
studies is random variation in 
biomarker levels within an individual 
over time. Thus one measurement 
of the biomarker, as is common in 
many epidemiologic studies, may 
not accurately reflect an individual’s 
long-term exposure. Measurement 
error correction, or inclusion of 
multiple samples per participant, 
can ameliorate the attenuating 
effects of biomarkers with a high 
intra-individual variability over time 
(103–105).

The intraclass correlation 
coefficient (ICC) can be used to 
measure the stability or reliability 
within individuals over time or 
across different assay platforms 
(103,106-108). It is the ratio of 
the between-person variance 
with the total variance (between- 
plus within-person variance), and 
ranges from 0 to 1.0 (80,109). The 
ICC is distinct from a Pearson or 
Spearman correlation coefficient in 
that a common mean is assumed 
between repeated measures. The 
ICC can be assessed on the natural 
log-transformed or untransformed 
scale, although if the data are 
skewed it is best to log-transform. 
An advantage of the ICC is that the 
impact of the within-assay variability 
is considered relative to the total 
variation. For example, a somewhat 
high assay coefficient of variation 
(CV) may not be acceptable if there 
is very limited between-person 
variation (resulting in a low ICC), as 
the additional laboratory variability 
could overshadow true differences 
between individuals.

Overall, most sex steroid 
hormones are reasonably stable 
within postmenopausal women over 
a 1–3 year period, with intraclass 
correlations ranging from 0.5 to 0.9 
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(103,110-112). Similarly, IGF-I and 
IGFBP–3 levels have correlations 
in the range of 0.6 to 0.8 over a 
1–3 year period (106,113). Urinary 
melatonin levels also appear stable 
over several years (114). Thus, 
although using a single blood 
measure for these hormones will 
result in some misclassification 
and attenuation of relative risks, 
this level of reproducibility is 
similar to that observed for other 
biological variables, such as blood 
pressure and serum cholesterol 
measurements; all parameters that 
are considered well-measured and 
consistent predictors of disease 
in epidemiologic studies (115). 
In contrast, prolactin has a lower 
reproducibility, with correlations 
over time in the range of 0.45 or 
lower, indicating greater attenuation 
in the relative risk estimates when 
using a single blood measurement. 
In a setting such as this, where 

measurement error is higher (since 
the correlation of hormone levels 
within woman over time is lower), 
statistical methods that account for 
this error in the calculation of relative 
risks should be used (see Chapter 
8), or collecting multiple samples 
per subject considered.

Future directions 
and challenges

Overall, the use of hormone 
measurements is becoming 
more common in epidemiologic 
studies. Several factors must be 
considered in the study design, 
sample collection, assay choice, 
and statistical analysis. Of greatest 
importance is a suitable choice of 
study population and sample type(s) 
(collected at an appropriate time), 
as well as proper storage facilities. 
Any non-standard methods should 
be pilot-tested before conducting 

the formal study. Pilot studies 
should also be conducted when 
considering the use of a new assay 
or laboratory. Choice of assay 
type can have a large impact on 
measurement error, and, ultimately, 
the interpretation of results. 
Although not discussed in this 
chapter, assessment of laboratory 
precision and reproducibility on 
an on-going basis is extremely 
important (36). Additionally, studies 
assessing hormone stability 
within an individual over time are 
important to conduct, particularly 
if the hormone is the exposure of 
interest. It is important to ultimately 
address all these issues to obtain 
results that are both reliable and 
valid. A better understanding of the 
role of hormones in human disease 
will benefit immensely from well-
conducted epidemiologic studies.
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Summary

This chapter will present some 
general background material on the 
cellular, biochemical, and genetic 
mechanisms of the immune system, 
then focus on specific examples that 
illustrate the promise and pitfalls 
of using immune biomarkers as 
tools for molecular epidemiologic 
research and public health practice. 
Some of the most exciting frontiers 
in medical science will be discussed: 
early detection of cancer through 
autoimmunity; malignancies that 
arise from the immune system itself; 
newborn screening for lethal immune 
deficiencies and latent autoimmune 
disorders; and neurodevelopmental 
disabilities that could result from 
maternal immune responses, 
which protect the mother but harm 
the fetus. The chapter concludes 
with some thoughts about current 
challenges and future directions.

Introduction

Over the past 15 years, familiarity 
with the immune system has 
increased substantially among 
public health scientists, as well as 
the public at large. Since the use 
of immune biomarkers in molecular 
epidemiology was first addressed 
(1), the essential role of the immune 
system in maintaining health has 
been brought to public attention 
by the global HIV epidemic (2), the 
composite burden of autoimmune 
diseases (3,4,5), the genetic 
errors that lead to primary immune 
deficiencies (6), and the enigmatic 
relationship between immunity and 
malignancy (7,8). During this period, 
our understanding of the cellular and 
molecular processes that constitute 
the immune response has also 
increased in both scope and detail. 
These advances open new avenues 
for the use of immune biomarkers 

in epidemiologic field studies and 
public health applications. At the 
same time, the general principles 
advocated earlier remain fully 
relevant today, perhaps even 
more so, given that the pace of 
technological development often 
outstrips our ability to harness it in a 
meaningful fashion. 

This chapter will first update 
some of the general background 
material presented before (1) with 
respect to the cellular, biochemical, 
and genetic mechanisms of the 
immune system. Thereafter, the 
focus will be on specific examples 
that illustrate the promise and 
pitfalls of using immune biomarkers 
as tools for translation research 
and public health practice. Some 
of the most exciting frontiers in 
medical science will be discussed: 
early detection of cancer through 



216

autoimmunity; environmental risk 
factors for malignancies that arise 
from the immune system itself; 
newborn screening for lethal immune 
deficiencies and latent autoimmune 
disorders; and neurodevelopmental 
disabilities that could result from 
maternal immune responses, 
which protect the mother but harm 
the fetus. The chapter concludes 
with some thoughts about current 
challenges and future directions.

Immune biomarkers 
as functional elements 
and sentinel indicators

The benefits and limitations of using 
immune markers in epidemiologic 
studies may be best appreciated by 
understanding their relationship to 
the basic biology of the host defence 
system: a complex network of cells 
and mediators with recognition 
and response functions that occur 
throughout most tissues of higher 
organisms (1). The primary functions 
of the host defence system are 
repairing injured tissue, identifying 
and removing foreign substances, 
destroying or containing infectious 
agents, and, in some cases, 
eradicating cancer cells.

Innate (non-specific) and 
acquired (specific) immunity

Host defence functions are 
carried out through non-specific 
mechanisms of innate immunity, 
and through specific mechanisms of 
acquired (adaptive) immunity, which 
develop as the organism encounters 
environmental agents (antigens). 
The term immune system is used in 
this chapter to refer to all components 
of both non-specific innate immunity 
and antigen-specific acquired 
immunity, as their components and 
activities are invariably intertwined 
(1). Nonetheless, the distinction 
between markers that are antigen-

specific and those that are not 
is often important, especially in 
exposure-related studies. The ability 
of the immune system to recognize 
foreign molecules is so discerning 
that it has even been likened to a 
self-referential sensory organ (9).

Inflammation

Whether innate or acquired, the 
result of host defence activity is 
often inflammation. The cardinal 
signs of inflamed tissue were 
described by the ancient Greek 
physicians Celsus and Galen: calor 
(heat), dolor (pain), rubor (redness), 
tumour (swelling), and functio laesa 
(loss of function) (10). Our current 
knowledge of the cellular and 
molecular basis of inflammation is 
exhaustive, but the complexity of 
the in situ inflammatory response 
still lies beyond our complete 
understanding. Still, the cells and 
mediators of inflammation provide 
essential biomarkers for medicine, 
biomedical research, and, more 
recently, for epidemiologic studies.

Inflammation is essential for 
host defence, as it brings cells and 
mediators to the site of tissue injury 
and infection, sequestering the 
insult, destroying infectious agents 
or the cells they have infected, 
clearing the debris and promoting 
repair. However, it is a two-edged 
sword, and many of the symptoms 
following injury or infection come 
not from the insult but from the host 
response to it. Immunopathology is 
the study of how the immune system 
creates as well as prevents disease. 
From the classic animal models of 
viral meningitis (11) and tuberculosis 
(12) to the recent revelation that 
human cardiovascular disease and 
diabetes are largely inflammatory 
pathologies (13), biomarkers 
have shown that immunity and 
inflammation are inexorably linked.

Biological categories 
of immune biomarkers

The distinction between antigen-
specific and non-specific 
biomarkers is fundamental and 
unique to the immune system. For 
convenience, this distinction can be 
overlaid onto three major types of 
intrinsic biological markers: cellular, 
biochemical and genetic (Table 
13.1). These three categories are 
arbitrary and somewhat artificial, 
since biochemical and genetic 
markers originate in cells. In fact, 
many cells of the immune system are 
defined by the biochemical surface 
receptors they express or the unique 
gene rearrangements they contain.

Cellular biomarkers

Cellular immunology was for 
many years a phenomenologic 
area of study, often confusing 
and contradictory. Two technical 
breakthroughs combined to bring 
order to this area. Monoclonal 
antibodies allowed the development 
of specific probes without a priori 
knowledge of the properties of 
the cellular target. Flow cytometry 
allowed the cell-by-cell detection 
of these targets using fluorescent-
labelled monoclonal antibodies and 
a dynamic streaming process that 
could analyse and sort thousands of 
cells per second (14,15). The sorted 
cells could then be characterized 
for their functional activities and 
other properties, and linked to 
their respective target. The cellular 
targets, which are all proteins (or 
glycoproteins) and are usually 
cell surface receptors, are most 
often identified by their cluster 
of differentiation (CD) number 
(16). International workshops are 
held periodically to update CD 
nomenclature (17); as of 2010, the 
list was up to CD363 (see http://
www.hlda9.org/HLDA9Workshop/
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tabid/60/Default.aspx). (Strictly 
speaking, the CD number refers 
to the monoclonal antibodies that 
recognize the cellular target and not 
to the target itself, but this convention 
is often ignored.) Many CD markers 
identify stages in the maturation 
from haematopoietic stem cells to 
the various mature forms. Targets 
that identify all the cells in a lineage 
and do not appear in any other types 
of cells are called lineage specific 
markers; they are relatively scarce 
compared to targets that are found 
in various states of differentiation 
among more than one type of cell.

It is important to note that the 
functional state of a cell depends on 
not simply the presence or absence 
of receptors, but rather on the 
quantitative extent to which a given 
receptor is expressed. Upregulation 
of certain receptors, such as 
CD69, is a typical consequence 
of lymphocyte activation, and this 
change in the degree of expression 
can be a highly informative biomarker 
(18,19). Neoplastic transformation is 
also often accompanied by altered 
receptor expression that may be 
correlated with genetic and clinical 
features (20).

Flow cytometry remains the 
customary method for using CD 
markers to identify lineages, 
sublineages, and functional states of 
lymphocytes and other blood cells. 
These methods have matured as 

they have become more commonly 
used (21), and our earlier cautions 
about methodological bias (1) may 
now be somewhat mitigated. Still, 
the less common tests, used mostly 
in research settings, may not have 
sufficient standardization to ensure 
comparability between methods 
and laboratories. In particular, 
quantitative measurements of 
cell receptor expression are often 
subject to considerable bias 
between methods (22–24).

Lymphocytes

Among cellular components, 
lymphocytes are the antigen-
specific cells of the acquired immune 
response. B-cells are lymphocytes 
that differentiate into antibody-
producing plasma cells. T-cells are 
lymphocytes that perform regulatory 
functions and differentiate into the 
cytotoxic “killer cells”, which attack 
virus-infected and certain cancer 
cells. A third type of lymphocyte, the 
natural killer (NK) cell, does not show 
antigen specificity, but has a large 
role in innate immunity (recent studies 
have identified a hybrid form called 
the NK T-cell that has limited antigen 
specificity (25)). B-cells, T-cells 
and NK-cells are indistinguishable 
morphologically, but B-cells and 
T-cells have surface receptors and 
genomic mutations that are lineage-
specific, and NK-cells may be 

identified by the presence of certain 
markers in the absence of the B-cell 
and T-cell markers.

Clonal expansion. Although 
resting lymphocytes are quiescent 
cells, when either B-cells or T-cells 
are stimulated in an appropriate 
fashion, they re-enter the mitotic cycle 
and multiply into a family of related 
cells called a clone. All the cells of 
a clone have the same antigenic 
specificity as the original lymphocyte. 
Clonal expansion accounts for 
the two fundamental properties 
of acquired immunity recognized 
since ancient times: memory and 
specificity. Memory comes from the 
expanded population of lymphocytes 
that persists after initial antigen 
exposure, which allows a more rapid 
and sizeable secondary response. 
Specificity comes from the fact that 
all the cells of a clone recognize 
the same antigen. However, clones 
do develop microheterogeneity as 
mutations occur in progeny cells. This 
process is important for maturation 
of the specific immune response, 
and it is also relevant to autoimmune 
disease and lymphoproliferative 
malignancies.

Lymphocyte subsets. Both 
T-cells and B-cells have subsets that 
may be identified by the presence 
of certain receptors or by functional 
assays.

T-cells. Mature T-cells can be 
identified by the lineage-specific 
CD3 receptor or by their antigen-
specific receptor (Tcr). The Tcr is 
coded by one of two gene families: 
α-β or gamma-delta. Alpha-β T-cells 
are by far more common elements 
of the acquired immune response, 
while gamma-delta T-cells have a 
limited repertoire and are something 
of a bridge between innate and 
acquired immunity (26).

T-cells are further divided into 
those bearing the CD4 receptor, 

Table 13.1. Examples of classifying immune biomarkers

Innate Acquired

Cellular Granulocytes Lymphocytes

Macrophages (T-cells and B-cells)

Natural killer cells

Biochemical Complement Immunoglobulin

Cytokines T-cell receptor

Genetic MHC genes V-genes of Ig and Tcr
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those bearing the CD8 receptor, 
and a small fraction of those 
that bear both. Most of the CD4-
bearing cells are helper T-cells 
(Th) that upregulate the immune 
response. The CD8-bearing T-cells 
were originally considered to be 
either cytotoxic (killer) cells (Tc) or 
suppressor cells that downregulate 
the immune response. CD8 cytotoxic 
T-cells are well characterized, but 
evidence for suppressor activity in 
this subset was never convincing. In 
1995, the real suppressor population 
was identified among CD4 T-cells as 
a small proportion that also bears 
the CD25 receptor and contains 
a high concentration of the Foxp3 
transcription factor (27). These 
CD4-CD25 T-cells are now called 
regulatory T-cells (Treg); they are 
critical for preventing autoimmunity, 
preserving secondary immunity 
(immune memory), and protecting 
pregnancies (28).

Helper T-cells may also be 
characterized in terms of their 
regulatory roles. The original 
paradigm described a TH1 response, 
which led to delayed hypersensitivity 
mediated by cellular responses, and 
a TH2 response, which led to humoral 
immunity and allergy mediated by 
antibody production. The association 
of TH2 responses with both parasitic 
infections and allergies has been 
well defined in laboratory and clinical 
studies (29–31). However, this 
simple picture has been replaced by 
a more complex interaction involving 
the cytokine IL-17, which mediates a 
third functional type called the TH17 
T-cell (32). Research on the TH17 
subset has progressed rapidly, and 
it is now seen as having a central 
role in immune regulation (33), 
autoimmunity (34), inflammation 
(35) and the link between innate and 
acquired immune activities (36,37). 
The TH17 pathway may even explain 
the suspected immunotoxic effects 
of halogenated aryl hydrocarbons, 

such as PCB and dioxins (38,39).
The TH1 response is associated 

with gamma interferon and tumour 
necrosis factor (TNF-α), the 
TH2 response with interleukin-4 
and interleukin-13, and the TH17 
response with the IL-17 family of 
six cytokines designated 17A-17F 
(35). The relative elevation of these 
cytokines in tissue or serum is 
generally taken as evidence for the 
respective type of in vivo response. 
However, the measurement of 
these factors (especially in serum) 
is not standardized, and their use in 
epidemiologic field studies should be 
approached cautiously. In particular, 
artefacts of the immunoassays used 
to measure cytokines may produce 
spurious differences (40,41); 
interestingly, such misleading 
artefacts may still have biologic and 
immunologic validity (42). In any 
case, the remarkable heterogeneity 
and plasticity of T helper cells (43) 
can make interpretation of relevant 
biomarkers enigmatic at best.

One other subclassification 
of T-cells deserves mention: the 
distinction between naive and 
memory T-cells. Naive (virgin) 
T-cells have not encountered 
antigen, while memory T-cells 
arose by clonal expansion caused 
by antigen-driven activation. The 
surface receptor CD45 exists in two 
isoforms: CD45RA is associated 
with naive T-cells, while CD45RO 
is associated with memory T-cells. 
While the two isoforms can be readily 
distinguished by flow cytometry, 
the categorization is probably 
oversimplified, especially for CD8 
T-cells. However, the distinction 
may provide some insight into the 
pathogenesis of immune-mediated 
disorders (44) and environmental 
exposures (45,46).

B-cells. Mature B-cells may be 
identified by the lineage-specific 
CD19 receptor and by the presence 
of their surface immunoglobulin (sIg) 

molecules. All of the sIg molecules 
on a particular B-cell have the same 
antigen binding site, which gives 
B-cells their specificity. When B-cells 
are activated by antigen binding, 
they proliferate and redifferentiate 
into antibody-producing cells. 
The endpoint in this secondary 
differentiation is the plasma cell, 
which in essence is a cellular factory 
for making antibodies. Several other 
receptors are expressed during 
the various stages of progression 
towards plasma cells or diversion 
to memory cells (47); identification 
of these has long been a staple 
of diagnostic pathology for B-cell 
malignancies (48). B-cells do not 
have major functional subsets 
analogous to CD4 and CD8 in 
T-cells. However, the presence or 
absence of CD5 (a receptor found on 
all T-cells) appears to define distinct 
B-cell populations. CD5 B-cells are 
associated with chronic humoral 
responses, mucosal immunity, 
autoimmunity and possibly with an 
increased risk of transforming into a 
B-cell malignancy (49).

Non-lymphoid cells

In addition to lymphocytes, several 
other types of cells are important 
participants in immune function; 
most of them spend at least part of 
their life cycle in the bloodstream, 
where they (along with lymphocytes) 
are collectively referred to as 
leukocytes or white blood cells 
(WBC). The most numerous of 
the bloodstream leukocytes are 
granulocytes, end-stage cells with 
short lifetimes whose granules 
contain pre-formed mediators ready 
for immediate release. Most of 
them are neutrophils, which migrate 
into inflamed tissue where they 
ingest (phagocytise) and destroy 
bacteria. Eosinophils and basophils 
are normally present in much 
smaller numbers; they are involved 
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in allergy and the host response 
to parasitic infections. Although 
granulocytes are endstage, they do 
have some limited ability to modify 
their functional status. For instance, 
activated neutrophils upregulate the 
expression of the CD64 receptor (50), 
a response that is now used clinically 
as a sign of occult infection, and 
activated eosinophils upregulate co-
stimulatory and adhesion molecules 
in response to parasitic infection (51).

Resident cells in the connective 
tissue underlying the skin, mucosa 
and internal epithelium are also critical 
to immune function. Macrophages 
ingest, process and package 
antigens for presentation to T-cells, 
a process mediated by a transient 
intercellular macromolecular 
complex recently termed the immune 
synapse (52,53). Other accessory 
cells, such as dendritic cells 
(54), are also involved in antigen 
presentation. Mast cells contain 
histamine and other mediators of 
allergy in pre-formed granules ready 
for immediate release. They have 
surface receptors that bind very 
strongly to IgE antibodies, sensitizing 
them (and the individual they inhabit) 
to allergens recognized by the IgE. 
When allergens interact with their 
surface-bound IgE, activation and 
degranulation lead to immediate 
hypersensitivity (55). Mast cells 
also mediate signalling between the 
peripheral nerves and local immune 
activity, one reason that immediate 
hypersensitivity responses can be 
induced rather easily by Pavlovian 
conditioning (56).

Biochemical biomarkers

Biochemical biomarkers (excluding 
genomic DNA) include protein and 
RNA macromolecules as well as 
smaller molecules, such as steroid 
hormones and prostaglandins. 
Technical issues attend all 
the methods used to measure 

these markers, particularly the 
macromolecules. Proteins are often 
detected and quantified by antibody-
binding methods, which may be 
subject to cross-reactivities or other 
interferences that cause spurious 
results (57). The use of mass 
spectroscopy for protein analysis 
has increased, particularly as a 
biomarker discovery tool (58–60). 
Some of the initial, promising results 
obtained this way have turned out 
to be disappointing (61); a careful 
approach to method evaluation 
and study design is required for 
meaningful results (62). RNA is 
generally detected and quantified 
by hybridization reactions, often 
in an expression microarray with 
thousands of targets. These methods 
are also subject to technical vagaries, 
but some standardization has been 

achieved (63). RNA microarrays 
have shown considerable promise 
in some clinical applications (64), 
but again, a careful approach to 
method evaluation and study design 
is required for meaningful results.

Antigen-specific biochemical 
markers

Among the wide range of 
biochemicals involved with immunity, 
only antibodies (also called 
immunoglobulins (Ig)) and T-cell 
receptors (Tcr) are antigen-specific.

Immunoglobulins. Ig molecules 
are rather large heterodimeric 
proteins that have a basic Y-shaped 
structure with two symmetrical 
antigen binding sites connected to 
a common stem through a “hinge” 
region (Figure 13.1). The basic Ig 

Figure 13.1. This figure shows a space-filling molecular model of the human IgG1 
antibody molecule. The constant region of the two heavy chains are shown in red 
and their variable region in yellow. The constant region of the two light chains is 
shown in blue and their variable region in grey. The two antigen binding sites are at 
the top of model, where the yellow and grey regions come together. The lower part of 
the model shows the region where various antibody functions, such as complement 
fixation, reside. Carbohydrate molecules that bind to this region are shown in violet, 
and areas specialized to the IgG1 subclass are shown in white. Copyright Mike Clark, 
adapted with permission from http://www.path.cam.ac.uk/~mrc7/mikeimages.html
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unit is composed of two identical 
copies of each of two peptide 
chains, the light chain and the heavy 
chain. Light chains come in two 
varieties, kappa and lambda, coded 
by different genes from different 
loci. Heavy chains are coded by 
only one genetic locus, but somatic 
recombination within the locus can 
produce different variants called 
isotypes through a process called 
class-switching.

Immunoglobulins have two 
functions in the immune response: 
membrane-bound Ig molecules are 
the antigen-specific receptors on 
B-cells, and secreted Ig molecules 
have a variety of effector functions 
critical to host defence including 
complement fixation, opsonization 
(which promotes phagocytosis) and 
viral inactivation. When antigen 
binds to Ig receptors on B-cells, they 
proliferate and secrete antibody of 
the same specificity as the original 
Ig receptor. Although the secreted 
antibody has the same antigen 
binding site as the B-cell receptor, 
it may differ in other portions of 
the molecule, which accounts for 
the different isotypes: IgM, IgG, 
IgA, IgD, and IgE. As an effector 
molecule, IgM is the first isotype to 
be produced in a primary immune 
response; it is especially good at 
binding antigen into complexes 
and activating complement. IgD 
functions only as a B-cell receptor 
and is not normally secreted. IgG is 
the most common isotype in serum, 
normally accounting for up to one-
third of total serum protein. It exists 
in four subclasses, which differ 
in functions such as complement 
fixation and placental transfer. IgA 
is responsible for mucosal immunity 
(65,66) and is secreted from 
epithelial surfaces in the airways 
and the gut; a variant form is present 
in serum (67). IgE is (in humans) 
uniquely involved in immediate 
hypersensitivity, best known as the 

cause of common allergy and a 
major factor in the pathogenesis of 
asthma (68).

In terms of measurement, earlier 
difficulties in the standardization 
of assays to measure the major Ig 
isotypes in serum (1) have been 
largely resolved (69). However, 
measurement of isotype subclasses 
is not as well standardized. IgE 
concentrations in serum are much 
lower than the other secreted isotypes 
and must be measured by more 
sensitive methods. Measurement of 
antigen-specific IgE is an important 
marker for allergy in diagnostic, 
occupational, and research settings. 
Most of these assays are well 
standardized (70), but customized 
tests for IgE to novel allergens must 
be carefully characterized to assure 
sensitivity and specificity.

T-cell receptors (Tcr). Tcr 
proteins have a molecular structure 
and antigen specificity analogous 
to, but somewhat different than, that 
of antibodies. Tcr molecules are 
not secreted and have no effector 
function. There are two major types 
of Tcr: α-β and gamma-delta. These 
types may in turn be grouped into 
families that can be differentiated 
by monoclonal antibodies (71) 
or genetic analysis (see below). 
Like surface receptor antibodies 
on B-cells, the Tcr receptors on 
T-cells allow them to respond to 
antigen binding by proliferating and 
secreting effector molecules, in 
this case peptide regulators called 
lymphokines (13,72). Cytotoxic 
(killer) T-cells use their Tcr receptors 
to identify their cellular targets: viral-
infected cells or, in some cases, 
cells that have undergone malignant 
transformation (73).

Non-specific biochemical 
markers

The immune system uses a variety 
of proteins, peptides, and smaller 

molecules to effect and regulate 
host defence.

Lymphokines, cytokines and 
interleukins. Lymphokines, which 
are produced by lymphocytes, are 
a subset of the localized cellular 
peptide mediators called cytokines 
elaborated by a variety of cells. 
The interleukins are cytokines 
particularly involved with signalling 
among leukocytes. The first 
interleukins (IL-1 and IL-2) were 
labouriously identified as functional 
activation and growth factors from 
cell culture supernatants (74). One 
of the most recent (IL-34) was 
uncovered by a systematic search 
of the extracellular proteome 
expressed by a set of recombinant 
secreted proteins, using a suite of 
assays that measured metabolic, 
growth or transcriptional responses 
in diverse cell types (75).

All cytokines are localized tissue 
mediators, and their concentration 
in peripheral blood is normally 
extremely low or undetectable. 
Increased concentrations due 
to spillover from tissue sites of 
inflammation may sometimes be 
detected in serum, but the assays 
used to measure them are not 
standardized and are subject to 
interferences, matrix effects and 
considerable bias between methods.

Genetic polymorphisms in 
cytokines and cytokine receptors 
have been shown to be useful 
biomarkers of susceptibility for 
lymphoid malignancies (76), other 
cancers (77–80), oral diseases 
(81), allergies (82) and autoimmune 
disorders (83,84). Soluble 
cytokine receptors, which are 
deliberately released from cells by 
a variety of specific mechanisms 
(85), are important mediators of 
inflammation (86). While serum 
concentrations of soluble receptors 
and receptor-cytokine complexes 
are good candidate biomarkers 
for inflammation-related disorders, 
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the assays to measure them are 
not standardized, and results from 
different methods may not give 
concordant results.

Other non-antigenic-specific mediators. 
In addition to lymphokines, many 
other non-specific biochemical 
mediators are used in host 
defence activities. They often 
involve inflammation and include 
acute-phase reactant proteins, 
such as complement (a family of 
proteins that react in a cascading 
fashion) and C-reactive protein, 
as well as small molecules such 
as histamine, prostaglandins and 
endocrine hormones. Although 
these substances may serve as 
biomarkers of immune function, 
their non-specific nature and highly 
interactive functional pathways 
often make it difficult to distinguish 
cause from effect. The importance 
of neuropeptides and nerve growth 
factors in the immune response 
and inflammation has become 
increasingly apparent (87,88).

N o n - a n t i g e n - s p e c i f i c 
cell receptors. Besides Ig and 
Tcr, several other cell surface 
receptor protein families are critical 
components of immune function 
even though they are not antigen-
specific. Two of the most important 
are the receptors coded by the 
genes of the major histocompatibility 
complex (MHC), and the Toll-Like 
Receptors (TLR).

Major histocompatibility complex 
(MHC) (transplantation) antigens. The 
MHC receptors come in three primary 
classes; classes I and II comprise 
the human leukocyte antigens (HLA). 
(The class III MHC region contains a 
diverse set of genes, some of which 
code for certain immune-related 
proteins like cytokines and complement 
components.) Although they were 
discovered because they caused 
rejection of organ transplants, their 
normal biological function involves 
packaging antigens for presentation 

to T-cells. Class I proteins present 
antigens to CD8 cytotoxic T-cells, 
and class II proteins present 
antigens to CD4 helper T-cells. All of 
the HLA loci are highly polymorphic 
within a species; the four major 
loci in humans include over 2500 
different alleles, leading to the 
difficulty in finding matches between 
organ donors and recipients. 
Different allotypes may confer 
relative susceptibility or resistance 
to autoimmune diseases and certain 
infectious agents (89). HLA protein 
allotypes can be identified by 
reactions with allo-specific antibody 
reagents, and alloantibodies in 
previously sensitized individuals can 
be detected by binding assays (90). 
Alloreactivity between tissues from 
two individuals may be detected by 
mixing lymphocytes from the two 
sources and measuring functional 
responses (e.g. proliferation, 
lymphokine secretion or mRNA 
production) (91). These types of 
assays are used clinically, but 
are highly specialized and should 
be performed by experienced 
histocompatibility laboratories. T-cell 
antigen recognition normally involves 
presentation by viral-infected 
epithelial cells or by accessory 
cells, such as macrophages that 
have packaged the antigen with 
HLA proteins. The detection of 
antigen-specific T-cells using in 
vitro stimulation assays is greatly 
enhanced by pre-packaging the 
antigen with a suitable HLA protein 
into a complex called a tetramer (92). 
These assays are highly specialized 
and used primarily in research 
settings, although some degree of 
standardization has been achieved 
(93). The use of tetramers to identify 
CD8 cytotoxic T-cells specific for 
viral or tumour antigens has been 
quite successful, but identification of 
antigen-specific CD4 helper T-cells 
remains problematic (94).

Toll-like receptors (TLRs). This 
class of receptor, named for its 
similarity to the Toll receptor of 
Drosophila, is largely responsible for 
initiating the inflammatory response 
to microbes and for the host 
perception of microbes in general 
(95). TLRs are evolutionarily ancient 
proteins, and most mammalian 
species have about a dozen 
different types; some shared across 
species and others unique. TLRs 
account for much of the protective 
effects of the host response to 
infection, such as the induction of 
lasting specific immunity, as well 
as its pathological effects (e.g. 
systemic inflammation and shock) 
(95). Their discovery illustrates the 
use of forward genetic methods in 
identifying genes for biomarkers 
that are constitutively expressed 
but conditionally functional (96). 
Originally considered as effectors of 
innate immunity, TLRs are now seen 
to have important roles in acquired 
immunity as well. They are involved 
in the class-switching maturation 
of B-cells, as the immune system 
transitions from the primary 
response dominated by IgM to the 
secondary responses dominated by 
IgG and IgA (97). They also appear 
to interact with the superantigen-
mediated polyclonal activation of 
T-cells responsible for toxic shock 
syndrome (98), an often fatal 
condition associated with the use 
of tampons that reached epidemic 
proportions in the United States 
around 1980 (99).

TLRs belong to a larger group 
of molecules called the pattern 
recognition receptors (PRRs) that 
recognize conserved molecular 
motifs from pathogenic microbes: 
pathogen-associated molecular 
patterns (PAMP). A PAMP database 
has been established that contains 
about 500 patterns, including 177 
recognized by TLRs (http://www.
imtech.res.in/raghava/prrdb/) (100). 
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The biology of TLRs has just started 
to impact clinical medicine and 
public health (101–106), and aberrant 
variations in TLRs expression 
caused by genetic polymorphisms, 
mutations or dysregulation will 
become increasingly important 
biomarkers.

Genetic biomarkers

Immunoglobulin 
and T-cell receptor genes

Immunoglobulin and T-cell receptor 
genes code for the only antigen-
specific proteins in the immune 
system. The three genes that 
produce Ig molecules are located on 
different chromosomes: the kappa 
light chain gene (chromosome 
2), the lambda light chain gene 
(chromosome 22), and the heavy 
chain gene (chromosome 14). 
During differentiation, B-cells 
determine whether they will use the 
kappa or lambda gene, and that 
choice is maintained by all progeny 
of the clone. The two light chains 
are never expressed together in 
the same cell. The T-cell receptor, 
which has an analogous genetic 
basis, is coded for by either alpha 
and beta genes or by gamma and 
delta genes; like Ig light chains, the 
two pairs are never expressed in 
the same cell. The beta and gamma 
genes are on chromosome 7, while 
the alpha and delta genes are on 
chromosome 17.

All seven of the Ig and Tcr 
genetic loci contain two distinct 
regions separated by an intervening 
sequence of nucleotides. One 
region contains multiple sequences, 
referred to as V-genes, that code for 
the N-terminal portion of the peptide 
which will form the antigen binding 
site. The other region, referred to 
as the C-gene, contains sequences 
that code for the remainder of 
the peptide chain, which is not 

involved in antigen recognition. In 
a differentiation process unique to 
lymphocytes, somatic recombination 
removes the intervening sequence 
between the V-genes and C-genes 
to form a new gene that codes for 
the intact Ig or Tcr protein. This 
recombination persists as a genetic 
fingerprint in all the clonal progeny 
that subsequently arise from the 
lymphocyte undergoing the original 
recombination. The details differ 
for each locus, and Ig heavy chain 
genes have a special feature of 
multiple C-genes that sequentially 
recombine with the chosen V-gene 
to form different antibody isotypes 
with the same antigen specificity.

The V-genes that code for 
antigen binding sites might at first 
be considered precise markers for 
antigen specificity; however, immune 
specificity is a selective process. 
The antigen binding site in Ig or 
Tcr molecules is not designed to fit 
a particular antigen; rather, binding 
sites are created stochastically, 
and those that happen to react with 
antigens are selected for clonal 
expansion. In fact, each antigen 
binding site is polyspecific (107), and 
immune specificity to most antigens 
depends on the wide repertoire of 
specificities that reinforces common 
reactivities and dilutes out the 
others. The relationship between 
V-genes and antigen specificity is 
therefore indirect and ultimately 
must be determined by antigen 
binding, not gene sequences.

Because of the unique 
recombination of V-genes and 
the selective clonal expansion 
or diminution of the lymphocytes 
containing them, the repertoire of 
V-genes differs between individuals 
and within individuals over time. They 
can therefore serve as biomarkers 
of exposure and effect, as well as 
biomarkers of susceptibility.

Major histocompatibility complex 
(MHC) genes

The other major gene family involved 
in the immune response is the major 
histocompatibility complex (MHC), 
which comprises 26 different genes 
including those that code for the 
human HLA proteins (see http://
www.ebi.ac.uk/imgt/hla/). These 
genes do not influence antigen 
specificity directly, but they do have 
notable effects on antigen-specific 
immune responses and are often 
used as biomarkers of susceptibility. 
In particular, the association of MHC 
polymorphisms has been a sine qua 
non for autoimmune disease since 
it was first uncovered in a mouse 
model of autoimmune thyroiditis 
(108,109).

The high degree of genetic 
polymorphism in the MHC 
presents difficulties for genetic 
analysis, which can be done at 
low resolution for modest costs or 
higher resolution for higher costs. 
The technical issues revolve first 
around the regions and primers 
selected for PCR amplification. 
Thereafter, the amplified product 
can be tested by probes, but they 
too may cross-react with different 
alleles. Selected regions associated 
with the allotypes (which may lie 
in intron-exon boundaries) can be 
sequenced, but even sequence-
based typing cannot rule out a 
polymorphism that lies outside the 
sequenced region. As with HLA 
protein analysis, these analyses 
should be done by experienced 
laboratories, and epidemiologic 
investigators should understand the 
limitations of methods used.

Other genes

Many other genes may be 
biomarkers of susceptibility or 
effect modifiers for immune and 
inflammatory pathologies. Some 



  Unit 3 • Chapter 13. Evaluation of immune responses 223

U
n

it
 3

C
h

a
p

te
r

  1
3

of these genes code for other non-
specific immune mediators, while 
others have no direct relationship to 
the immune system. Polymorphisms 
in cytokine genes, such as TNF-α 
and IL-8, have been associated with 
several clinical endpoints including 
severity of rheumatoid arthritis (110), 
incident cardiovascular disease 
(111), inflammatory bowel disease 
and cancer (112), type 2 diabetes 
(113) and thrombotic disease in 
children (114). They have also been 
associated with effect modification 
in chemical exposures (115) 
and nutritional biomarkers (116). 
However, such associations may not 
be apparent when tested in large-
scale, longitudinal studies (117).

Genes that have no direct 
relationship to the immune system, 
such as those involved with 
metabolism, can also influence 
immunity and immunopathology. 
An association between oxidative 
metabolites of therapeutic drugs and 
the autoimmune disease systemic 
lupus erythematosis (118) was 
long attributed to a slow-acetylator 
polymorphism of the arylamine-N-
acetyltransferase-2 gene. While 
subsequent epidemiological studies 
have cast doubt on the relationship 
with clinical disease (119,120), a 
relationship with autoimmunity may 
still exist. Observations in a mouse 
model of an association between 
expression of the aryl hydrocarbon 
receptor (AHR) and the TH17 T-cell 
subset (38) suggest that exposure 
to aryl hydrocarbons, modified 
by AHR polymorphisms, may be 
associated with autoimmunity and 
perhaps with B-cell malignancies 
(121). Epigenetic changes could 
also account for differences 
between individuals in the way their 
gene–environment interactions 
lead to acquired susceptibility or 
resistance for autoimmunity (122) 
or lymphocyte malignancies (123). 
Genes, such as the autoimmune 

regulator that controls the expression 
of tissue-specific antigens, may 
have a profound impact on immune 
tolerance and autoimmunity 
(124). Genes concerned with the 
regulation of cell growth, such as 
BCL2, are especially important in 
lymphocytes, given their propensity 
for clonal expansion, and the non-
coding regulatory microRNAs 
that are involved with cell growth 
pathways may be more important 
markers than many coding genes 
(125).

Special considerations 
for using immune biomarkers 
in epidemiologic studies

Immune biomarkers may be 
used to evaluate populations for 
disorders of the immune system 
itself, for immunogenic exposures, 
or for pathological conditions in 
other organ systems that provoke 
changes in immune status.

Disorders of the immune 
system

Three general types of disorders 
of the immune system may have 
adverse health consequences: 
immune deficiencies, inappropriate 
immune reactivities, and unregulated 
proliferation leading to lymphoid 
malignancies (1).

Immune deficiency disorders

Immune deficiency disorders are 
those in which the immune system 
fails to mount adequate protective 
responses against infection or 
certain forms of cancer. Deficiencies 
may be primary (caused by inherited 
genetic traits or spontaneous 
mutations) or secondary (caused 
by exposures or infections, such as 
HIV). Depending on the nature of the 
deficiency, the health consequences 
can range from almost unnoticeable, 

such as increases in the incidence 
of mild infections, to life-threatening, 
such as overwhelming sepsis. 
Immune deficiencies may be 
indicated by low or absent levels 
of serum immunoglobulins, low or 
absent numbers of immune cells, or 
decreased functional responses.

Immune reactive disorders

Immune reactive disorders are due 
to inappropriate or poorly regulated 
responses in which the ensuing 
inflammation damages host tissues. 
Autoimmune and allergic diseases 
are the major types of reactive 
disorders. Depending on their cause 
and nature, they can range from 
mild to severe.

Common allergies are caused 
by inappropriate responses to 
environmental antigens (usually 
referred to as allergens) that 
release histamine and lipid-derived 
mediators. These allergic reactions 
are often directed against airborne 
antigens and often contribute to 
the pathogenesis of asthma. Their 
severity ranges from mild localized 
symptoms, such as rhinitis, to life-
threatening systemic anaphylaxis. 
Depending on the causative antigen, 
in vitro tests for allergen-specific 
immunoglobulin E (IgE) serum 
antibodies are often good markers 
for exposure to the antigens that 
evoke allergies (70).

Autoimmune disorders are often 
debilitating diseases in which the 
immune system reacts against its 
own host tissues. Autoimmune 
reactions can damage the skin, liver, 
kidneys, various glands, joints and 
other tissues, leading to diseases 
such as rheumatoid arthritis, 
ankylosing spondylitis, systemic 
lupus erythematosis, thyroiditis, 
multiple sclerosis, myasthenia gravis 
and type 1 diabetes. Autoimmune 
diseases are almost always 
associated with antibodies that 
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react to self-proteins in particular 
tissues or cell components, and 
these autoantibodies can serve as 
predictive markers (108).

Immune proliferative disorders

Immune proliferative disorders 
include lymphoma, multiple 
myeloma, and chronic lymphocytic 
leukaemia. Like other forms of 
cancer, they involve the uncontrolled 
expansion of one family (clone) of 
cells. Immune proliferative disorders 
have unique clonal characteristics in 
both their receptor phenotypes and 
molecular genotypes, which can 
often serve as excellent biomarkers.

Immunogenic exposures

An acquired immune response 
can provide biomarkers of specific 
exposure to infectious agents or 
sensitizing chemicals. Antibodies 
are commonly employed in 
seroprevalence studies for viruses 
(126), bacteria (127) and parasites 
(128). IgE antibodies can reveal 
exposure to allergy-inducing 
antigens and their association with 
asthma. Antibodies to sensitizing 
chemicals, such as toluene 
diisocyanate, can serve as markers 
of exposure and susceptibility 
in occupational settings (129). 
Functional assays, such as T-cell 
proliferation, are more difficult 
to perform, but can be useful 
with particular exposures; for 
example, the lymphoproliferative 
test for beryllium has been 
carefully evaluated as a marker 
for sensitization (130). It should be 
emphasized that any biomarker 
of acquired immunity requires 
sensitization and therefore cannot 
rule out a non-sensitizing exposure.

Disorders of other organ 
systems

Infections

Infectious diseases that involve any 
tissues are likely to cause changes 
in the host defence system; in fact, 
many of the symptoms associated 
with infections are caused not by the 
infectious agents themselves, but by 
cellular and molecular activities of 
the host response. Antibodies and 
antigen-specific T-cells can provide 
markers for specific infectious 
agents, while elevations in acute 
phase serum proteins, some 
cytokines, and certain cell surface 
receptors (50) are non-specific 
markers that suggest infection.

Malignancies

Some solid tumours that release 
tumour-specific antigens may elicit 
immunogenic responses that serve 
as markers of the malignancy. 
These markers may manifest as 
tumour-associated autoantibodies 
or T-cell responses.

Other conditions

Malnutrition, chronic disease, stress, 
pregnancy and a variety of other 
factors can all influence and be 
influenced by the immune system. 
Immune markers could be used 
as indicators of these conditions; 
conversely, these effects can be 
confounding variables when immune 
markers are used in attempts to 
characterize the host defence 
system itself (1).

Immune biomarkers in animal 
models and epidemiologic 
studies

The type of samples used to test for 
immune components illustrates a 
major difference between the use of 

immune biomarkers in public health 
investigations compared to most 
basic research investigations (1). 
Animal models in general, and mice 
in particular, have been the mainstay 
of basic immunology research. 
Central lymphoid tissues, such as 
spleen, are readily harvested from 
mice; however, useful quantities 
of peripheral blood are difficult to 
obtain. Conversely, human studies 
are often limited to sampling 
peripheral blood. Although it does 
provide a convenient source of both 
cells and mediators, peripheral 
blood is by no means representative 
of the immune system as a whole. 
Host defence activities take place 
in the central lymphoid tissues 
(spleen, lymph nodes, epithelial-
associated lymphoid tissues) and 
in interstitial tissue at local sites of 
injury and infection. Cell traffic and 
recirculation through the blood is 
carefully regulated: activated cells 
and molecules are quickly removed, 
while some cells and mediators 
persist outside the bloodstream for 
days and even years. With these 
points in mind, epidemiologists 
should appreciate the challenge 
of adapting findings from animal 
models of immune function to the 
design of epidemiologic studies.

Summary of basic concepts

Almost all markers used as tests 
of immune status are active 
participants in protective, regulatory 
or pathogenic processes of the 
immune system. This direct 
biological relevance provides 
special opportunities to learn about 
the mechanisms of host injury and 
response through tests for immune 
components. However, it can also 
make interpretation more difficult, 
since physiologic interactions 
among markers can mask changes 
or create internal confounders. 
Moreover, the continual changes 
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that occur as the immune 
system senses and responds to 
environmental influences makes 
the normal ranges of variability for 
immune constituents very large 
between individuals, and even within 
individuals over time. Finally, the 
immune system of each individual 
continues to evolve throughout 
life, its course determined by a 
combination of inherited traits and 
acquired exposures. Since human 
beings are generally outbred and 
often exposed to a great variety of 
environmental stimuli, the diversity 
among individual immune systems 
is far greater than that among 
any organ system other than the 
neurobehavioural. The numerous 
confounding factors that can 
influence the immune response 
must also be taken into account (1).

Examples of using immune 
biomarkers in epidemiology 
and public health

Autoantibodies as pre-clinical 
markers of cancer

Cancer cells may express proteins 
that are not expressed in normal 
tissue or are expressed only at very 
low levels, and are therefore seen 
as foreign antigens by the immune 
system (Figure 13.2) (131). Such 
tumour-specific antigens (TSAs) 
were first uncovered in rodent 
tumours induced by coal tar dyes 
(132) and were later found in certain 
naturally-occurring human cancers 
(133). These discoveries augured 
two attractive concepts: first, that 
tumour defence was a primary 
function of the immune system that 
might be harnessed therapeutically; 
second, that testing for TSAs would 
allow early detection of cancer. For 
several decades, neither concept 

lived up to its presumed promise, but 
newly-uncovered biomarkers have 
revitalized efforts aimed at both 
therapy (131) and early detection. 
In part, the resurgence involved a 
more realistic perspective on the use 
of biomarkers. As studies showed 
that many so-called TSAs could be 
detected in persons without cancer, 
the term has largely been replaced 
by the more appropriate tumour-
associated antigen (TAA).

The first human TAA identified 
was carcinoembryonic antigen 
(CEA) produced by colon cancer 
(133), and it remains useful as a 
marker for tumour recurrence and 
progression (134). While serum 
CEA levels did provide statistically 
significant predictive value when 
used in prospective population 
studies (135), neither the sensitivity 
nor specificity of the test justified 
its use in general screening (136). 
Prostate-specific antigen (PSA) has 
proven somewhat more serviceable, 

Figure 13.2. Three ways for self antigens to become tumour antigens. Peptides from three normal self proteins (yellow, blue, and 
green) are presented on the cell surface as normal self peptides (yellow, blue, and green) in major histocompatibility complex 
(MHC) molecules. In cases of mutation (A), failure of the tumour cell to repair DNA damage can result in a mutation (red) 
in a normal protein and, consequently, presentation of mutated peptides (red) on the surface of tumour cells. Because of a 
mutation, or factors that regulate its expression, a normal protein (green) can be overexpressed in a tumour cell and its peptides 
presented on the cell surface at highly abnormal levels (B). In cases of post-translational modification (C), a normal protein can 
be abnormally processed (spliced, glycosylated, phosphorylated, or lipidated) post-translationally (green stripes), resulting in an 
abnormal repertoire of peptides on the surface of the tumour cell. Used directly from (131) by permission from the Massachusetts 
Medical Society.
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though still problematic, as a screen 
for prostate cancer (137), but in 
general blood screening for TAA has 
not improved the early detection.

The paradigm shift that has 
occurred over the last several 
years focused attention not on 
TAAs themselves, but rather on 
the immune responses to them. 
In essence, TAAs can act as 
autoantigens, producing a weak 
but detectable antibody or T-cell 
response. Although this is not a new 
idea (138,139), modern methods of 
molecular engineering allow TAA 
genes to be cloned and transfected, 
providing a ready supply of 
antigen to use in high-throughput 
multiplexed assays with attomolar 
sensitivity (140,141). Promising 
results have been obtained for the 
detection of autoantibodies in lung 
cancer (142), liver cancer (143), 
prostate cancer (141) and ovarian 
cancer (144). Assays for detecting 
TAA-specific T-cells have been 
applied mostly to studies of tumour 
vaccines or immunotherapy (145), 
but exploratory studies show that 
such T-cells can be detected in 
breast cancer patients naive to 
immunotherapy (146). Immune 
biomarkers may yet prove to be 
useful tools in the early detection of 
cancer.

Genetic and environmental 
risk factors for B-cell 
malignancies

While the role of the mammalian 
immune system in protection against 
cancer remains enigmatic, it is clear 
that lymphocytes themselves can 
lose control of their proliferative 
potential and expand uncontrollably 
into lymphoid malignancies. In the 
Eastern hemisphere, most lymphoid 
malignancies arise from T-cells, a 
phenomenon directly related to the 
endemic presence of human T-cell 
lymphocytotrophic viruses (HTLV). 

In the Western hemisphere, T-cell 
malignancies are rare, but B-cell 
malignancies represent a major 
proportion of cancers not related to 
the obvious risk factors of smoking 
and diet.

B-cells arise from haematopoietic 
stem cells and undergo multiple 
stages of differentiation, terminating 
as antibody-secreting plasma 
cells. Four major classes of cancer 
arise from these various stages: 
acute lymphoblastic leukaemia, 
non-Hodgkin lymphoma, chronic 

lymphocytic leukaemia, and multiple 
myeloma/plasmocytoma. B-cell 
acute lymphoblastic leukaemia, the 
most common form of childhood 
leukaemia, originates so early in the 
B-cell differentiation pathway that 
it is usually considered a stem cell 
malignancy. The remaining B-cell 
malignancies all arise from B-cells 
in later stages of differentiation 
(Figure 13.3) (147). The genetic 
and environmental risk factors for 
these B-cell malignancies remain 
surprisingly elusive, but information 

Figure 13.3. A Venn Diagram illustrating the hypothetical relationship among the 
MBL, MGUS, and the malignant B-cell diseases to which they may progress. The 
diagram is based on the spectrum of progression endpoints for MBL and MGUS 
and the interrelationships of their respective biomarkers. The overlapping areas 
indicate some extent of shared biomarkers or clinical endpoints. Since the definition 
of MBL excludes any haematolymphoid disorder, areas of overlap between MBL and 
a malignancy is meant to convey shared biomarkers or progression from MBL. MBL 
and MGUS usually appear independently, but may appear together. Both conditions 
can remain quiescent over the lifespan of the individuals in whom they are found, or 
they can progress to clinical disease. CLL is shown as a complete subset of MBL, 
and MM/WM/SMM as nearly complete subsets of MGUS, under the presumption 
that all CLL is preceded by MBL and nearly all MM and WM is preceded by MGUS 
(although the precedent conditions may not be detected before the clinical disease 
endpoints are diagnosed). SMM frequently, but not always, progresses to MM. MGUS 
cases may infrequently develop CLL or NHL. At least one case with a combination 
of MBL and MGUS that developed into WM has been reported. MBL is detectable in 
a subset of already-diagnosed NHL cases (but to date there have been no reports of 
MBL developing into NHL). At least one type of NHL (small lymphocytic lymphoma) is 
considered to be a variant of CLL. AL may be associated with MGUS, SMM, MM, or 
WM and rarely with PC, CLL, or NHL. MBL progression directly to AL has not been 
reported to date. Used directly from (147) with permission

AL, immunoglobulin light chain amyloidosis; CLL, chronic lymphocytic leukaemia; MBL, monoclonal B-cell 
lymphocytosis; MGUS, monoclonal gammopathy of undetermined significance; MM, multiple myeloma; NHL, non-
Hodgkin lymphoma; PC, plasmacytoma; SMM, smouldering multiple myeloma; WM, Waldenstrom macroglobulinemia.
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revealed by population studies and 
immune biomarkers has allowed a 
much better understanding of their 
natural history.

The clonal expansion of 
lymphocytes must be carefully 
regulated to avoid overwhelming 
the host. Protective immunization 
generally involves the controlled 
proliferation of many different 
lymphocyte families, leading to 
a polyclonal response. When 
proliferation is dominated by a single 
clone, the result is a monoclonal 
response. Monoclonal proliferation 
is the first step in a progression that 
may lead to a lymphoid malignancy 
(148,149).

Chronic lymphocytic leukaemia 
(CLL) is a classic example of a 
B-cell malignancy arising from 
monoclonal expansion (150). 
Cellular, biochemical and genetic 
biomarkers have all contributed 
to our increased understanding 
of the natural history of CLL. The 
disease process probably begins 
with chronic immune stimulation 
by infectious agents, other external 
antigens, or autoantigens. As normal 
B-cell clones expand in response 
to antigen stimulation, the chance 
of individual cells acquiring genetic 
defects increases. Some of these 
defects cause the cell to escape 
regulatory control of proliferation: 
the best example to date is the loss 
of the microRNAs miR-15a and 
miR-16–1, critical regulatory factors 
in the bcl-2 pathway for apoptosis 
(151). Continued expansion of 
the deregulated clone promotes 
opportunity for other genetic lesions 
to accumulate, including epigenetic 
changes (123). At some point, the 
damaged clone exhibits phenotypic 
changes, typically an increased 
expression of CD5 and decreased 
expression of CD20. Eventually 
the clonal proliferation causes 
clinical disease by accumulating 
in lymphoid tissues and displacing 

normal haematopoietic cells in the 
bone marrow. While most cases of 
CLL are sporadic, a familial variant 
has been recognized for many years 
(152).

The transition from a pre-
clinical B-cell proliferative disorder 
to CLL has been documented in a 
succession of studies made possible 
by the advent of flow cytometry 
(15). The term monoclonal B-cell 
lymphocytosis (MBL) is now used 
to describe the pre-clinical state 
(153). One of the first systematic 
studies of MBL originated from 
environmental public health studies 
in which 13 individuals with MBL 
were detected (prevalence of 
0.9% among participants age 40 
or above) (154). These individuals 
were followed for up to 12 years, 
along with other study participants 
who had high B-cell counts without 
MBL. The majority of MBL cases 
remained stable or died of unrelated 
causes, but progression to a B-cell 
malignancy was observed in two of 
the 13: one case of CLL and one case 
of Waldenstrom macroglobulinemia, 
a related disease. Interestingly, the 
high B-cell counts in individuals who 
did not develop MBL regressed to 
normal over the follow-up period.

The other seminal MBL study 
involved familial CLL, where 18% of 
first-degree family members without 
CLL were found to have MBL 
(155). This striking increase over 
the general population prevalence 
suggests the familial risk for CLL is 
reflected in the risk for MBL. Since 
these studies, other population 
surveys have shown that the 
prevalence of MBL increases with 
age, approaching 3–5% in older, 
otherwise healthy, adults (156,157).

Even with the power of 
multiparameter flow cytometry, 
the detection of MBL is not trivial, 
since it depends on subjective 
assessment and sequential 
selection (“gating”) strategies that 

isolate B-cell subsets with distinct 
phenotypic characteristics. Once 
a distinct population has been 
identified, MBL can be identified by 
light chain restriction. Antibodies 
may have either kappa or lambda 
light chains, but all the cells of a 
particular clone must make the 
antibodies with the same light chain. 
A phenotypic cluster that shows only 
one type of light chain may therefore 
be considered monoclonal. The 
complexity of cell preparation, flow 
cytometry and data analysis make 
standardization of methods to detect 
clonality critical for epidemiological 
assessment. Fortunately, the raw 
data from flow cytometric analysis 
can be captured and re-analysed 
using different gating strategies, 
allowing retrospective analysis of 
existing data (158).

Long-term studies of MBL and 
CLL using established and newly-
uncovered biomarkers, such as 
microRNAs, will be required to 
sort out environmental risk factors, 
innate susceptibility and biomarkers 
of progression.

Newborn screening for 
immune disorders

Newborn infants that appear 
healthy may actually have serious 
latent disorders that will cause 
future disease, disabilities or 
even premature death. Newborn 
bloodspot screening (NBS) is 
designed to identify such infants 
quickly so that medical intervention 
can begin before they fall victim to 
such disorders. A small amount of 
blood from a heel stick is collected 
on filter paper to form a dried blood 
spot (DBS). DBS samples are sent 
to central laboratories where they 
are analysed by various methods to 
detect biomarkers of latent disorders 
(159). The first conditions detected 
by NBS were metabolic or endocrine 
disorders, and they remain the 
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dominant type screened for in 
current NBS programs. However, 
interest in screening for other types 
of disorders is growing rapidly 
(160), and the idea of screening for 
risk factors of future disorders, in 
addition to screening for established 
(though occult) conditions, has been 
gaining attention. Two immune 
disorders typify these two trends: 
severe combined immune deficiency 
(SCID), and type 1 (juvenile) 
diabetes.

Severe combined immune 
deficiency

Severe combined immune deficiency 
(SCID) is a lethal congenital failure 
of immune development (161). It is 
often called “bubble boy disease” 
because of early attempts to prevent 
infection through sequestering the 
child from the natural environment. 
Because of the persistence of 
placentally-transferred maternal 
antibodies, SCID remains concealed 
for several weeks after birth, but 
without a functional immune system, 
babies soon become infected and 
typically die in infancy. A series of 
landmark studies have shown that 
newborns with SCID can be rescued 
before they become symptomatic 
by transplanting bone marrow 
progenitor cells (162). However, 
such rescue is difficult or impossible 
after SCID babies become infected. 
SCID thus meets the ideal criteria 
for NBS: a lethal disorder with a 
latent onset that can be prevented 
by medical intervention. The birth 
prevalence of SCID is not certain, 
but is estimated to be in the range of 
1 to 4 per 100 000.

The process of finding an 
immune biomarker for SCID that 
can be measured on a newborn 
DBS illustrates how far-reaching our 
knowledge of the immune system 
and our abilities to probe it have 
come. First came the understanding 

that, although SCID is expressed as 
a combined deficiency involving both 
humoral (B-cell) and cell-mediated 
(T-cell) immunity, it is actually a 
defect in T-cell development. B-cell 
counts in SCID babies are normal 
or even elevated, and they are 
fully functional. However, without 
functional T-cells to provide help, 
even humoral responses are 
deficient, giving the phenotype of 
a combined immune deficiency. 
The second realization was that 
mutations at any one of several 
unrelated genetic loci could result in 
failure of T-cell development: SCID 
was a single gene defect in each 
individual case, but with multiple 
genetic causes overall (Table 13.2). 
Other loci in which mutations could 
cause SCID may yet be uncovered 
(163). Moreover, the mutations 
at these various loci are widely 

scattered throughout the exons, so 
screening by conventional genetic 
tests is not feasible.

The third consideration came 
from the knowledge of T-cell 
development (Figure 13.4) (164), 
which led to a unique marker of 
T-cells that could be measured 
in DBS (165). When lymphocytes 
rearrange the genes that form 
their antigen receptors, a small 
segment of DNA is removed to 
juxtapose two previously separated 
segments. In T-cells, the excised 
segment is removed as a circular 
fragment called a T-cell receptor 
excision circle (TREC). TRECs 
are produced only in the original 
recombination event and are not 
duplicated in subsequent cell 
division, so fewer T-cells contain 
TRECs as the immune system 
develops. The newborn infant, 

Figure 13.4. Defects in human T-cell development resulting in SCID phenotype. 
A simplified depiction of lymphocyte differentiation is shown. B-cells and NK cells 
mature in the bone marrow, whereas T-cells mature in the thymus. Normally, only the 
mature forms of these cells are released into the peripheral blood. Various stages 
in NK and T-cell development that are blocked by mutations in the genes known to 
cause SCID (IL2RG, JAK3, ADA, IL7R, RAG1, RAG1, ARTEMIS, and CD45) are 
indicated by X and dashed lines. Presence or absence of T-cell-specific antigenic 
markers (CD4,CD8TCR-α/β, and TCR-gamma/delta) is also indicated. Effects of 
these mutations on B-cell development is not shown. Used directly from (164) with 
permission
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Table 13.2. Genetic loci associated with severe combined immune deficiency (SCID)

Characteristics of SCID

                             Presence of

Gene Locus Gene product/function T-cell B-cell NK-cell Mode of 
inheritance*

No. unique 
mutations 
identified

OMIM No.

IL7R 5p13 IL7 receptor. Needed for T-cell 
development. Activates JAK3 kinase

- + + AR 5 146661

CD45 1q31-q32 Protein tyrosine phosphatase. 
Regulates Src kinases required for 
T-cell and B-cell antigen receptor 
signal transduction

- + + AR 3 151460

IL2RG Xq13.1 Gamma-c chain of IL2, 4, 7, 9, 
15 cytokine receptors. Needed 
to activate JAK3 for intracellular 
signalling

- + - XLR 169 308380

JAK3 19p13.1 Tyrosine kinase. Needed for 
differentiation of haematopoietic cells

- + - AR 27 600173

RAG1 11p13 DNA recombinase. RAG1/RAG2 
mediate DNA recombination during 
B-cell and T-cell development

- - + AR 44 179615

RAG2 11p13 DNA recombinase. RAG1/RAG2 
mediate DNA recombination during 
B-cell and T-cell development

- - + AR 18 179616

ARTEMIS 10p Involved in DNA repair during V(D)J 
recombination

- - + AR 9 605988

ADA 20q13.11 Part of the purine salvage and 
methylation pathways. Needed for 
removal of toxic metabolites (e.g. 
ATP, S-adenosyl homocysteine) that 
inhibit lymphoid cells

- - - AR 54 102700

*Mode of inheritance: AR, autosomal recessive; XLR, X-linked recessive. Adapted from (164).

however, is still producing new 
T-cells at a rapid pace, so about 
10% of the peripheral blood T-cells 
contain TRECs. These cells may 
be measured by quantitative real-
time polymerase chain reaction 
(Q-PCR), a technique in which 
each cycle of DNA amplification is 
monitored for the appearance of 
fluorescence from a probe released 
during the polymerase-mediated 
extension process (166). The 
greater the amount of DNA in the 
original sample, the more quickly the 
fluorescence signal increases. This 
allows construction of a calibration 
curve relating fluorescence to the 
number of TRECs.

The Q-PCR assay for TRECs 
has been tested on several thousand 
anonymized newborn DBS and 
some 18 DBS from newborns with 
SCID. About 99% of the anonymized 
DBS samples from newborns fall 
within the expected range of PCR 
amplification. In contrast, all of the 
DBS from newborns with SCID 
failed to show any amplification 
(165). The assay is therefore highly 
sensitive and specific, but given the 
rarity of SCID, its positive predictive 
value is still low (0.1–1%). Besides 
SCID, the newborn DBS that fail 
to amplify may be due to technical 
problems with the assay or to 
other T-cell deficiencies caused by 
genetic disorders, such as DiGeorge 

Syndrome (167), or acquired 
disorders, such as congenital HIV 
infection (168,169). Given the rarity 
of all of these disorders, large-scale 
population studies where NBS 
for SCID is performed under the 
aegis of translation research will be 
necessary to evaluate and refine 
testing protocols.

Type 1 (insulin-dependent) 
diabetes

Type 1 diabetes (T1D), formerly 
known as juvenile or type 1 diabetes, 
is the major cause of diabetes in 
children. T1D is generally caused 
by the autoimmune destruction 
of insulin-producing β cells of the 
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pancreas (170). The autoimmune 
pathogenesis of T1D was revealed 
by two biomarkers, one genetic 
and one acquired. The genetic 
biomarker is linkage with certain 
alleles of the MHC genes that code 
for the human leukocyte antigens 
(HLA), a risk locus shared by all 
autoimmune disorders. About half 
of the attributable risk for T1D is 
genetic, and about half of that risk 
is contained in the HLA genes. The 
genetic risk for T1D is associated 
particularly with the class II MHC 
genes that code for the HLA-D 
antigens (171). Some alleles confer 
susceptibility, while others confer 
resistance. Interestingly, resistance 
is dominant, which allows more cost-
effective screening approaches 
that identify protective alleles and 
eliminate them from further testing.

The acquired biomarker for 
T1D is a group of autoantibodies 
that react with pancreatic islet cell 
antigens (172). Autoantibodies 
are the other essential biomarker 
of autoimmune disorders. In the 
rheumatic disorders, such as 
systemic lupus erythematosis, they 
are an obvious part of the pathogenic 
process; in organ-specific disorders, 
such as T1D, they are thought to be 
largely paraphenomena, but still 
serve as useful markers. Originally 
discovered by immunofluorescence 
microscopy using pancreas tissue 
to visualize antibody binding to islet 
cells (173), most testing today is done 
biochemically using purified islet cell 
antigens produced by cloned genes. 
Autoantibodies to three major 
islet cell antigens have been the 
important determinants of T1D risk 
in epidemiologic and natural history 
studies, but antibodies to other islet 
cell antigens have been reported on 
the basis of distinct tissue binding 
patterns (172).

A series of prospective studies 
by research centres around the 
world has established a consensus 

paradigm (Figure 13.5) for the 
progression from innate risk to islet 
cell autoimmunity and ultimately 
to T1D. The major remaining 
puzzle is the role of environmental 
exposures in triggering or 
advancing the autoimmune 
process (174). The candidates for 
such exposures include bacterial 
and viral infections (particularly 
enteroviruses and rhinoviruses), 
food antigens, xenobiotic chemicals, 
allergens, ultraviolet light, and 
the immunomodulatory effects of 
stress. Clearly, the identification of 
environmental risk factors would 
open new possibilities for prevention 
and intervention.

With this goal in mind, a 
prospective multisite natural 
history study has been initiated to 
address comprehensively the role 
of environmental exposures in T1D. 
Called TEDDY (The Environmental 
Determinants of Diabetes in the 
Young), this study is recruiting infants 
at higher genetic risk for T1D (as well 
as controls without higher genetic 
risk) and assembling them into a 

long-term study cohort (175,176). To 
maximize the proportion of recruited 
children who will develop T1D, the 
highest genetic risk, defined as one 
of four MHC class II haplotypes 
(Table 13.3), is required for eligibility 
in the general population. However, 
since familial risk contributes 
independently, six additional MHC 
haplotypes are eligible in families 
where a first-degree relative of the 
prospective recruit already has T1D 
(Table 13.3).

Because risk from environmental 
exposures may begin very early, 
perhaps even in utero (177), TEDDY 
collects the first samples to look 
for environmental factors at three 
months of age. With such a short 
window to identify and recruit 
participants, TEDDY investigators 
seek informed consent for the initial 
genetic screen from the parents of 
newborns, making it a research 
application of newborn screening. 
By the close of the screening phase, 
some 300 000 newborns will have 
been screened, and about 8000 
higher-risk infants enrolled. The 

Figure 13.5. The stages in the natural history and pathogenesis of childhood type 
1 diabetes (T1D). Genetic susceptibility creates an immunological environment 
that predisposes to pancreatic islet cell autoimmunity. An environmental trigger is 
suspected in most if not all cases of T1D. Autoimmunity then becomes evident by the 
presence of autoantibodies to islet cell antigens. The presence of autoantibodies to 
two or more antigens suggests a progressive condition and a significant risk (> 50%) 
of developing T1D. As islet cells are destroyed by immune-mediated inflammation, 
the pancreas loses the ability to produce insulin, ultimately resulting in type 1 (type 
1) diabetes. Complications, largely related to inflammatory pathologies, cause 
morbidity and mortality. The progression from autoimmunity to frank diabetes is 
highly variable, but the strongest genetic risk factors tend to be associated with the 
earliest onset of disease
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Table 13.3. Eligible MHC genotypes in the TEDDY study that confer higher risk for 
Type 1 diabetes

General Population Eligible Genotypes

DR4-DQA1*0301-DQB1*0302  /  DR3-DQA1*0501-DQB1*0201 

DR4-DQA1*0301-DQB1*0302  /  DR4-DQA1*0301-DQB1*0302 

DR4-DQA1*0301-DQB1*0302  /  DR8-DQA1*0401-DQB1*0402 

DR3-DQA1*0501-DQB1*0201  /  DR3-DQA1*0501-DQB1*0201 

First-Degree Relative Eligible Genotypes

DR4-DQA1*0301-DQB1*0302  /   DR4-DQA1*0301-DQB1*0201 

DR4-DQA1*0301-DQB1*0302  /   DR1-DQA1*0101-DQB1*0501 

DR4-DQA1*0301-DQB1*0302  / DR13-DQA1*0102-DQB1*0604 

DR4-DQA1*0301-DQB1*0302  /   DR4-DQA1*0301-DQB1*0304 

DR4-DQA1*0301-DQB1*0302  /   DR9-DQA1*0301-DQB1*0303 

DR3-DQA1*0501-DQB1*0201  /   DR9-DQA1*0301-DQB1*0303 

participants will be followed with 
blood sampling every three months 
for islet autoantibody measurements 
until age four, and then every six 
months until the age of 15. These 
cohorts are to be followed over a 
period of 15 years for the appearance 
of islet cell autoantibodies and 
diabetes, with documentation of 
early childhood diet, reported and 
measured infections, vaccinations, 
and psychosocial stressors. The 
TEDDY Consortium will allow for 
a coordinated, multidisciplinary 
approach to this complex disease 
(see http://www.teddystudy.org). 
Collection of information and 
samples in a standardized manner 
will achieve greater statistical 
power than smaller independent 
investigations. Most importantly, 
the TEDDY study will establish 
a central repository of data and 
biologic samples for subsequent 
hypothesis-based research, 
applying immunologic and genetic 
biomarkers to samples collected in 
higher risk children.

Newborn screening for T1D risk 
is currently a research activity; since 

no intervention to prevent T1D onset 
currently exists, it is generally not 
considered a candidate for routine 
public health application. However, 
some diabetologists believe genetic 
risk for T1D should be part of routine 
newborn screening, since the 
knowledge can prevent morbidity, 
especially in young children where 
the acute onset of T1D can go 
unrecognized, occasionally with fatal 
consequences. Genetic assessment 
alone can increase the likelihood 
ratio several-fold, but the positive 
predictive value (PPV) is still quite low: 
1–2%, depending on the population. 
The appearance of autoantibody 
to one of the islet cell antigens 
increases the risk substantially, and 
the presence of autoantibodies to 
two or more antigens raises the 
PPV to around 50% (178). Children 
with such positive serologies should 
be monitored for blood glucose 
levels, especially when they become 
acutely ill. This tiered approach 
to using biomarkers (in this case, 
metabolic as well as immune) may 
well be a model for future public 
health applications.

Several technical, operational and 
ethical caveats attend TEDDY, and 
other long-term population-based 
prospective studies. Technically, 
the high-throughput tests used for 
genetic screening do not identify 
HLA haplotypes with certainty, and 
indeed high resolution testing is 
neither necessary nor cost-efficient 
for this purpose (171). In TEDDY, 
screen-eligible haplotypes are 
independently confirmed by higher 
resolution methods after recruitment. 
In addition, the screening laboratories 
annually undergo a proficiency 
testing survey, which has repeatedly 
confirmed the validity of the different 
screening methods in use (176). The 
autoantibody tests have undergone 
rigorous standardization, but insulin 
autoantibody, the most important 
one for identifying the onset of 
autoimmunity, remains a technically 
challenging assay (179). Further 
concerns focus on the use of banked 
samples, since some of the tests to 
be done in the future may be affected 
by storage. This is particularly true 
for T-cell function tests (93) that could 
reveal the repertoire of lymphocyte 
specificities directed against islet cell 
antigens or environmental triggers. 
Operationally, long-term prospective 
studies are expensive and require 
dedicated management with 
committed field centres. Ethically, 
risk communication with the recruited 
families must be approached 
carefully, and the requirements of 
participation must not be unduly 
demanding to mitigate stress and 
foster retention in the long-term effort. 
Such effort is justified by the promise 
of primary prevention for T1D, 
eliminating life-long dependence on 
insulin, and the disabling morbidities 
that accompany it.
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Immune biomarkers of
neurodevelopmental 
disorders

Neuromental disorders (NMDs), 
such as autism, schizophrenia, 
attention deficit syndromes and 
epilepsy, represent a biological 
enigma and a public health 
imperative. While specific genetic 
mutations have been identified in 
a small proportion of NMDs (180), 
etiologic factors for the majority 
remain unclear. A growing body of 
scientific evidence suggests that 
many NMDs have an early etiological 
origin associated with aberrant 
brain development during gestation 
(181), and neuroimmunomodulatory 
factors have been implicated in 
the prenatal pathogenic process 
(182,183). Studies in animal models, 
as well as limited human studies and 
epidemiological data (184), suggest 
an etiologic role for autoimmune 
or cross-reactive antibodies 
maternally transferred across the 
placenta when the fetal blood-brain 
barrier is permeable to IgG. This 
concept has been developed into 
a full model termed the gestational 
neuroimmunopathology (GENIP) 
hypothesis (Figure 13.6) (181).

One line of evidence supporting 
the GENIP hypothesis comes from 
the consideration of the placental 
barrier and of the immune responses 
in very young children (181). The 
placenta restricts passage of 
maternal IgG2 antibodies, which 
are the subclass most enriched 
for reactivity to encapsulated 
bacteria, such as meningococcus 
B and E. coli K1. Similarly, very 
young children are unable to mount 
effective immune responses against 
bacterial polysaccharide antigens. 
The withholding of protective 
antibodies against common deadly 
pathogens in highly susceptible 
infants is evolutionarily difficult 
to explain, since the six-month-

old fetus can readily make IgG 
antibodies to protein antigens 
of intrauterine infectious agents 
such as syphilis (185). However, 
polysaccharides, structurally 
identical to the bacterial α-2,8-linked 
capsular polysaccharides, are also 
synthesized by the mammalian 
central nervous system, where 
they regulate neuronal function 
in association with the neural 
cell adhesion molecule (186). If 
antibodies that react with these 
polysaccharides (or with other 
sialic acid epitopes, such as those 
of the many gangliosides in the 
developing nervous system) were 
present before the blood-brain 
barrier became fully impervious 
to IgG transfer, their effects on 

brain tissue could disrupt normal 
neurodevelopmental processes. 
The mechanism for such disruption 
could be directly upon neurons 
(187,188), or more subtly upon the 
regulation of axonal growth and 
connectivity (189,190). For instance, 
antibodies to ganglioside GM1, 
identified in cases of paediatric 
autoimmune neuropsychiatric 
disorders associated with 
streptococci, act by stimulating the 
enzyme calcium/calmodulin kinase 
II (191). In general, cross-reactive 
or polyreactive antibodies that effect 
neuronal development or function 
are seen as an emerging theme in 
neuroimmunology (192).

Another line of evidence comes 
from animal models that show 

Figure 13.6. Factors influencing the risk that transplacental maternal IgG antibodies 
could cause developmental neuromental disorders, such as autism and schizophrenia. 
The relevant parameters are: (1) the concentration of maternal antibodies that could 
cross-react with brain antigens, (2) the permeability of the blood-brain barrier, and 
(3) the threshold at which neurodevelopmental damage may occur, presumably 
related to the developmental state of the fetus. The clinical manifestations for any 
particular type of neuromental dysfunction may be detected during infancy, or 
may only be recognized many years postnatally. This will depend on the degree of 
initial involvement in the function of the developing nervous system, and when the 
threshold for the neuropathological disorders to become clinically manifest, is lowered 
by genetic and/or postnatal environmental influences. The IgG antibody levels will 
also be affected by immune factors in the mother or progeny: the IgG subclass of 
antibodies to antigens common between an infectious agent and the brain; whether 
the antigens involved are polysaccharides or proteins; genetic influences on the 
immune responsiveness to these antigens of the mother; the time of her acquisition 
of the infectious agent, before, or during, pregnancy, as well as the agent’s natural 
chronicity or reactivation potential, and the transfer by feto-fetal transfusion of IgG/
antibodies from one member of a monozygotic twin pair to the other, due to a common 
chorionic placentation. The blood-brain barriers may become more permissive in 
case of trauma (e.g. a prolonged vaginal delivery), in which case lower antibody levels 
may cross to the nervous system. Adapted from (181) with permission
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antibodies can influence behaviour if 
they reach the brain. Mice that were 
given autoantibodies associated 
with systemic lupus erythematosis 
developed behavioural anomalies, 
if, and only if, they also were 
given pharmacologic agents that 
opened the blood-brain barrier 
(193). Infant monkeys gestationally 
exposed to IgG antibodies purified 
from the serum of mothers with 
autistic children demonstrated the 
stereotypies characteristic of autistic 
behaviour (194).

A third line of evidence for GENIP 
is the identification of antibodies that 
react with brain tissue antigens in 
children with neurodevelopmental 
disorders (195,196). These studies 
have used research assays that are 
not widely employed or validated 
by inter-laboratory studies, but the 
methods are generally sound, and 
the differences with control samples 
are often striking. Although these 
studies cannot prove causality, they 
suggest an association that could 
at least provide useful markers for 
stratification within the complex 
spectrum of neurobehavioural 
diseases.

The key to providing direct 
evidence for the GENIP hypothesis 
is the newborn baby, whose 
blood contains large amounts of 
placentally-transferred IgG from 
the mother, as well as the low levels 
of antibodies made in utero by the 
fetus. Samples from newborns 
can therefore reveal the spectrum 
of antibody reactivities to which 
the developing brain has been 
exposed. Since blood samples 
from virtually every newborn in the 

United States are routinely collected 
as DBS for newborn screening, the 
samples required to test the GENIP 
hypothesis are readily available. 
Highly-multiplexed suspension 
arrays have been developed 
for detecting a wide variety of 
potentially relevant antibodies in 
DBS, and they are currently being 
applied to epidemiologic studies 
of autism, epilepsy, and other 
neuromental disorders. Perhaps 
the major concern in such studies 
lies not in the arcane realm of 
immune biomarkers, but rather 
with the classic epidemiologic 
dilemma of establishing a consistent 
case definition for these complex 
neurodevelopmental conditions.

Future opportunities 
and challenges

The continual advances of 
biomedical research in immunology 
offer an ever-widening opportunity 
to employ immune biomarkers 
in epidemiologic studies. In the 
foreseeable future biomarkers will 
lead to an increased understanding 
of the relationship between innate 
and acquired immunity; the 
influences of microRNAs on immune 
cell differentiation and function; the 
role of epigenetic mechanisms; the 
regulation of immune responses 
by the TH1-TH2-TH17 network; the 
environmental factors that trigger 
allergy, autoimmunity and immune 
malignancy; and the interaction of 
the neurobehavioural and immune 
systems in neuromental disorders. 
Also envisioned is a more rapid 
pace of translation from basic and 

clinical research to epidemiologic 
field studies and public health 
applications, such as newborn 
screening and early cancer 
detection.

The translational process will 
have to confront challenges in 
the standardization of laboratory 
measurements, the establishment 
of biologic validity and the 
meaningful interpretation of results. 
A multidisciplinary approach that 
engages epidemiologists, laboratory 
scientists and clinicians offers the 
best chance for useful field studies 
and public health applications. 
All the scientists involved in such 
efforts should have some sense 
of the way immune markers are 
measured, of their functional role 
in health and disease, and of the 
statistical methods that will be used 
to analyse the data. While these 
aphorisms can be applied to any 
type of biomarker, the self-referential 
sensory nature of the immune 
system, its wide range of effector 
functions, and the narrow margin 
between protection and pathology 
make them especially pertinent 
to the use of immune biomarkers. 
When properly met, the challenges 
will open new routes to scientific 
discovery, disease prevention and 
public health practice.

Disclaimer: The findings and conclusions 
in this chapter are those of the author 
and do not necessarily represent the 
views of the Centers for Disease Control 
and Prevention.
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Summary

This chapter will discuss design 
considerations for epidemiological 
studies that use biomarkers in the 
framework of etiologic investigations. 
The main focus will be on describing 
the incorporation of biomarkers 
into the main epidemiologic study 
designs, including cross-sectional 
or short-term longitudinal designs 
to characterize biomarkers, and 
prospective cohort and case–
control studies to evaluate 
biomarker-disease associations. 
The advantages and limitations of 
each design will be presented, and 
the impact of study design on the 
feasibility of different approaches 
to exposure assessment and 
biospecimen collection and 
processing will be discussed.

Introduction

There is a wealth of existing and 
emerging opportunities to apply a 
vast array of new biomarker discovery 
technologies, such as genome-
wide scans of common genetic 
variants, mRNA and microRNA 
expression arrays, proteomics, 
metabolomics and adductomics, 
to further our understanding of 
the etiology of a broad range of 
diseases (1–9). These approaches 
are allowing investigators to explore 
biologic responses to exogenous 
and endogenous exposures, 
evaluate potential modification 
of those responses by variants 
in essentially the entire genome, 
and define disease processes 
at the chromosomal, DNA, RNA 
and protein levels. At the same 
time, most biomarkers analysed 

by these technologies can still be 
classified into the classic biomarker 
categories defined more than 20 
years ago (Figure 14.1), which 
include biomarkers of exposure, 
intermediate endpoints (e.g. 
biomarkers of early biologic effect), 
disease and susceptibility (10–17). 
Biomarkers in epidemiological 
studies can also be used to evaluate 
behavioural characteristics that 
affect the likelihood of exposure, 
such as tobacco smoking, as well as 
clinical behaviour and progression 
of disease. The use of biomarkers 
associated with exposure, 
disease development, and clinical 
progression within the same overall 
design is of increasing interest and 
has recently been termed ‘integrative 
epidemiology’ (18,19).
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Regardless of the appellation 
used to describe the use of 
biomarkers in epidemiologic 
research, be it “molecular 
epidemiology,” “integrative 
epidemiology,” or the more limited 
“genetic epidemiology,” the 
successful application of new and 
established biomarker technologies 
still depends on integrating them into 
the appropriate study design with 
careful attention to the time-tested 
principles of the epidemiologic 
method (16,20–24). Basic principles 
in vetting new biomarkers and 
technologies in pilot or transitional 
studies apply now more than ever 
(25–28). Understanding how to 
collect, process and store biologic 
samples (see Chapter 3), and the 
factors that influence biomarker 
levels, with particular attention 
to within- and between-person 
variation for non-fixed biomarkers 
(see Chapter 9), are key concerns. 
Testing for and optimizing laboratory 
accuracy and precision are also 
critical to the successful use of 
biomarkers in epidemiology studies 
(see Chapter 8). Finally, selecting 
the most appropriate, effective, and 
logistically feasible study design to 
use a given biomarker technology 
that answers a particular research 
question remains of paramount 
importance.

The focus of this chapter is 
on design considerations for 
epidemiological studies that use 
biomarkers, primarily in the context 
of etiologic research, including 
cross-sectional or short-term 
longitudinal designs to characterize 
biomarkers, and prospective cohort 
and case–control studies to evaluate 
biomarker–disease associations. A 
description of the general principles 
of study design (29–31) is outside 
the scope of this chapter. Instead, 
the focus is on describing the 
incorporation of biomarkers into the 
main epidemiologic study designs, 
pointing out the advantages and 
limitations of each, and showing 
how study design affects the 
feasibility of different approaches 
to both exposure assessment 
and biospecimen collection and 
processing.

Study designs in molecular 
epidemiology

Cross-sectional and short-
term longitudinal studies with 
biomarker endpoints

In epidemiological terms, a cross-
sectional study refers to a study 
design in which all of the information 
refers to the same point in time. 
As such, these studies provide a 
‘snapshot’ of the population status 

with respect to exposure variables 
and intermediate endpoints, and, 
in some instances, disease at a 
specific point in time. Short-term 
longitudinal biomarker studies 
are studies in which subjects are 
prospectively followed for a short 
period of time (usually a few weeks 
to up to a year). Investigations 
are usually performed on healthy 
subjects exposed to particular 
exogenous or endogenous agents 
where the biomarker is treated as 
the outcome variable. These studies 
generally focus on exposure and 
intermediate endpoint biomarkers, 
and sometimes evaluate genetic and 
other modifiers of the exposure–
endpoint relationship.

Questions addressed by 
cross-sectional and short-term 
longitudinal studies

Cross-sectional and/or short-term 
longitudinal studies are often used 
as follows:

1) To answer questions about 
whether or not a given population 
has been exposed to a particular 
compound, the level of exposure, 
the range of the exposure, and the 
external and internal determinants 
of the exposure. For instance, 
recent studies on haemoglobin 
adducts of acrylamide have shown 
that exposure to this toxic chemical 

Figure 14.1. A continuum of biomarker categories reflecting the carcinogenic process resulting from xenobiotic exposures

Figure compiled from (10) and (21, copyright © 2008, Informa Healthcare. Reproduced with permission of Informa Healthcare).
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is widespread in the general 
population, due to dietary and 
lifestyle habits (32,33).

2) To evaluate intermediate 
biologic effects from a wide range 
of exposures in the diet and 
environment, as well as from lifestyle 
factors (e.g. obesity and reproductive 
status). This design can be used 
to provide mechanistic insight into 
well established exposure–disease 
relationships, and to supplement 
suggestive but inconclusive evidence 
on the possible adverse health 
effects of an exposure. For instance, 
studies have used haematological 
endpoints to investigate the effects 
of benzene on the blood forming 
system at low levels of exposure 
(34,35). These studies have found 
decreased levels in peripheral blood 
cell counts at exposures below 1 
ppm, indicating that at low levels of 
exposure, perturbations in the blood 
forming system can be detected. 
These results hinted at the possibility 
of increased risk of leukaemia at 
low levels of benzene exposure, 
given the putative link between 
benzene poisoning (a severe form of 
haematotoxicity) and increased risk 
for leukaemia.

3) To evaluate whether or not 
there are early biologic perturbations 
caused by new exposures, or recent 
changes in lifestyle factors that have 
not been present long enough to have 
been evaluated for their association 
with disease. For example, there 
is considerable public health 
concern about the increased use 
of nanoparticles in both research 
and manufacturing operations (36). 
Various initial research studies and 
evaluations have demonstrated 
greater biological activity of 
nanoparticles compared with larger 
particles of the same material, 
and significant potential toxicity 
has been observed in laboratory 
animals exposed to some types of 
nanoparticles. However, given their 

recent introduction into commerce, 
the time between first exposure and 
the occurrence of any chronic health 
effect is most likely too short. In this 
particular example, the assessment 
of preclinical indicators of disease 
(e.g. markers of pulmonary 
inflammation) in asymptomatic 
individuals would be of importance 
to identify potential adverse health 
effects at an early stage.

4) To study changes in exposure 
and/or intermediate endpoints to 
determine the effectiveness of 
intervention studies. For instance, 
the effect of exercise and weight 
loss interventions on serum 
levels of four biomarkers related 
to knee osteoarthritis (cartilage 
oligometric matrix protein (COMP), 
hyaluronan, antigenic keratin 
sulfate, and transforming growth 
factor-β-1 (TGF-β1)), and clinical 
outcome measures (e.g. medial joint 
space, pain) were examined (37). 
Intervention programmes indeed 
resulted in changes in COMP (which 
was associated with decreased knee 
pain) and TGF-β1.

Cross-sectional and short-
term longitudinal studies using 
exposure markers

Biomarkers of exposure measure 
the level of an external agent, 
its metabolic by-products in 
either the free state or bound to 
macromolecules, or the specific 
immunologic response it elicits. 
In addition, exposure biomarkers 
measure endogenously produced 
compounds, which may be 
influenced directly or indirectly by 
external factors (e.g. hormones), 
as well as by genetic factors. The 
first epidemiological evaluation of 
potential biomarkers of exposure 
generally occurs in cross-sectional 
studies in the general population, 
or in subgroups with specific, well 
characterized exposure and lifestyle 

patterns. Sometimes a biomarker of 
exposure can be used only in cross-
sectional studies to determine if a 
population is exposed to an agent of 
concern, or used as an independent 
marker of exposure in studies 
evaluating intermediate biomarker 
endpoints.

The applicability of exposure 
biomarkers in cross-sectional 
studies depends on certain intrinsic 
features related to the marker 
itself (e.g. half-life, variability, and 
specificity of the marker) and the 
exposure pattern (see Chapter 9). 
The first requirements for successful 
application of an exposure marker 
are that the assay is reliable and 
accurate (see Chapter 8), the marker 
is detectable in human populations, 
and important effect modifiers (e.g. 
nutrition and demographic variables) 
and kinetics are known (20). Second, 
the timing of sample collection in 
combination with the biological half-
life of a biomarker of exposure is key, 
as this determines the exposure time 
window that a marker of exposure 
reflects. The time of collection may 
be critical if, as is often the case in 
cross-sectional studies, only one 
sample per subject can be obtained 
on a given occasion, and if the 
exposure is of brief duration, highly 
variable in time, or has a distinct 
exposure pattern (e.g. diurnal 
variation in certain endogenous 
markers, such as hormones) (38). 
Chronic, near-constant exposures 
pose fewer problems. However, 
most biomarkers of internal dose 
generally provide information about 
recent exposures (hours to days), 
with the exception of markers of 
persistent pesticides, dioxins, 
polychlorobiphenyls, certain metals, 
and serological markers related to 
infectious agents, which can reflect 
exposures received many years 
before.
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Cross-sectional and short-
term longitudinal studies using 
intermediate endpoints

Intermediate biomarkers directly 
or indirectly represent events on 
the continuum between exposure 
and disease, and can provide 
important mechanistic insight into 
the pathogenesis of disease. As 
such, they complement classic 
epidemiological studies that use 
disease endpoints. For instance, 
the use of intermediate biomarkers 
in cross-sectional studies can 
provide initial clues about the 
disease potential of new exposures 
years before a disease develops 
(10,15,39–41).

One group of intermediate 
biomarkers, biomarkers of early 
biologic effect (10), generally 
measure early biologic changes 
that reflect early, and generally 
non-persistent, effects. Examples 
of early biologic effect biomarkers 
include: measures of cellular toxicity; 
chromosomal alterations; DNA, 
RNA and protein expression; and 
early non-neoplastic alterations in 
cell function (e.g. altered DNA repair, 
altered immune function). Generally, 
early biologic effect markers are 
measured in substances such as 
blood and blood components (red 
blood cells, white blood cells, DNA, 
RNA, plasma, sera, urine) because 
they are easily accessible, and, in 
some instances, it is reasonable 
to assume that they can serve as 
surrogates for other organs. Early 
biological effect markers also can 
be measured in other accessible 
tissues such as skin, cervical and 
colon biopsies, epithelial cells from 
surface tissue scrapings or sputum 
samples, exfoliated urothelial cells 
in urine, colonic cells in feces, and 
epithelial cells in breast nipple 
aspirates. Other early effect markers 
include measures of circulating 
biologically active compounds in 

plasma that may have epigenetic 
effects on disease development 
(e.g. hormones, growth factors, 
cytokines).

For maximum utility, an 
intermediate biomarker must 
be shown to be predictive of 
disease occurrence, preferably in 
prospective cohort studies (40) or 
potentially in carefully designed 
case–control studies. The criteria for 
validating intermediate biomarkers 
have focused on the calculation 
of the etiologic fraction of the 
intermediate endpoint, which varies 
from 0 to 1 (40,41). For intermediate 
endpoints with etiologic fractions 
that are close to 1.0, either positive 
or negative results in cross-
sectional studies of an exposure–
intermediate endpoint relationship 
are particularly informative. For 
intermediate endpoints linked to 
risk of developing disease but with a 
substantially lower etiologic fraction, 
the interpretation must be more 
circumspect. Specifically, a positive 
association between an exposure 
and an intermediate biomarker is 
informative, but a null association 
does not rule out that the exposure 
is associated with adverse health 
outcomes, as the exposure may act 
through a mechanism not reflected 
by the particular endpoint under 
study.

One of the most well known 
examples of a validated intermediate 
marker is low-density lipoprotein 
(LDL) cholesterol. Epidemiological 
studies have shown that elevated 
LDL cholesterol is one of the major 
causes of coronary heart disease 
(CHD). Given its high predictiveness, 
risk management/intervention 
programmes are focused on lowering 
and identifying factors that would 
reduce LDL levels and thus the risk 
for CHD (42). Unfortunately, there 
are very few examples like LDL. For 
instance, chromosomal aberrations 
in peripheral blood lymphocytes 

have been extensively used as the 
classic biomarker of early genotoxic 
effects in cross-sectional studies 
of populations exposed to a wide 
variety of potential carcinogens 
(43–45). Several cohort studies 
have reported that the prevalence 
of chromosomal aberrations in 
peripheral lymphocytes can predict 
subsequent risk of cancer (46–51). 
The predictive performance of this 
biomarker was shown to be similar 
irrespective of whether the subjects 
had been smokers or occupationally 
exposed to carcinogenic agents 
(52). In contrast, such associations 
were not observed for the sister 
chromatid exchange assay, another 
biomarker of genotoxicity also 
measured in peripheral lymphocytes 
(49–51).

Interpretation of results from 
cross-sectional studies using 
intermediate endpoints is, as 
indicated before, premised on the 
assumption that the intermediate 
endpoints reflect biological 
changes considered relevant to 
disease development. This may 
be based on in vitro and animal 
models or on previous observations 
that the biomarker is altered in 
human populations exposed to 
known toxicants. However, these 
studies are not capable, in and of 
themselves, of directly establishing 
or refuting a causal relationship 
between a given exposure or a 
given level of exposure and risk 
for developing diseases. Results 
of studies using most intermediate 
biomarkers as outcome measures 
are only suggestive; a biomarker 
may be overly sensitive (i.e. it may 
respond to low levels of chemical 
exposures that are below the 
disease threshold, if one exists), be 
insensitive, reflect phenomena that 
are irrelevant to the disease process, 
or fail to reflect important processes 
involved in the pathogenesis of 
disease.
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Variance in biomarker response

The applicability of exposure and 
intermediate endpoint markers 
in cross-sectional and semi-
longitudinal studies depends to 
a large extent on the variability 
in biomarker response between 
persons and over time (see Chapters 
8 and 9). If a biomarker response is 
highly variable over time within a 
person, then it is clear that a single 
measurement of such a marker would 
be a poor estimate of the average 
marker level of a certain individual. 
However, even if the variance over 
time is small, and thus a reasonable 
estimate of the individual’s average 
marker response, the applicability 
in epidemiological studies might 
be limited if the variance between 
individuals is small as well. In the 
end, the applicability of a marker in 
epidemiological research depends 
on the relative level between the 
interindividual and intraindividual 
variability in marker response. A 
useful measure in this regard is the 
intraclass correlation coefficient 
(ICC), which can be defined as the 
interindividual variance divided by 
the sum of the interindividual and 
intraindividual variance; in other 
words, it represents the fraction of the 
total variance that can be attributed 
to differences between individuals. 
Short-term longitudinal studies are 
ideal to collect information needed 
to estimate this key parameter. 
Chapter 9 provides a more detailed 
description of methods used to 
quantify biomarker variability and 
its impact on biomarker-disease 
associations.

Strengths and limitations

A distinct advantage of cross-
sectional and short-term longitudinal 
studies is that detailed and accurate 
information can be collected 
on current exposure patterns, 

potential confounders, and effect 
modifiers. Furthermore, they can 
take advantage of a wide range 
of potential analytic (molecular) 
approaches, particularly those that 
require cell culturing and extensive 
processing within an often short 
period of time after collection (e.g. 
RNA, protein stabilization).

Cross-sectional and short-
term longitudinal biomarker 
studies can collect very accurate 
information on the dose–response 
relationship between external or 
internal exposures and intermediate 
endpoints; these detailed exposure 
status data should be exploited to 
the fullest. As most biologic markers 
of exposure reflect exposures over 
the previous several days to months, 
this information must be collected 
over the etiologically relevant time 
period. For example, in a study 
on haematologic, cytogenetic and 
molecular endpoints among workers 
exposed to benzene, measurements 
were collected for over a year before 
determination of the biological 
endpoints to unequivocally 
assess individual exposures (53). 
Furthermore, given the increasing 
interest in identifying potential gene-
environment interactions in chronic 
diseases, accurate measurement 
of the environment becomes very 
important. Simulation studies 
have shown that even a modest 
amount of nondifferential exposure 
misclassification can dramatically 
attenuate the estimate of the 
interaction parameter and increase 
sample size requirements (54). As 
such, cross-sectional and semi-
longitudinal studies could have a 
distinct advantage in elucidating 
gene-environment interactions.

Summary and future directions

Cross-sectional and semi-
longitudinal study designs have 
been successfully applied to: answer 

questions about whether or not a 
given population has been exposed 
to a particular compound; evaluate 
intermediate biologic effects from 
a wide range of exposures in the 
diet and environment; evaluate 
whether or not there are early 
biologic perturbations caused by 
new exposures or recent changes 
in lifestyle factors that have not 
been present long enough to have 
been evaluated for their association 
with disease; and to study changes 
in exposure and/or intermediate 
endpoints to determine the 
effectiveness of intervention studies. 
However, as indicated previously, 
the interpretation and therefore 
the usefulness of these studies 
depend heavily on the validity of the 
markers measured. The availability 
of numerous prospective cohort 
studies with stored blood specimens 
should enhance the ability to rapidly 
test the relationship between a 
wide variety of early biologic effect 
markers, using both standard and 
emerging technologies (55,56), and 
disease risk. Such studies could 
ultimately produce a novel endpoint 
to evaluate the disease potential and 
mechanisms of action of various risk 
factors.

Prospective cohort studies

In contrast to cross-sectional studies 
where biomarkers are the outcome 
variable, in prospective cohort and 
case–control studies the risk of 
disease is the outcome of interest. 
Prospective cohort studies collect 
exposure information and biological 
specimens from a group of healthy 
subjects who are then followed-up to 
identify those who develop disease. 
Establishing a cohort study is initially 
very costly and time-consuming, as 
large populations must be recruited 
and followed-up long enough 
to identify sufficient numbers of 
cases with the disease of interest. 
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Although power is limited by the 
overall cohort size and frequency 
of the outcome, in the long run the 
cohort design becomes more cost-
efficient, since it can study multiple 
disease endpoints and provide a 
well defined population that can 
be easily sampled for efficiency 
(57–60). This section describes 
key features of cohort studies, 
particularly with regards to the use of 
biomarkers. Table 14.1 summarizes 
the strengths and limitations of this 
study design, as compared to the 
case–control designs described 
later in this chapter.

Participation in the study

Subjects in a cohort study often have 
distinct characteristics compared to 
their population of origin, by design 
or because of the motivation and 
level of commitment required to be 
included in such studies. Collection 
of biospecimens to measure 
biomarkers can have adverse 
effects on participation rates, even 
when collection procedures require 
minimally invasive procedures 
(e.g. buccal swab or oral rinse as 
opposed to blood collection). Cohort 
studies that collect questionnaires 
and biological samples at baseline 
or before disease onset can 
avoid selection biases, as long as 
specimens for each participant 
remain available and follow-up is 
complete. However, subjects with 
biological specimens collected after 
the cohort has been formed might 
have different characteristics from 
the rest of the cohort. Increasingly, 
concerns over privacy have 
also affected the willingness of 
participants to take part in some 
research studies.

Exposure assessment, timing of 
exposure, and misclassification

A major strength of the cohort 
design is that the sequence 
between exposure assessment and 
outcome is the same as the causal 
pathway: exposures are measured 
before disease diagnosis. This is 
particularly important for biomarkers 
that are directly or indirectly affected 
by the disease process (61), with 
the caveat that undiagnosed or 
preclinical disease may alter levels 
of specific biomarkers measured 
on specimens collected close to 
the date of diagnosis. Screening for 
disease at baseline (e.g. requiring 
recent colonoscopy for samples 
used in studies of colorectal cancer), 
or excluding cases diagnosed in 
the first few years after sample 
collection (lag analyses), can limit 
the effect of preclinical disease on 
biomarker levels.

Environmental data collected 
through questionnaires is less prone 
to recall biases (i.e. differential recall 
between cases and controls) than in 
case–control studies, thus facilitating 
the assessment of biomarker-
environment interactions, such as 
gene-environment interactions (62–
66). However, prospective studies 
often have a lower level of detail on 
specific exposures than case–control 
studies focusing on one or a few 
related diseases, due to the need to 
collect at least minimal data on the 
multiple exposures relevant to multiple 
outcomes. Therefore, although cohort 
studies can minimize the occurrence 
of differential misclassification, 
nondifferential misclassification of 
exposure might be larger than in 
alternative study designs.

Cohort studies with extended 
follow-up provide a wide range of 
time periods between biomarker 
collection and diagnosis of the 
outcome. This can be used to 
evaluate hypotheses relating 

to latent periods between the 
exposures of interest and the 
outcome. Theoretically, cohort 
studies have the advantage of 
collecting serial biological samples 
over time to evaluate biomarkers 
that vary in time. However, logistical 
and cost constrains often result in 
large studies collecting a single 
biological sample at one point in 
time. This results in diminishing the 
value of evaluating the relevant time 
window of exposure for disease 
causation, and studying markers 
with substantial seasonal or day-to-
day variations, such as short-term 
exposure markers.

Chapter 9 describes important 
considerations in data analysis and 
inference related to the timing of 
exposure assessment. Below is a 
summary of these considerations in 
the context of cohort studies.

Misclassification due to random 
within-person variation. Most 
biomarkers vary from time to 
time within the same person. 
This variation could be due to 
multiple factors, including diurnal 
(e.g. melatonin) or monthly (e.g. 
estrogens) cycles, seasonal variation 
(e.g. vitamin D), recent dietary or 
supplement intake (e.g. vitamin 
C), as well as from the specificity 
of the assay used to measure the 
biomarker. If this variation is random 
and nondifferential between cases 
and controls, the bias will tend to 
attenuate measures of association.

When within-person variability 
for a particular biomarker is random, 
the correlation between single 
measurements in a population 
and the average of multiple 
measurements can be used to 
gauge the extent of attenuation in 
the association measure, or be used 
explicitly to correct the attenuation 
of relative risk estimates due to 
nondifferential misclassification (67). 
This information can be obtained 
from a representative subsample of 
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the cohort in which the biomarkers 
are measured at two or more 
distinct time points. It is important 
that the subjects with repeated 
measurements represent the larger 
cohort, so that the correlation used 
to correct risk estimates can be 
generalized to the entire cohort. 
However, true random sampling 
is often difficult to perform in large 
cohort studies, due to geographic 
dispersion and lower-than-
optimal participation rates in more 
burdensome subsampling studies.

Time integration. The most 
common conceptual timeframes for 
exposure data in the epidemiology 
of chronic disease in cohort 
studies are long-term average 
measurements, as the induction 
time of most chronic diseases (e.g. 
cardiovascular disease, diabetes or 
cancer) is thought to be in the order 
of years or decades. Therefore, 
biomarkers would optimally 
represent cumulative exposure 
over relatively long periods of time, 
such as months or years. Some 
biomarkers may be able to integrate 
exposure time, which might also 
depend on sampling, processing, 
and storage protocols. For example, 
concentrations of many nutrients 
are less susceptible to short-term 
fluctuations in erythrocytes than in 
plasma or serum. Concentrations 
in adipose tissue, which is often 
more difficult to acquire, reflect even 
more long-term exposure history. 
It is therefore important to balance 
feasibility of sample collection with 
implications for time-integration of 
the biomarkers of interest.

Multiple biomarker levels. 
Obtaining multiple samples over time 
can increase the time-integration 
of exposures and biomarker 
measurements. Multiple biomarker 
measurements can be used in 
several ways, including averaging 
measurements or comparing 
subjects with consistently high 

versus consistently low levels. If 
within-person variation in biomarker 
measurements is assumed to 
be random, methods exist to 
estimate the number of replicate 
measurements required to estimate 
the ‘true’ mean value of a biomarker 
within a specified range of error. 
On the other hand, if variation 
is not random, due to changes 
in behaviour or secular trends, 
multiple measurements can be used 
to estimate exposure error. From 
a practical point of view, collecting 
multiple biological specimens from 
large numbers of subjects in cohort 
studies increases the cost of sample 
collection and storage, as well as 
the burden on study subjects, and 
thus might not always be feasible or 
recommendable.

Inference from biomarker/
disease associations. The 
association between a biomarker 
and disease may also be influenced 
by the point in time in which the 
biomarker was assayed with respect 
to where it influences disease on 
the causal pathway. In the case 
of cancer, early events on the 
causal pathway (‘initiators’) may 
need to be distinguished from later 
events (‘promoters’). Therefore, 
it is important that any biomarker 
related to exposures that are either 
initiators or promoters be measured 
during a time period when the 
exposure is most likely to exert its 
influence on disease. For example, 
initiating exposures should most 
likely be measured many years, 
possibly decades, before cancer 
diagnosis. In contrast, exposures 
considered to be promoters should 
be measured more closely to the 
time of diagnosis. If a biomarker 
of exposure is not measured at 
the etiologically relevant time, the 
association between the exposure 
and disease could be attenuated 
or not observed at all. The problem 
is that the true latency between 

exposure and disease diagnosis 
is often not known. The within-
person variability in the biomarker 
of exposure is also important to 
consider in respect to the optimum 
time point for measuring it with 
respect to disease risk. If the within-
person variability is low, then careful 
timing of exposure measurement 
is not necessary. However, if there 
is large within-person variability in 
the biomarker, then measurements 
should be made as close to the time 
of predicted maximum effect as 
possible.

Considerations 
in biospecimen collection, 
processing and storage

The collection and storage of large 
numbers of samples needed for 
cohort studies using biological 
specimens is very complex (see 
Chapter 3 for considerations in 
sample collection, processing, and 
storage). Given that samples are 
often used years after collection, 
optimal biospecimen collection, 
processing and storage protocols 
that will allow the performance 
of a wide range of assays in 
the future are critical (68,69). 
Therefore, validation studies aimed 
at optimizing sample handling and 
storage protocols, according to the 
impact of these procedures on the 
stability of samples and biomarker 
measurements, are strongly 
recommended (69–72). Validation 
studies can assess considerations 
such as the influence of time of 
collection to arrival at the processing 
laboratory (e.g. blood collection 
tubes with different preservatives, 
anti-coagulants or clot accelerators, 
temperature during shipping, 
impact of time between collection to 
processing), processing protocols 
(e.g. isolation of serum for proteomic 
analyses (73)), and long-term 
storage (e.g. freezing temperature, 
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impact of thaw/freeze cycles) on 
biomarker measurements.

Of paramount consideration is 
limiting the loss of information due 
to exhaustion of archived samples. 
The problem of sample exhaustion is 
most evident in prospective cohorts 
examining incident disease, as the 
amount of sample collected before 
diagnosis is by definition finite. 
Moreover, due to the advantages 
of the prospective cohort design, 
interest in the utilization of biological 
specimens could be great among 
the scientific community. Therefore, 
it is important for investigators 
to try to minimize the volume of 
sample used for measuring any 
one biomarker, either by reducing 
the volume of sample used or by 
maximizing the number of assays 
that can be made at any one time 
(multiplexing). Also beneficial is 
the formation of an advisory board 
to aid investigators in evaluating 
both internal use and external 
requests for access to precious 
prospective samples. While these 
considerations are obvious for those 
participants who are diagnosed with 
disease, biological samples from 
healthy or control subjects should 
also be carefully preserved, as 
these subjects may become cases 
in the future.

Despite advances in technology, 
such as whole-genome amplification 
to increase the amount of available 
DNA for assays, many biomarkers 
still require large amounts of 
biological samples. This limits the 
number of measurements that 
can be carried out on the limited 
resource of biological samples from 
cohort studies. Collecting additional 
specimens is often difficult in cohort 
studies, as members move, are lost 
to follow-up, or do not wish to go 
through the further inconvenience of 
providing an additional sample.

Statistical power

The major weakness of cohort 
studies is that even for common 
diseases the number of cases 
is limited by the cohort size and 
follow-up time. Even a very large 
cohort may not acquire enough 
cases of rare diseases to achieve 
adequate statistical power after long 
follow-up periods. Considering that 
cohorts using biological samples 
tend to be small or subsets of larger 
questionnaire-based cohorts, this is 
a particular problem for studies using 
biomarkers. Recently, a movement 
to form consortia of cohorts, such 
as the Cohort Consortium to study 
causes of cancer (http://epi.grants.
cancer.gov/Consortia/cohort.html), 
has begun to address the problem 
of statistical power by coordinating 
biomarker measurements and 
analyses. Many consortia have 
been formed to support genome-
wide association studies of many 
diseases (updated information on 
new publications from these efforts 
can be found at http://www.genome.
gov/gwastudies/).

Sampling designs

When a cohort is chosen at random 
from the general population, the 
exposures in the cohort will be 
representative of the exposures 
in the general population. If the 
hypotheses to be tested rely on 
participants having either rare or 
extreme exposures in the general 
population, then oversampling these 
people or restricting the cohort 
to certain exposed groups would 
increase efficiency by increasing 
the prevalence of these exposures 
in the cohort.

For many large cohort studies, 
it is not feasible to assay all 
participants for a given biomarker. 
Therefore, with a few exceptions 
(such as assays that can only be 

performed on fresh samples), some 
selection of cases and controls 
will be necessary. This can be 
attained by using sampling designs 
in which only samples from cases 
and a random subset of non-cases 
are analysed, thus considerably 
reducing laboratory requirements 
and cost (60).

Nested case–control

The nested case–control study 
is an efficient sampling scheme 
that includes all cases identified in 
the cohort up to a particular point 
in time, and a random sample of 
subjects free of disease at the time 
of the case diagnosis. Increasing 
the case-to-control ratio to two or 
three controls per case can easily 
increase the efficiency of nested 
case–control studies. Optimally, 
controls should be selected for each 
case from the pool of participants 
that have not developed the disease 
at the time the case was diagnosed 
(risk set sampling). Alternatively, 
controls may be selected from all 
of the participants at baseline who 
were not diagnosed with disease 
throughout follow-up. Simulation 
studies have shown that as long as 
the proportion of the baseline cohort 
that acquires disease is low (e.g. 
less than 5%), the bias introduced 
by violating risk set sampling is 
minimal.

Case–cohort

A case–cohort design includes 
a random sample of the cohort 
population at the onset of the study 
and all cases identified in the cohort, 
up to a particular point in time (74). 
This design allows for the evaluation 
of several disease endpoints 
using the same comparison group 
(referred to as a subcohort). It may 
reduce the amount of laboratory 
work by assaying a subcohort of 
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subjects at baseline, and then 
adding case information as cases 
accrue. While there are statistical 
considerations that must be taken 
into account when analysing 
case–cohort studies, these are 
now included in most statistical 
packages. Of greater concern in 
case–cohort studies are problems 
more unique to biomarker studies. 
For example, if the biomarker being 
assayed degrades over time or if 
there is substantial laboratory drift in 
measurement, then cases assayed 
at varying time periods after baseline 
(when controls were assayed) can 
lead to bias. Additionally, laboratory 
personal are less easily blinded to 
case or control status, which can 
also lead to bias. These factors limit 
the utility of the case–cohort design 
in biomarker studies. Another 
limitation of this design is that since 
the same disease-free subjects 
are repeatedly used as controls 
for different disease endpoints, 
depletion of samples from this group 
can become an issue.

Sample comparability

The methods by which biological 
samples are collected, handled, 
and stored can influence the 
measurement of many biomarkers 
of exposure (see Chapter 3). 
Therefore, to have valid biomarker 
studies, case and control samples 
must be handled in the same way. 
For prospective studies, it is also 
important to consider the length 
and type of storage, as some 
biomarkers may degrade over time 
even under ideal conditions. Thus, 
it is important to match cases and 
controls on the method of sample 
collection, duration of storage, 
as well as other factors that may 
be related to the biomarker of 
interest, such as fasting status or 
season of collection. Additionally, 
batch-to-batch variation in assay 

measurement should also be 
considered. This can and should 
be minimized by assaying matched 
cases and controls at the same 
time, regardless of the study design.

Screening cohorts

Prospective cohort studies are 
sometimes designed within 
screening cohorts. In this design, 
screening failures lead to missing 
prevalent cases among cohort 
participants that are misclassified 
as controls (75). Although repeated 
screening reduces misclassification 
of subjects, cases discovered in 
follow-up cannot be distinguished 
from prevalent cases missed by 
the initial screening or incident 
disease. However, the degree of 
misclassification of prevalent and 
incident cases can be assessed 
by analyses of time to diagnosis 
or pathological characteristics. 
Intensive screening may also 
uncover a reservoir of latent disease 
that would not otherwise become 
clinically relevant, and that might 
differ from disease detected through 
clinical symptoms (76,77).

Resources and infrastructure

The vastly greater size of cohorts 
compared to other designs, such 
as case–control studies, and the 
time period required for the cohort 
to mature, mean that a substantially 
greater initial investment is required 
to establish the cohort. For cohort 
studies that incorporate biological 
materials, the infrastructure to 
support biospecimens’ databases, 
freezers, and processing require 
a correspondingly greater effort 
and cost. While all studies with 
biospecimens must consider the 
risk of untoward events (e.g. freezer 
failure), the anticipated long useful life 
of the samples from cohorts requires 
special emphasis on quality control 

and security issues (e.g. backup 
generators, monitoring, distributing 
samples among different freezers). 
In the next few years, however, the 
cost-per-case for studies fielded 
from a cohort will offer economies in 
comparison to fielding a new case–
control study (57).

Summary and future directions

Prospective cohort studies provide 
invaluable resources to study 
biomarkers of risk, particularly those 
that can be affected by disease 
processes. Multiple prospective 
cohort studies are currently being 
followed-up for disease incidence 
with basic risk factor information 
from questionnaires and stored 
blood components, including white 
blood cells that can be used as a 
source of DNA. At the completion of 
ongoing collections, current studies 
will have stored DNA samples 
on over two million individuals 
(16). These studies will provide 
very large numbers of cases of 
the more common cancer sites 
(breast, lung, prostate, and colon) 
to evaluate genetic markers of 
susceptibility; biomarkers in serum 
or plasma, such as hormone levels; 
chemical carcinogen levels; and 
proteomic patterns. Most cohort 
studies do not have cryopreserved 
blood samples, as the procedure 
is very expensive and logistically 
challenging in large studies. Also, 
cohort studies often have a limited 
capability to collect detailed disease 
information or biological specimens 
to facilitate disease classification, 
as well as to follow-up cases for 
disease progression and survival 
studies. New cohort studies based 
on large institutions, such as 
health maintenance organizations 
(HMOs), could enable access to 
clinical records with more detailed 
disease information, archived 
biological specimens, and easier 
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follow-up of cases for treatment 
response and survival. Caucasian 
populations in wealthier countries 
are overrepresented in studies 
of most diseases, and the recent 
establishment of consortia in other 
populations, such as the Asia 
Cohort Consortium (http://www.
asiacohort.org/), will be critical to 
study disease across geographically 
and ethnically diverse populations 
that might have different exposures 
to environmental risk factors and 
frequencies of susceptibility alleles.

Case–control studies

Case-control studies are 
conceptualized as a retrospective 
sampling of cases and controls from 
an underlying prospective cohort, 
referred to as the source population 
(29,31). The case–control design 
has been a mainstay of molecular 
epidemiology studies due to its well 
known traditional strengths including 
depth and focus of questionnaire 
information, biologically intensive 
specimen collection, potential to 
enrol large numbers of cases rapidly, 
and ability to target rare diseases 
that occur in small numbers in 
prospective cohort studies.

Types of case–control designs

Case–control studies can be 
hospital- or population-based 
depending on how the cases and 
controls are identified (Table 14.1). 
A major concern of case–control 
studies is proper case and control 
selection. Proper controls are 
representative of the study base 
from which the cases arise (29). 
Identifying either a random sample 
from the general population or 
the source population for cases 
presenting at a particular hospital(s) 
may be difficult. Population-based 
studies attempt to identify all 
cases occurring in a pre-defined 

population during a specified period 
of time, and controls are a random 
sample of the source population 
where the cases came from. On the 
other hand, cases and controls in 
hospital-based studies are identified 
among subjects admitted to or seen 
in clinics associated with specific 
hospitals. As in the population-
based design, the distribution of 
exposures in the control group 
should represent that from the 
source population of the cases. 
However, the source population 
is often more difficult to define in 
hospital-based studies.

Molecular epidemiology studies 
often use the hospital-based case–
control design, as the hospital 
setting facilitates the enrolment of 
subjects, thus enhancing response 
rates, as well as the collection and 
processing of biological specimens. 
Enrolment of subjects is also made 
easier by having in-person contact 
with study participants by doctors, 
nurses or interviewers, which 
usually results in higher participation 
rates (78). Because study subjects 
are generally less geographically 
distributed than those in population-
based or cohort studies, rapid 
shipment of specimens to central 
laboratories for more elaborate 
processing protocols, such as 
cyropreservation of lymphocytes, 
is made possible. Rapid 
ascertainment of cases through 
the hospitals also facilitates the 
collection of specimens from cases 
before treatment, thus avoiding the 
potential influence of treatment on 
some biomarker measurements.

Potential for selection bias is one 
of the most important limitations of 
case–control designs. The impact 
of selection bias in hospital-based 
studies is not only related to the 
reasons for non-participation, but 
also to diseases in the control 
population. An example of this is 
selection of controls admitted to 

the hospital for other diseases that 
might themselves introduce bias 
if they are related to the genetic or 
environmental exposures under 
study, particularly when evaluating 
gene–environment interactions or 
joint effects (79). Further potential 
for selection bias occurs if cases or 
controls are less likely to participate 
because of problems in the 
collection of biospecimens. Since 
the source population for cohorts 
is explicit, selection bias is less of a 
problem as long as follow-up rates 
are high (61). Low participation 
rates in case–control studies, and 
particularly refusals related to 
providing biological specimens, 
can bias results, especially when 
cases are less likely to participate 
than controls and selection is 
related to the biomarker of interest. 
Low participation rates additionally 
threaten the population-based 
nature of the study, undermining 
its use for estimating absolute and 
attributable risk (29). Use of non-
intensive biospecimen collection 
protocols can increase participation 
rates—for instance, the collection 
of buccal cells as a source of 
DNA instead of the more invasive 
phlebotomy (80).

Single disease

Case–control studies are generally 
limited to one disease outcome 
(or a few related diseases), but 
are unconstrained by the rarity of 
the disease, while cohort studies 
(including full cohort, nested case–
control, or case–cohort studies) may 
identify multiple disease endpoints. 
The focus of a case–control study 
on one disease entity permits 
more detailed documentation of 
disease information and detailed 
diagnostic procedures not routinely 
collected in clinical practice, such 
as specialized imaging and access 
to pathologic tissue and other 
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Table 14.1. Advantages and limitations of prospective cohort and case-control designs in molecular epidemiology relevant to the 
collection of biological specimens and data interpretation

biological specimens for application 
of novel biomarkers of disease. 
Obtaining disease-related data in 
cohorts entails mounting an effort 
that is generally less efficient and 
more costly. The advantage of 
cohorts’ ability to examine multiple 
outcomes may be somewhat limited 
by resources and logistics, limited 
exposure information, the diverse 
approaches to documenting disease 
incidence or mortality, and the rarity 
of some outcomes.

Costs for a series of case–
control studies of different diseases 
can sometimes be reduced by 
sharing a single control group. When 
different diseases require different 
exposures, the partial questionnaire 
design may offer reduction in the 
burden to respondents, thereby 
potentially increasing participation 
(81). Even if these options are 
not feasible, using the same 
infrastructure for control selection for 
repeated studies can reduce costs.

Exposure assessment 
and misclassification

Exposure assessment through 
questionnaires in case–control 
studies of a single disease or 
multiple diseases sharing risk 
factors (e.g. breast, ovarian, 
and endometrial cancer) can be 
more detailed and focused than 
prospective cohort studies that often 
study multiple unrelated diseases. 
However, studies that rely on 
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retrospective exposure assessment 
may be affected by disease or 
its treatment. Also, questionnaire 
responses subject to rumination by 
respondents are susceptible to bias 
from differential misclassification. 
Biomarkers (except germ-line 
genetic variation) and responses 
to questionnaires may change 
as a consequence of the early 
disease process or diagnosis itself. 
Differential errors or recall bias 
from questionnaire information 
collected in case–control studies 
are possible, and their extent should 
be evaluated in the context of 
specific exposures and populations 
under study. Similarly, levels of 
certain biomarkers measured after 
diagnosis can be influenced by the 
disease process or treatment,  and 
must be considered and evaluated 
to the extent possible for each 
biomarker of interest. Differences 
in biomarker levels among cases 
diagnosed at different stages of the 
disease can help evaluate whether 
differences in biomarker levels 
between cases and controls reflect 
an influence of the disease on the 
biomarker rather than the contrary.

The applicability of exposure 
biomarkers in case–control studies 
depends on certain intrinsic features 
related to the marker itself (e.g. half-
life, variability, specificity) and the 
exposure time window that a marker 
of exposure reflects in relation to 
the biologically relevant time of 
exposure and timing of sample 
collection. Methods to evaluate 
these key biomarker features before 
their use in case–control and 
other epidemiological studies are 
described in the previous section and 
in Chapter 8. The time of collection 
may be critical if the exposure is 
of brief duration, is highly variable 
in time, or has a distinct exposure 
pattern (e.g. diurnal variation for 
certain endogenous markers, such 
as hormones). However, chronic, 

near-constant exposures pose fewer 
problems. Ideally, the biomarker 
should persist over time and not 
be affected by disease status in 
case–control studies. However, 
most biomarkers of internal dose 
generally provide information about 
recent exposures (hours to days), 
with the exception of markers such 
as persistent pesticides, dioxins, 
polychlorinated biphenyls, certain 
metals, and serological markers 
related to infectious agents, which 
can reflect exposures received 
many years before. If the pattern 
of exposure being measured is 
relatively continuous, short-term 
markers may be applicable in case–
control studies of patients with early 
disease, so that disease bias would 
be less likely. However, short-term 
markers have generally limited use 
in case–control studies, as they are 
less likely to reflect usual patterns, 
and the disease or its treatment 
might influence its absorption, 
metabolism, storage, and excretion.

Biomarkers of susceptibility 
in case–control studies

The approaches to studying genetic 
susceptibility factors for disease 
have evolved very quickly over the 
last several years, owing to advances 
in genotyping technologies, 
substantial reductions in genotyping 
costs, and improvements in the 
annotation of common genetic 
variation, namely, the most common 
type of variant, the single nucleotide 
polymorphism (SNP). The principles 
and quality control approaches 
for the use of genetic makers 
in epidemiological studies are 
described in Chapter 6. Because 
inherited genetic markers measured 
at the DNA level are stable over 
time, the timing of measurement 
before disease diagnosis is 
irrelevant. In addition, it is highly 
likely that most genetic markers are 

not related to factors influencing 
the likelihood of participation in a 
study, and therefore selection bias 
in case–control studies is less of a 
concern for studying the main effect 
of genetic risk factors. Indeed, the 
robustness of genetic associations 
with disease for different study 
designs has been demonstrated in 
findings from consortia of studies 
that have shown remarkably 
consistent estimates of relative risk 
across studies of different design 
(82,83). Because genetic markers 
might influence disease progression, 
incomplete ascertainment of cases in 
case–control studies can introduce 
survival bias, particularly for cancers 
associated with high morbidity and 
mortality rates, such as pancreatic 
and ovarian cancers. This is a 
particular concern for population-
based studies, unless a very rapid 
ascertainment system is implemented 
that enrols cases as close as possible 
to the time of diagnosis.

Susceptibility biomarkers can 
also be measured at the functional/
phenotypic level (e.g. metabolic 
phenotypes, DNA repair capacity) 
(16). While genotypic measures 
are considerably easier to study 
than phenotypic measures, since 
they are stable over time and 
much less prone to analytical 
measurement error, phenotypic 
measures are likely to be closer 
to the disease process and can 
integrate the influences of multiple 
genetic and post-transcriptional 
influences on protein expression 
and function (84). Therefore, in spite 
of the advantages in measuring 
genotypic changes, when 
complex combinations of genetic 
variants and/or important post-
transcriptional events determine a 
substantial portion of interindividual 
variation in a particular biologic 
process, phenotypic assays may be 
the only means to capture important 
variation in the population.
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For example, several studies 
have assessed the role of DNA repair 
capacity (DRC) regarding cancer 
risk by using in vitro phenotypic 
assays mostly on circulating 
lymphocytes (e.g. mutagen 
sensitivity, host cell reactivation 
assay). These studies have shown 
differences in DRC between cases 
and controls; however, interpretation 
of these results must account for 
study design limitations, such as 
use of lymphocytes to infer DRC in 
target tissues, the possible impact 
of disease status on assay results, 
and confounding by unmeasured 
risk factors that influence the 
assay (85–87). The application of 
functional assays in multiple, large-
scale epidemiological studies will 
require development of less costly 
and labour-intensive assays. In the 
future, assays that assess non-
clonal mutations in DNA, through 
the analysis of DNA isolated 
from circulating white blood cells, 
may capture some of the same 
information as the above functional 
assays and have wider application 
because of greater logistic ease.

Considerations 
in biospecimen collection, 
processing and storage

A case–control study in a relatively 
small geographic region, or a defined 
set of hospitals, can permit efficient 
collection of medical records or 
specimens (e.g. blood, urine, 
surgical tissue and other pathologic 
material) along with supporting 
documentation. Hospital-based 
case–control studies or population-
based studies served by a small 
number of hospitals can have direct 
contact with patients in a hospital 
setting, thus offering advantages for 
the collection of different types of 
specimens or elaborate processing 
protocols (e.g. cryopreserving 
lymphocytes and Epstein-Barr 

Virus transformation to ensure 
large quantities of DNA), since 
resources for collection, processing 
and storage are often available in 
diagnostic hospitals. This offers the 
potential for conducting functional 
assays that require live cells, such 
as mutagen sensitivity (85), which 
in general are not methodologically 
feasible in cohort studies. Pre-
treatment specimens, critical for 
evaluation of biologic markers that 
could be affected by treatment, such 
as chemotherapy, can be obtained 
through rapid identification systems 
that recruit cases right at the time of 
diagnosis.

Biomarker measurements can 
be very sensitive to differences in 
handling of samples (e.g. fasting 
status at blood collection or time 
between collection and processing 
of specimens). Therefore, it is 
important that samples from cases 
and controls be collected during the 
same timeframe and use identical 
protocols to avoid differential biases. 
Ideally, the nursing and laboratory 
staff should be blinded with respect 
to the case–control status of the 
subjects. However, because the 
differences in handling samples 
between cases and controls are not 
always avoidable, it is important to 
record key information such as date 
and time of collection, processing 
and storage problems, time since 
last meal, current medication, and 
current tobacco and alcohol use to 
be able to account for the influence 
of these variables at the data 
analysis stage. This information 
can also be used to match cases 
and controls selected for specific 
biomarker measurements in a 
subset of the study population. This 
will ensure efficient adjustment for 
these extraneous factors during 
data analysis.

Biomarkers measured in 
samples collected from subjects 
during a hospital stay might not 

reflect measurements from samples 
collected outside the hospital, as 
habits and exposures change during 
hospitalization (e.g. dietary habits, 
medication used and physical 
activity). Therefore, even if cases 
and controls are selected through a 
hospital-based design, collection of 
specimens after the patients return 
home and are no longer taking 
medications for the conditions that 
brought them to the hospital should 
be considered, if feasible. On the 
other hand, specimens to measure 
biomarkers that are influenced 
by long-term effects of treatment 
should be collected before treatment 
is started at the hospital, within 
logistic limitations.

Case–control studies 
might also allow more detailed 
characterization of disease through 
the use of biomarkers, such as 
the presence of eosinophils in 
sputum to identify eosinophilic and 
non-eosinophilic asthma, typing 
of viruses in infectious diseases, 
or molecular characterization of 
tumours in cancer. This more 
detailed classification of disease 
permits the analysis of genetic 
and environmental risk factors and 
clinical outcomes by biologically 
important disease subtypes. These 
analyses can lead to improvements 
in risk assessment by identifying 
diseases with distinct risk profiles. 
In addition, identifying subclasses 
of disease of different etiology can 
aid in understanding the pathogenic 
pathways to disease, as well as 
developing targeted prevention 
programmes (e.g. use of hormonal 
chemoprevention for women at 
high risk of estrogen-receptor 
positive breast tumours). Review 
of medical records can be used 
to obtain information on disease 
characteristics determined for 
clinical practice, such as histological 
tumour type and tumour grade in 
cancer patients. However, more 
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detailed characterization of disease 
might require large collections of 
biological specimens to determine 
disease biomarkers, which is 
facilitated in hospital-based studies.

Follow-up of cases to determine 
clinical outcomes

The prospective collection of clinical 
information from cases enrolled 
in case–control studies (e.g. 
treatment, recurrence of disease, 
and survival) greatly increases 
the value of these studies, since 
critical questions on the relationship 
between biomarkers and disease 
progression can be addressed in 
well characterized populations (see 
Chapter 4). Designing a survival 
study within a case–control study is 
easier to do at the beginning of the 
case–control study rather than later 
after subject enrolment is completed. 
Given the value that such studies 
have for carrying out translational 
research in a very efficient manner, 
consideration should be given to 
implementing this type of study 
whenever possible. The collection 
of clinical information is facilitated in 
hospital-based studies when cases 
are diagnosed in a relatively small 
number of hospitals, and in stable 
populations where patients are likely 
to be followed-up in the diagnostic 
hospitals or associated clinics.

Information on clinical outcomes 
can be obtained through active 
follow-up of the cases, in which 
patients are contacted individually 
through the course of their 
treatment and medical follow-up, 
or through passive follow-up by 
extracting information from medical 
records. Passive follow-up is less 
costly; however, it is often limited 
by difficulties in obtaining detailed 
information on treatment from 
medical records, or by loss to follow-
up in populations where patients 
change cities or hospitals. Use of 

database resources, such as death 
registries in populations where 
cases are diagnosed, can be helpful 
in determining survival from cases 
lost to follow-up.

The case–control method in 
relation to other epidemiological 
designs

Existing cohort studies and their 
consortial groups that have or are 
collecting blood samples will accrue 
large numbers of cases with common 
diseases over the coming years. 
Appropriately, questions are being 
raised about the utility of carrying 
out new case–control studies, either 
population- or hospital-based, to 
study the main effects of common 
polymorphisms and their interaction 
with environmental exposures. 
Designers of a new case–control 
study will need to show that it offers 
benefits that cannot be obtained 
from existing cohorts. Below are 
some considerations when planning 
to carry out a new case–control 
study in contrast with performing 
nested studies within existing 
cohorts:

1) Disease incidence. A key 
advantage of case–control studies 
is the ability to enrol large numbers 
of cases with less common diseases 
in a relatively short period of time. 
Given the need for large sample 
sizes (up to several thousand 
cases and controls) to investigate 
weak to moderate associations, 
such as main effect for common 
susceptibility loci, as well as gene–
environment interaction (88), and 
to explore data subsets, it is only 
feasible to collect enough cases of 
the more common diseases in most 
cohort studies. However, pooling 
efforts across cohorts or case–
control studies, such as consortia 
of studies of specific tumour sites 
(h t tp: / /ep i .g rants .c ancer.gov/
Consortia/tablelist.html), are critical 

to attain very large sample sizes.
2) Inclusion of diverse population 

groups. Case–control studies can 
focus on enrolling a narrow range of 
ethnic, racial, age or socioeconomic 
levels that are particularly interesting 
or important but not adequately 
represented in existing cohort 
studies.

3) Specialized specimen 
collection and processing protocols. 
Case–control studies can use 
labour- and technology-intensive 
biological collection, processing and 
storage protocols that would not be 
logistically feasible or cost-efficient 
in a large prospective cohort study.

4) Depth of exposure data. Case–
control studies can collect more 
detailed and broader information 
about exposure from both interviews 
and records than is feasible in a 
cohort study. This is particularly 
important when there is concern 
about a specific type of exposure 
that is not generally assessed at all 
or in adequate detail in the typical 
cohort questionnaire (which usually 
focuses on diet and general lifestyle 
factors). Examples could include 
occupational and environmental 
exposures requiring complete 
occupational and residential 
histories, respectively. Cohorts have 
an inherent limitation in that their 
aim is to study multiple endpoints, 
and thus they collect less extensive 
data on exposures relevant to any 
one particular disease, although the 
opportunity to return to participants 
at later time points may partially 
ameliorate this point. Case–control 
studies can more readily focus 
on new exposures of concern 
for particular diseases, tailoring 
methods to optimally capture target 
data. In contrast, cohort studies will 
have instruments in place that will 
inevitably lack precision or entirely 
miss new exposures.
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Summary and future directions

Case–control studies play a critical 
role in molecular epidemiologic 
research, particularly for biomarkers 
that are unlikely to have disease 
bias, such as DNA-based markers 
of genetic susceptibility. They can 
rapidly enrol large numbers of 
cases, even with rare conditions, 
in multicentre studies and by 
combining across studies in 
consortia. In addition, case–
control studies can apply detailed 
diagnostic procedures, including 
specialized imaging approaches 
not routinely used in the usual 
healthcare setting, and state-of-
the-art molecular analyses when 
tissue samples are collected. Given 
that a substantial number of rapidly 
developing new “omic” technologies 
can be readily applied to the case–
control setting, this design should 
continue to be a core component 
of research programmes on the 
etiology of chronic diseases.

Case-only and other study 
designs

Case-only studies

Studies including subjects with the 
disease of interest without a control 
population (for instance, case series 
or clinical trials), are often used to 
evaluate questions related to disease 
treatment and progression, including 
secondary effects of treatment. 
These designs are also well suited 
to evaluate the influence of genetic 
and environmental risk factors on 
disease for disease progression and 
response to treatment, and can be 
very valuable to evaluate etiological 
questions, such as gene–gene and 
gene–environment interactions 
(89,90), and etiologic heterogeneity 
for different disease subtypes. 
An advantage of these designs 
is their ability to obtain extensive 

information on the disease to allow a 
more accurate definition of disease 
and refined classification of complex 
diseases, such as cancer, diabetes 
or hypertension, into entities 
more biologically or etiologically 
homogeneous among groups. By 
having direct access to patients, 
biological specimens, and clinical 
records, case series studies may be 
able to define diseases or preclinical 
conditions based on molecular 
events driving biological processes 
rather than clinical symptoms. 
For instance, cancers can be 
classified according to pathological 
and molecular characteristics of 
tumours, infectious diseases such as 
hepatitis can be classified according 
to the causal virus, and asthma can 
be more precisely defined according 
to pathophysiologic mechanisms 
(91).

The case-only design, however, 
has limitations when evaluating 
etiological questions, most notably 
related to the inability to directly 
estimate risk for disease. Although 
the case-only design can be used to 
estimate multiplicative interactions 
between risk factors under certain 
assumptions, it is susceptible to 
misinterpretation of the interaction 
parameter (92), is highly dependent 
on the assumption of independence 
between the exposure and the 
genotype under study (93), and it 
cannot be used to estimate additive 
interactions. The degree of etiologic 
heterogeneity in case-series studies 
can be quantified by the ratio of 
the relative risk for the effect of 
exposure on one disease subtype to 
the relative risk for another subtype. 
This parameter is equivalent to 
the relative risk for the association 
between exposure and disease 
subtype (94). However, case-only 
studies are limited to the estimation 
of the ratio of relative risk, and 
cannot be used to obtain estimates 
of the relative risk for different 

disease types. It should be noted 
that the relative risk from a case-
only design would underestimate 
the relative risk derived in a case–
control design when the exposure of 
interest is associated with more than 
one disease type.

Another potential limitation 
of the case-series design is the 
generalizability of findings, since 
this design can include highly 
selected cohorts of patients 
to address specific treatment 
protocols, such as in clinical trials. 
In etiological studies, it is always 
reassuring to observe associations 
between established factors and 
disease risk in a particular study 
population; however this cannot 
be observed in case series. 
Identification of cases through 
well characterized population-
based registries, or evaluation of 
established associations between 
disease characteristics and clinical 
outcomes or risk factors, could 
address some of these limitations.

Other designs

Alternative study designs have 
been proposed to address some 
of the limitations of the classical 
epidemiological designs. For 
instance, the two-phase sampling 
design can be used to improve 
efficiency and reduce the cost of 
measuring biomarkers in large 
epidemiological studies (95). The 
first phase of this design could be 
a case–control or cohort study 
with basic exposure information 
and no biomarker measurements. 
In a second phase, more elaborate 
exposure information and/or 
determination of biomarkers (with 
collection of biological specimens 
if these were not collected in the 
first phase) is carried out in an 
informative sample of individuals 
defined by disease and exposure 
(e.g. subjects with extreme or 
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uncommon exposures). Multiple 
statistical methods, such as simple 
conditional likelihood (96) or 
estimated-score (97), have been 
developed to analyse data from 
two-sampling designs. Another 
example is the use of the kin-
cohort design as a more efficient 
alternative to case–control or cohort 
studies, when the goal is to estimate 
age-specific penetrance for rare 
inherited mutations in the general 
population (98,99). In this design, 
relatives of selected individuals with 
genetic testing form a retrospective 
cohort that is followed from birth to 
onset of disease or censoring.

Concluding remarks

The field of molecular epidemiology 
has undergone a transformational 
change with the incorporation of 
powerful genomic technology. 

Further, important advances are 
being made in the development 
of new approaches in exposure 
assessment (http://www.gei.nih.
gov/exposurebiology). At the same 
time, large and high-quality case–
control studies of many diseases 
have been established with detailed 
exposure data and stored biological 
specimens, previously established 
cohorts are being followed-up, and 
new cohort studies with biological 
samples are being established in 
developing as well as developed 
countries. The confluence of 
extraordinary technology and the 
availability of large epidemiologic 
studies should ultimately lead to 
new insights into the etiology of 
many important diseases and help 
to facilitate effective prevention, 
screening and treatment. However, 
this will only be achieved if 
molecular epidemiologists adhere 

to the fundamental epidemiologic 
principles of careful study 
design, vigilant quality control, 
thoughtful data analysis, cautious 
interpretation of results, and well 
powered replication of important 
findings.
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Summary

Family-based designs are used 
for a variety of reasons in genetic 
epidemiology, including the initial 
estimation of the strength of genetic 
effects for a disease, genetic linkage 
analysis by which genetic causes 
can be sublocalized to chromosomal 
regions, as well as to perform 
association studies that are not 
confounded by ethnic background. 
This chapter describes some of 
the approaches that are followed in 
the initial characterizing of genetic 
components of disease and family-
based designs for association 
analysis and linkage with genetic 
markers.

Family studies of phenotypes

To obtain an initial assessment of 
the genetic contributions to disease, 
and determine which subsequent 

approach is most likely to be 
effective, a variety of family-based 
designs are employed (Figure 
15.1). The heritability of a disease 
indicates the proportion of the 
covariation in risk for disease that 
can be attributed to genetic factors. 
Heritability in the narrow sense 
excludes covariation due to gene–
environment interactions, while in 
the broad sense includes all genetic 
contributions to disease. Heritability 
estimation can be performed using 
either data from population-based 
twin registries or from family studies 
that include different types of 
relatives. The study of twin registries 
allows investigators to contrast 
the similarity in disease among 
monozygotic twins, who share all 
their genetic material in common, 
versus dizygous twins. While the 
study of twin registries can provide 

important insights concerning the 
contribution of genetic factors 
to disease, twin studies have 
limitations. For the study of rare 
diseases, such as cancer, very 
large collections of twins must be 
followed for many years. Second, 
important assumptions that 
the monozygotic and dizygotic 
environments are similar are difficult 
to evaluate. Despite some concerns 
and weaknesses of this design, 
twin studies have indicated strong 
genetic components of risk for the 
most common cancers (1), as well 
as many autoimmune conditions 
(2). Since the development and 
maintenance of twin registries 
is beyond the scope of most 
epidemiologists, this design is not 
discussed here (see (3,4) for several 
comprehensive resources).
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An alternate measure that is 
more often used to characterize 
the genetic contribution to disease 
is the recurrence risk to a class 
of relatives. For example, for 
genetically influenced diseases, a 
monozygous twin who shares all 
genes in common with their cotwin 
(a zeroth-degree relative) should 
have a higher risk of developing 
disease if their cotwin also has the 
disease, compared with dizygous 
twins, siblings or a parent or child 
who shares only half their genes 
in common. Each of these pairs 
of relatives is called a first-degree 
relative. Similarly, second-degree 
relatives (half-siblings, avuncular 
pairs, and grandchild-grandparent 
pairs) should show even lower risks 
for disease given that one of the pair 
members has the disease compared 
with first- or zeroth-degree relatives. 
Evidence that there are genetic 
contributions to disease is found 
by observing the relative risk for 
disease either among different 
classes of relatives, or if population-
based estimates are available, by 
forming the relative recurrence risk 
by contrasting the risk to relatives 

of a certain type to the risk in the 
general population. The easiest such 
relative risk to estimate is the risk 
to cosiblings. Relative recurrence 
risks (RRR) to siblings for cancers 
range from 2–2.5 for most common 
epithelial cancers (5), but are much 
higher for selected cancers, such as 
non-medullary thyroid cancer (RRR 
= 15.6), Hodgkin’s disease (RRR = 
6.5), testicular cancer (RRR = 6.6), 
ovarian cancer (RRR = 4.9) and 
renal cancer (RRR = 4.7). Relative 
recurrence risks are much higher for 
some cancers if multiple relatives 
are affected and also higher for 
relatives of earlier onset cancers.

Contrasting recurrence risks for 
other types of relative combinations 
can provide initial insights into 
whether or not there are recessive 
or dominant effects for a disease, 
and the number of genetic factors 
that are likely to be important in 
disease causation (6,7). If there are 
recessive effects influencing disease 
causation, then risk to monozygous 
twins who share all their genetic 
material in common will be much 
greater than risks to dizygous pairs 
of siblings. In turn these risks will be 

higher than the risks to offspring or 
parents, because parent-offspring 
pairs never share two alleles in 
common, while siblings share on 
average one quarter of the time, and 
sibling pairs share both alleles in 
common. Thus, if a disease includes 
a recessive effect, then a co-sib of 
an affected individual is also more 
likely to have two deleterious alleles 
and be affected than a parent would 
be (see (8) for a detailed description 
concerning the estimation of 
allele frequencies in co-sibs and 
other relatives). The fall-off of the 
recurrence can also be used to 
provide insights into the number of 
loci that may influence a disease (6).

The probability that an individual 
becomes affected given that they 
carry a particular genotype is called 
the penetrance. The penetrance 
of disease can depend upon 
genotype(s) at one or more loci, as 
well as environmental factors. The 
genotypic risk ratio is the ratio of the 
penetrance given that an individual 
has one particular genotype 
compared to the risk for disease 
given another genotype. The 
relative recurrence risk depends 
upon the genotypic risk ratio and the 
population prevalence of the genetic 
factor (9). The genotypic recurrence 
risk determines the power of 
association studies, as described in 
more detail below.

Standard epidemiological 
approaches have been modified 
and further developed for 
characterizing evidence that genetic 
factors influence a disease. The 
most straightforward approach that 
epidemiologists will initially apply 
seeks to identify the odds ratio of 
a disease with family history for 
the disease in relatives. In this 
approach, the epidemiologist asks 
cases and controls to delineate 
the occurrence of disease among 
relatives of each type (e.g. 
siblings and parents). Then, usual 

Figure 15.1. Designs for genetic epidemiological studies to identify genetic factors 
for diseases
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epidemiological approaches such 
as logistic regression can be used 
to obtain an odds ratio that a case 
reports a family history of disease 
compared with a control. While this 
approach is similar to other analytical 
approaches commonly used in 
epidemiology, a historical cohort 
approach is preferred by genetic 
epidemiologists for many reasons. 
In the historical cohort approach, 
case and control participants are 
asked to provide medical history 
information on selected relatives, 
such as first-degree relatives. The 
data that must be collected for each 
relative includes either the age at 
disease onset(s), the current age if 
alive and unaffected, or the age at 
death if deceased without disease. 
The relatives of the cases and 
controls then form a historical cohort 
with the follow-up period extending 
from birth until either disease onset 
or last age (death or current age). 
There are many advantages of this 
approach over the case–control 
design (10). In the historical cohort 
design, both absolute and relative 
risks can be obtained. As this is a 
cohort design, multiple disease 
endpoints can be studied. In the 
case–control design, because 
cases and controls are typically 
selected not to have multiple 
diseases, it becomes impossible 
to evaluate whether one disease, 
such as rheumatoid arthritis, is 
associated with an increase in 
relatives for another disease, such 
as systemic lupus erythematosis. 
In addition, according to both the 
two-stage and multistage models 
of carcinogenesis, individuals with 
inherited susceptibility to disease 
should have higher hazards 
ratios for cancer(s) at earlier ages 
compared with older ages. Case–
control designs that are typically 
matched on age have difficulty 
estimating differential risks for 
disease according to age, but 

for the historical cohort design, 
variation in disease risk according 
to age can be readily estimated. 
Because the relatives in a family 
are correlated, tests of the relative 
risks for disease are biased unless 
a variance correction is introduced 
to allow for this correlation. The 
Huber-White variance correction 
procedure can be applied and 
is readily available in standard 
analytical packages such as SAS, 
STATA or R. As an example, the 
occurrence of rheumatoid arthritis 
in relatives of cases compared to 
controls and the occurrence of other 
autoimmune conditions was studied 
(11). The results showed that aside 
from rheumatoid arthritis, which 
was more frequent in case relatives 
compared to control relatives, other 
autoimmune conditions occurred 
more frequently in relatives of 
controls.

When a candidate mutation has 
been studied in a family, an approach 
to estimate the penetrance specific 
to that mutation is the kin-cohort 
approach (12–14). This method 
takes advantage of the extensive 
data on family members that can 
be obtained using the historical 
cohort approach discussed above, 
but also allows the penetrance to 
be estimated specifically from the 
mutation. Among those probands 
who are found to have a rare 
mutation, about 50% carry the 
mutation, while nearly none of the 
relatives of probands not carrying 
the mutation are carriers. By 
contrasting the age-specific risk in 
relatives of carriers versus relatives 
of non-carriers, one can derive 
an estimate of the penetrance 
associated with the mutation being 
studied. An issue in applying this 
method is how to correct for the 
selection of probands based upon 
their being affected when there is 
risk for disease, not only from the 
mutation being studied, but also 

from other loci (14,15). Using these 
methods, the risk associated with 
carriage of breast cancer 1 (BRCA1) 
and BRCA2 mutations could be 
estimated from the population-
based Washington Ashkenazi 
Study, since the prevalence of 
mutations in this population was 
sufficiently high. Using the kin-
cohort approach, the risk for breast 
cancer due to carriage of either of 
the three common mutations in 
Ashkenazim was 56% to age 70, 
which is considerably less than had 
been estimated previously from the 
study of families ascertained through 
multiple affected relatives (16). This 
variation in risk according to the 
sampling design likely reflected 
the incomplete ascertainment 
correction provided by earlier 
studies of families that included 
many affected relatives. Previous 
approaches to ascertainment 
correction in family studies derived 
for linkage analysis conditioned only 
on the specific measured genetic 
factors (e.g. BRCA1 and BRCA2) 
and failed to allow for effects from 
unmeasured lower-penetrant loci. 
A more recent alternative approach 
to the kin-cohort method adapts 
segregation analysis to incorporate 
effects from a known measured 
genetic factor, such as BRCA1 and 
BRCA2, as well as residual risk 
from unmeasured genetic factors 
(17). Application of these methods 
has yielded penetrance estimates 
similar to those given by the kin-
cohort approach.

Of concern when performing 
genetic epidemiological studies 
in which a case or control is 
interviewed about the occurrence of 
disease in relatives is the reliability 
of the reporting by such subjects. 
Numerous studies have shown 
that for some common epithelial 
cancers, such as breast, colon, 
prostate and lung, reporting of 
disease in relatives is acceptably 
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accurate (18,19). For cancers of 
the internal organs or common 
metastatic sites, such as ovarian, 
liver and brain cancers, reliability 
of reporting is extremely poor (20). 
Studies of these cancers would 
entail obtaining medical records 
to verify reporting by the case or 
control. Reporting of autoimmune 
diseases also shows variable 
reliability, with rheumatoid arthritis, 
for example often being confused 
with other types of arthritis. Reports 
of rheumatoid arthritis in relatives 
were confirmed using medical 
records and reports from multiple 
relatives (11).

Reporting of disease in relatives 
can raise issues concerning 
the privacy of the relatives. The 
American Society of Human 
Genetics has issued a policy 
statement that indicates reporting 
by an individual about a relative 
is hearsay, and hence does not 
constitute a violation of privacy 
(21). However, an evaluation of 
risk associated with the collection 
of reported disease in relatives 
will require Internal Review Board 
review. Inadequate compliance 
with an approved protocol for the 
collection of reported medical 
data on relatives, led to temporary 
cessation of research at the 
University of Virginia, when a father 
complained that his child was being 
asked to report sensitive information 
about him as a part of a research 
study. In the USA, researchers 
involved in studies of diseases for 
which risk can accrue to either the 
patient or the researcher can obtain 
a certificate of confidentiality. This 
certificate protects the research 
from legal discovery.

Segregation analysis

To more precisely model the familial 
and genetic factors affecting 
disease expression, case–control 

studies have often been followed 
by segregation analyses. This 
is particularly useful when initial 
studies identify high risk associated 
with a family history of disease, and 
the disease is rare, suggesting the 
involvement of one or a few genetic 
factors having high penetrance. 
Segregation analyses seek to 
identify the relationship between 
an individual's genotype and the 
resulting phenotype. Inheritance of 
genetic factors results in a specific 
form of genotype dependence 
among family members. Although 
the genotypes at a disease locus 
cannot usually be determined, the 
inheritance of disease within families 
can be compared with that expected 
under specific genetic models. In 
segregation analyses, the model 
that most closely approximates the 
observed familial data is sought. The 
models that are evaluated by classic 
segregation analyses include a 
genetic factor, environmental effects 
which may be correlated among 
family members, and polygenic 
effects. These polygenic effects 
are a mathematical construct that 
corresponds to the inheritance of 
many independent genetic factors, 
each having small effects.

The classic paradigm of 
segregation analysis also requires 
scrupulous definition and attention 
to the ascertainment criteria. For 
most diseases, the occurrence of 
genetic susceptibility is sufficiently 
uncommon that random sampling 
would result in low power to detect 
genetic effects. However, most 
patterns of selection through 
affected individuals introduce biases 
into the genetic analyses. When 
the selection or ascertainment 
events are well characterized, these 
biases can often be controlled 
for appropriate mathematical 
conditioning (22). For segregation 
analysis, the units of observation 
are individuals within families, and 

although the modeling process 
is applied to individuals, it also 
requires information on their close 
relatives. Thus, the unit of sampling 
and analysis is the family. Summary 
statistics from segregation analytic 
studies include the gene frequency 
of the disease-causing locus, the 
penetrance for the susceptible 
genotypes, and the sporadic risk 
for the non-susceptible genotypes. 
During segregation analysis, 
the parameters describing the 
penetrance and the gene frequency 
are inferred using maximum 
likelihood methods. The parameters 
that most accurately describe the 
observed data are identified by 
computationally intensive numerical 
evaluations. To allow for the variable 
size and structure of human 
families, very general algorithms 
were developed, largely as a result 
of seminal works by R.C. Elston 
(23,24).

Genetic linkage analysis

Genetic linkage analysis has been 
an extremely powerful tool for 
identifying specific genetic factors 
for diseases. Linkage analysis has 
typically been applied for identifying 
novel genetic factors by using a 
genome-wide analysis of the co-
inheritance of disease with genetic 
markers. Evidence in favour of 
linkage is typically expressed by the 
LOD score, which is the log10 ratio of 
the likelihood of the data assuming 
linkage between a modelled disease 
susceptibility locus and a genetic 
marker, to the likelihood of the data 
assuming no linkage of the disease 
susceptibility and genetic marker. To 
allow for the large number of tests 
that are indicated in a genome-wide 
analysis, several testing paradigms 
have been developed. If a Bayesian 
approach is adopted, a LOD score 
of about 3.0 leads to a 5% posterior 
probability of linkage assuming 
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the existence of a single disease 
locus, even when many markers are 
genotyped over the entire genome. 
An approach for sequentially 
combining data from multiple 
studies by adding LOD scores 
across studies has been highly 
effective (25). From Bayesian and 
sequential analytical approaches, a 
LOD score of 3.0 was proposed as 
providing a meaningful critical value 
for declaring strong evidence for 
linkage. More recently, approaches 
to control the overall significance 
of genetic studies when studying 
multiple markers have been 
adopted (26). These criteria have 
been criticized for being excessively 
conservative (27), particularly when 
candidate regions are of primary 
interest (e.g. when prior studies 
indicated evidence for linkage to 
an area). The significance testing 
paradigm requires the slightly higher 
LOD score of 3.3 to declare that a 
significant result has been obtained 
while providing a genome-wide 
significance of 5%.

If a simple genetic mechanism 
explains inheritance of disease, 
then a genetic model can be 
specified and tested for co-
inheritance of disease susceptibility 
with genetic markers. In order for 
linkage studies to be informative, 
the families chosen for study must 
be able to show inheritance of 
a genetic factor. For uncommon 
diseases for which the penetrance 
is reduced, the affected individuals 
provide the majority of information 
about the segregation or inheritance 
of genetic mutations predisposing 
to disease. For quantitative traits, 
sampling through individuals with 
extreme phenotypes can increase 
the probability of sampling a genetic 
variant influencing the trait of 
interest. Sampling through extreme 
individuals is an effective strategy 
for increasing the power of a linkage 
study, but may only be practical 

if the quantitative phenotype can 
be assayed inexpensively. Some 
studies of quantitative phenotypes 
look at many phenotypes. Sampling 
through extreme individuals only 
increases power for a single or a few 
correlated phenotypes.

Linkage analyses are mainly 
conducted using panels of single 
nucleotide polymorphisms (SNPs) 
with a density of at least 1 marker 
every 500 kilobases (usually at 
least 6K markers), but can also 
be performed using microsatellite 
panels with a density of at least 1 
marker every 10 megabases (about 
350 markers). SNPs are far less 
informative than microsatellites, so 
that a much denser mapping panel 
is required to obtain a comparable 
amount of information from a genetic 
study using SNPs compared with 
one using microsatellites. Evidence 
for genetic linkage in a region would 
often be followed by finer-scale 
mapping to improve the information 
for detecting linkage and to identify 
any recombinant individuals. Finer 
maps would be employed if a 
microsatellite panel or relatively 
sparse SNP panel was used, to 
search for associations between the 
disease or trait and particular marker 
alleles. Standard finer mapping 
panels for microsatellites provide a 
0.5 to 0.2 megabase interval spacing 
(available from Decode Genetics 
(decodegenetics.com) or Invitrogen 
Genetics). Routine genotyping 
platforms for the purposes of genetic 
linkage analysis are available from 
Affymetrix and Illumina, and provide 
results from genotyping of between 
6000 and 1 000 000 genome-wide 
SNPs, respectively. These much 
finer mapping panels can improve 
the power to detect linkages and 
may provide narrower intervals 
for positional cloning. However, 
the presence of strong linkage 
disequilibrium (LD) among the SNPs 
in these platforms raises many 

analytical complexities that must be 
dealt with for accurate inferences. 
In particular, biases occur when 
families are selected through 
multiple disease-affected relatives 
if LD is not precisely modelled (28).

A wide range of genetic linkage 
methods are available. The diversity 
of methods reflects, in part, the 
considerable success in identifying 
genetic causes of disease, and the 
consequent value and interest in 
using the methods by the scientific 
community. Computing statistics 
over a large number of genetic 
markers in families for diseases 
that do not show simple inheritance 
patterns is computationally 
demanding. There are three basic 
approaches that are used for 
analysis of the genetic marker 
data. The Elston-Stewart algorithm 
(23) summarizes information about 
haplotypes (the set of alleles on 
a chromosome) sequentially in a 
pedigree, and is therefore efficient 
for statistical analysis of large 
families, but limited in the number of 
markers that can be jointly modelled 
(usually fewer than five markers can 
be considered jointly). The Lander-
Green-Kruglyak (LGK) method (29) 
adopts a different approach that 
facilitates the analysis of multiple 
markers. The LGK model first 
identifies the possible inheritance 
patterns of genotypes within 
families and stores this information 
as inheritance vectors. Because 
the number of inheritance vectors 
increases rapidly according to the 
number of individuals in a family, this 
approach is only suitable for small- 
or medium-sized families, usually 
allowing at most 25 individuals in 
a family to be studied. In addition, 
because the method stores all 
possible inheritance vectors in 
memory, the approach requires 
considerable RAM to be efficient. 
The major advantage of the LGK 
approach is that computational 
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speed increases only linearly in the 
number of markers so that it is highly 
efficient for genome-wide analyses. 
In addition, the adaptations of the 
LGK algorithm allow haplotypes to 
be used as markers, thus allowing 
for the strong LD that can exist 
among tightly linked markers (30).

Analyses including many markers 
on large pedigrees, or analyses of 
pedigrees that include more than 
a few inbred individuals, may not 
be effectively performed using the 
Elston-Stewart or LGK algorithms. 
In this case, Monte-Carlo Markov 
Chain (MCMC) algorithms are used 
to approximate the likelihood of 
the data. MCMC methods provide 
tools for sampling the haplotype 
configurations in data (31,32). The 
MCMC procedure samples possible 
haplotypes according to the 
underlying probability distribution 
that generated the data and provides 
an accurate approximation to the 
likelihood. A major advantage of 
MCMC procedures is a decreased 
need for memory, since they do not 
require summing over all possible 
genotypes as in the Elston-Stewart 
algorithm, or over all possible 
inheritance vectors as in the LGK. 
One disadvantage is the complexity 
in storing output from analyses, 
since results from large numbers 
of realizations from the sampling 
of genotype configurations must 
be stored. MCMC methods infer 
the genotypes for all individuals 
that are specified as a part of the 
analytical file. Individuals with 
known genotypes have a limited 
number of potential haplotypes, 
but individuals who have not 
been genotyped can have a large 
number of potential genotypes 
and haplotypes. The probability 
distribution from which MCMC 
methods must sample can become 
quite large if many individuals 
who have not been genotyped 
are included in the analytical file. 

Therefore, it is often beneficial to 
remove the ungenotyped individuals 
from MCMC analyses, particularly 
those who are not affected, since 
they contribute little in most linkage 
analyses.

An issue in performing genetic 
analysis is whether to use model-
dependent or model-free methods for 
linkage analysis. Model-dependent 
methods have higher power for 
linkage analysis if an approximately 
valid genetic model can be specified 
to describe the manner in which 
disease susceptibility at a given 
locus is expressed. One approach 
for estimating penetrance to be used 
in a linkage study is to first perform a 
segregation analysis of families that 
have been ascertained according to 
a specified sampling scheme. The 
approach estimates parameters for 
models describing the inheritance 
of genetic and environmental 
factors that most closely fit the 
dependence in family data. For 
uncommon conditions, random 
sampling of families would not result 
in an informative family; a sampling 
scheme is usually followed in which 
relatives of cases with a disease are 
preferentially sampled. When the 
families are not randomly sampled, 
an ascertainment correction for 
non-random sampling is required 
to obtain parameter estimates that 
reflect the more general population 
of families. To correct for the non-
random sampling approach usually 
used, a clearly defined sampling 
scheme must typically be followed. 
Using only a binary phenotype 
(e.g. affection or non-affection) 
one may not be able to estimate all 
the parameters that are necessary 
to describe the penetrance of the 
genotypes of the loci influencing 
disease susceptibility, unless 
restrictive assumptions about the 
interactions among the loci are 
made.

Sampling families and collecting 
information for segregation 
analysis can be an arduous task, 
and may not be fully informative 
about the parameters that describe 
the penetrance and disease 
allele frequencies. Therefore, 
investigators studying complex 
diseases may postulate genetic 
models from assumptions about 
the relative risks for disease that 
are observed from epidemiological 
studies. It has been shown that 
postulating an inaccurate genetic 
model for genetic linkage studies 
does not lead to false-positive 
results in a model-based linkage 
study. However, if multiple models 
are tested, there can be an inflation 
of the overall number of false-
positive results from linkage studies 
because of the inherent multiple-
testing problem that is introduced. 
A powerful approach for studying 
complex diseases is to evaluate 
the evidence for linkage, assuming 
simple recessive and dominant 
models of disease, and then to 
adjust the required critical value for 
the LOD score upwards by about 
0.3 for the small multiple-testing 
problem so engendered (33).

If the genetic model influencing 
disease susceptibility cannot be 
inferred with any confidence, either 
because the genetic model appears 
too complex or because there is a 
lack of epidemiological data from 
which to postulate penetrance, then 
model-free methods are typically 
adopted. One approach is to set the 
penetrance to an artificially low level, 
thus restricting analysis to include 
only the affected subjects. With 
very low penetrance, unaffected 
individuals provide no information 
about their possible genotypes and 
so do not contribute in the linkage 
analysis, but this approach still 
makes some modelling assumptions 
about disease expression. An 
alternative approach is to evaluate 
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the similarity in alleles that have been 
inherited by common parentage 
(identity by descent) and test 
whether or not there is evidence that 
affected relatives share more alleles 
than expected identical by descent. 
In some cases this approach may 
provide a more powerful test for 
linkage than a model-dependent 
approach, particularly when multiple 
independent loci additively increase 
disease risk. Because pedigrees are 
usually variable in size and contain 
different numbers of affected 
relatives, a variety of different 
tests have been proposed and are 
available for testing for linkage 
(34,35). These tests are optimal 
for varying disease penetrances 
(which are typically unknown). As 
a compromise, the pairs statistic 
is often used, which includes all 
affected relatives in a pedigree and 
gives only moderately higher weight 
to families that include multiple 
affected relatives (29).

The joint analysis of covariates, 
along with genetic markers in 
family studies, usually has limited 
utility. Typically, collecting covariate 
information in families is difficult 
because data cannot be directly 
collected from deceased or 
otherwise unavailable individuals. 
In addition, the genetic risks that are 
sought in linkage analyses are often 
large. Some non-genetic factors, 
such as smoking and reproductive 
behaviours, can be reliably collected 
through proxies (when needed), are 
inexpensive to collect, and may 
have a strong effect upon risk for 
some diseases.

For complex diseases, a large 
number of families may be needed 
to obtain adequate power to detect 
linkages. Meta-analyses combining 
multiple studies can assist in 
overcoming power limitations from 
a single study. However, in order for 
meaningful results to be obtained 
in meta-analyses, investigators 

must be studying comparable 
classifications of the same disease. 
Coordination of studies by using 
common definitions of disease 
outcomes, demographic measures 
and covariates is necessary for the 
study of complex diseases. Tools for 
meta-analysis of both linkage and 
association studies are available 
(36,37)

Association studies using 
families

While parametric and non-parametric 
linkage analysis approaches have 
proved successful for mapping many 
disease and trait genes, in some 
gene mapping investigations the 
limited number of meioses occurring 
within pedigrees limit one’s ability 
to detect, by linkage recombination, 
events between closely spaced (< 
~1 cM) loci (38). Association studies 
might be used instead to map more 
closely spaced disease genes. 
These studies generally have a 
case–control design, where cases 
are recruited from a disease registry 
or hospital-based populations. 
Controls can range from the cases’ 
family members (e.g. parents or 
siblings), or unrelated individuals. 
Genetic variants observed in cases 
are contrasted with those observed 
among controls to determine if an 
association exists between genes 
and disease.

Association studies may permit 
one to get closer to the disease-
causing gene than allowed by linkage 
studies (i.e. more recombinant events 
over evolutionary time). This type of 
study can also be used to directly 
examine genetic variants in known 
candidate genes. That is, association 
studies can be used either in an 
indirect manner, as a tool for mapping 
genes using linkage disequilibrium, 
or in a direct manner, for evaluating 
associations with postulated causal 
(“candidate”) genes.

The growing use of association 
studies is driven in part by how 
quickly and easily they can be 
undertaken, and the availability 
of high-density SNP genotyping 
technology. The SNP consortium 
(39) has provided sequences for 
1.8 million SNPs, and at least 250 
000 of these have been confirmed 
as polymorphic by Perlegen alone, 
while polymorphisms in hundreds 
of thousands of additional SNPs 
have also been verified by the SNP 
consortium Applera, and by many 
investigators and companies.

The power to detect associations 
using unrelated cases and unrelated 
controls can be increased by 
selection of cases that are likely to 
have developed the disease because 
of increased genetic propensity. For 
rare or uncommon susceptibility 
factors, sampling unrelated cases 
on the basis that they have close 
relatives affected by the same 
disease can greatly increase the 
power to detect associations (40). 
Power to detect associations can 
also be accomplished by seeking a 
homogeneous genetic etiology for 
the disease, which entails selecting 
from isolated populations and cases 
that show a homogeneous clinical 
phenotype.

Linkage disequilibrium 
and haplotypes

The genetic variants that cause 
disease arise through, for example, 
novel mutations or immigration of 
mutation carriers into a population. 
When a mutation initially occurs, 
it has a particular chromosomal 
location and specific neighbouring 
marker alleles. At this incipient point 
in time, the mutation is completely 
associated with the adjacent 
alleles; it is only observed when 
the marker alleles are also present 
(41). Marker alleles that were in the 
neighbourhood of the disease gene 
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when its mutation was introduced 
into the population will generally 
remain nearby over numerous 
generations, that is to say linkage 
disequilibrium. One can estimate 
whether particular marker alleles 
appear to be in disequilibrium, that is 
to say, are associated, with disease 
genes. In particular, if specific marker 
allele frequencies are higher among 
cases versus controls, this suggests 
linkage between the corresponding 
loci and a disease gene. The extent 
of this disequilibrium depends 
on the number of subsequent 
generations since the mutation was 
introduced into the population, the 
recombination between the disease 
and marker alleles, mutation rates, 
and selective values (e.g. epistatic 
components).

Alleles in linkage disequilibrium 
may be parts of haplotypes. 
Recent work indicates that there 
may exist discrete chromosomal 
regions with low haplotype diversity, 
termed haplotype blocks, that 
are separated by recombination 
hotspots. Information from some 
polymorphisms within each block 
may be redundant; in other words, 
having information on one SNP 
provides all the information about 
another if they are in strong linkage 
disequilibrium. The majority of the 
haplotypes within a block can thus 
be distinguished using a much 
smaller number of SNPs, known as 
haplotype tagging SNPs (htSNPs). 
Using such SNPs can drastically 
reduce the effort required to 
undertake large scale association 
studies. Instead of saturating an 
entire chromosomal region with 
genotypes in all study samples, 
an investigator can first screen for 
SNPs within a subsample of study 
subjects to determine the htSNPs. 
Then only these tagging SNPs (and 
possibly other promising SNPs) can 
be genotyped in the entire study 
population. Several approaches 

have been suggested for identifying 
optimal htSNPs. These include 
visual inspection of haplotypes, and 
analytic approaches that eliminate 
redundant markers (42–44).

Family-based association 
studies

The most common familial case–
control designs use parents or 
siblings as controls. In the former, 
the parents themselves are not the 
controls, but the set of genotypes the 
parents could have transmitted to 
the case, given their own genotypes 
(the case’s “pseudosibs”). For 
example, the Transmission/
Disequilibrium Test (TDT) compares 
alleles transmitted from parents 
to diseased offspring with those 
alleles that are not transmitted (i.e. 
the non-diseased alleles) (45). The 
TDT provides a joint test of linkage 
and association (i.e. linkage in the 
presence of association or vice-
versa). In doing so, when there 
is disequilibrium between marker 
and disease alleles, incorporating 
the additional information that the 
same alleles are associated across 
families with the TDT can provide 
increased power in comparison with 
linkage analysis. Furthermore, the 
use of pseudosib controls has better 
statistical efficiency than sibling or 
cousin controls (even more than 
population controls for a recessive 
gene), but the requirement that 
parents be available for genotyping 
limits its usefulness for late-onset 
diseases.

As with pseudosib controls, 
siblings are derived from the same 
gene pool as the cases, and thus 
provide another attractive source 
of controls for family-based studies. 
However, using siblings as controls 
can pose other difficulties. A major 
issue is that not every case will have 
an available sibling. If sibship size or 
other determinants of availability are 

associated with genotype, selection 
bias may result, possibly leading to 
false-negative or -positive results. 
Another issue is that controls should 
generally be selected from siblings 
who have already survived to the 
age at diagnosis of the case and 
be free of the disease. In practice, 
this will tend to limit control eligibility 
to older siblings, which can lead 
to confounding by factors related 
to year of birth, family size or birth 
order. Siblings are also more likely 
to have the same genotype as the 
case than are unrelated controls, 
thereby leading to some loss of 
statistical efficiency (i.e. larger 
sample sizes required to attain the 
same statistical precision).

The many successful 
applications of the TDT motivated 
the development of a large number 
of generalizations. The original TDT 
concept was extended to multiallelic 
marker data (45–47) and to different 
genetic models. In the framework of 
score tests for multivariate data, it 
has been shown that the TDT is the 
most powerful test under an additive 
mode of inheritance; alternative tests 
can be derived under a dominant 
and recessive mode of inheritance 
(48). (Extension to general pedigree 
designs and to scenarios in which 
parental genotypes are missing 
are discussed in (46,49–52)). 
Approaches to general pedigrees 
that are also valid under the null 
hypothesis of linkage, but no 
association has been developed are 
discussed in (53–55). Extensions 
to quantitative traits are described 
in (52,56–61).) The gamete 
competition model (62) provides one 
generalization of the TDT that can 
be applied to arbitrary pedigrees 
and extends to haplotype-based 
analyses. This approach has been 
integrated into the Mendel suite of 
programs (http://www.genetics.ucla.
edu/software/mendel).
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The family-based association 
tests (FBAT) approach

In this section is a review of a very 
general and adaptable approach to 
construct family-based association 
tests that are often referred to as 
the FBAT approach (60). FBATs 
can be applied under any mode of 
inheritance and in situations in which 
multiallelic data and/or general 
pedigrees are available. Various 
null hypotheses, and different 
phenotypic traits and arbitrary 
combinations of them (binary, 
quantitative, time-to-onset, repeated 
measurements, multivariate data, 
etc.), can be tested for association. 
FBAT can be computed for a single 
marker locus, haplotypes or multiple 
markers. The FBAT approach is built 
on the three key principles of the 
original TDT approach:

1. The FBAT statistic is a 
conditional test that conditions 
upon the parental genotype, or, as 
will be discussed later, equivalent 
information if parental data should 
be missing. By conditioning on 
the parental information, there is 
no need to estimate the genotype 
distribution of the data (e.g. the 
margins of the table in a case/control 
design) under the null hypothesis, 
and thereby eliminate the effects 
of population admixture. When 
parental information is missing, 
one can condition on the sufficient 
statistic for the genotype distribution 
in each family. For haplotype 
analysis, phase uncertainty will also 
be included in the conditioning.

2. The FBAT statistic is 
also computed conditional on 
the phenotype, which makes 
the approach robust against 
misspecification of the phenotypic 
assumptions that are used for the 
computation of the FBAT statistic.

3. Since the only random variable 
in the FBAT approach is the offspring 
genotype, whose distribution under 

the null hypothesis can be computed 
based on Mendelian transmission, 
Mendel’s first law is the sole 
requirement for the validity of the 
approach.

The general FBAT statistic

The FBAT statistic assesses the 
association between the phenotype 
and the genetic locus by using a 
natural yardstick: the covariance 
between the phenotype and 
the Mendelian residuals. The 
covariance is defined by:

U = Σ Tij (Xij -E(Xij|Si)),             (1)

where i indexes family and j indexes 
non-founders in the family. The 
summation is over all families i and 
all non-founders j. The parameter 
Tij denotes the coded trait of 
interest in the jth non-founder of 
the ith family. The corresponding 
genotype is given by Xij which is 
adjusted by its expected value 
E(Xij|Si) under the null hypothesis. 
Using the assumption of Mendelian 
transmissions from the parents 
to the offspring, the expected 
marker score E(Xij|Si) is computed 
conditional upon the parental 
genotypes Si of the ith family. If 
parental information is missing, Si 

denotes the sufficient statistic of 
the genetic distribution in the ith 
family. The adjusted genotype, (Xij-
E(Xij|Si)), can be interpreted as an 
Mendelian residual, measuring a 
potential over- or undertransmission 
from the parents to the offspring. 
In this context, it is important to 
note that the Mendelian residuals 
for families with two homozygous 
parents will always be zero and 
that such families do not contribute 
to the FBAT statistic. The number 
of families that have at least one 
Mendelian residual (Xij-E(Xij|Si)), 
which based on Si can be different 
from zero, is typically referred to as 

‘number of informative families.’
As discussed below, the coded 

phenotype Tij is either centred 
or unadjusted, depending on 
the absence or presence of a 
phenotypic ascertainment condition. 
By selecting appropriate coding 
functions, qualitative, quantitative, 
time-to-onset and multivariate 
phenotypes are incorporated into 
the FBAT approach.

The basic formula (1) is 
applicable in virtually any scenario; 
the appropriate selection of the 
phenotypic coding function and its 
adjustment, and the definition of the 
genotypes, reflecting the underlying 
genetic model.

Large sample distribution 
of the FBAT statistic under
the null hypothesis

As outlined in the discussion of the 
key principles of the FBAT approach, 
the distribution of the FBAT statistic 
U is computed by treating the 
non-founder genotype as the only 
random variable and both the coded 
phenotype, Tij, and the sufficient 
statistic, Si, as deterministic 
variables by conditioning on them. 
The expected value of the FBAT 
statistic, U, is zero by definition 
(E(U) = 0), so to normalize U under 
the null hypothesis, all that is left 
to do is to compute the variance 
of U conditional upon the offspring 
phenotype and Si. If the genotype 
and trait variable are both univariate, 
then

Z = U/ √(var (U)), or equivalently,     
χ2

FBAT  = U2/var(U),
where

Var(U) = Σi Σjj’TijTij’ cov(Xij,Xij’|Si,Tij,Tij’)   (2)

As for the expected marker score, 
the covariance cov(Xij,Xij’ |Si Tij,Tij’) 
also conditions upon the traits and 
the sufficient statistics, assuming 
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the null hypothesis is true. Under 
the null hypothesis of no association 
and no linkage, the covariance 
cov(Xij,Xij’ |Si Tij,Tij’) does not depend 
on the phenotype Tij, and can be 
computed based on independent 
Mendelian transmissions within 
a family. However, when the null 
hypothesis of no association in the 
presence of linkage is selected, 
the transmissions to siblings within 
a family are correlated (55). In 
this situation, the derivation of the 
theoretical covariance is difficult, 
and an empirical variance can be 
used to estimate var(U) (51).

Asymptotically, Z is normally 
distributed, N(0,1), and χ2

FBAT follows 
a χ2 distribution with one degree 
of freedom. When multiple alleles 
and/or multiple traits are tested, U 
is the vector and var(U) becomes a 
variance/covariance matrix. Then, 
the FBAT statistic is a quadratic 
form UTvar(U)-U and follows 
asymptotically a χ2 distribution with 
degrees of freedom equal to the 
rank of var(U) (60,63).

When the number of families is 
small (e.g. in linkage studies), it is 
recommended either to estimate 
the P-value of the FBAT statistic via 
Monte-Carlo simulations or to use 
an exact test (64).

Specifying the mode 
of inheritance in the FBAT 
statistic

In the FBAT statistic, the coding of 
the genotype reflects the specified 
mode of inheritance. When 
testing under an additive mode of 
inheritance is required, Xij  counts 
the number of target alleles (i.e. 0, 
1 or 2). Under a recessive model, Xij 

is defined to be 1 for subjects who 
carry 2 copies of the target allele, 
and 0 otherwise. For multiallelic 
markers or haplotypes, Xij  is a vector 
whose element reflects the coded 
genotype for each allele/haplotype.

Coding the phenotype: Testing 
binary phenotypes in the FBAT 
approach

When the phenotype of interest is 
affection status, an FBAT statistic 
that is equivalent to the classical 
TDT (61), and that only incorporates 
information on affected subjects, 
can be obtained by setting Tij  = 1 for 
affected subjects and 0 otherwise. 
Unaffected subjects can be included 
in the FBAT statistic by defining Tij   = 
(Yij  – μ), where Yij  is the original 1/0 
phenotype and μ is a user-defined 
offset parameter in the range 
between 0 and 1. For example, 
by setting μ = 0, the original TDT 
statistic is obtained. Affected 
subjects (Yij  = 1) then contributed 
(1 – μ) to the FBAT statistic and the 
unaffecteds (1 – μ). Here the FBAT 
statistic can be interpreted as a 
contrast between transmissions to 
affected offspring weighted by (1- μ), 
and unaffected offspring weighted 
by μ.

In samples that have been 
recruited without a phenotypic 
ascertainment condition, e.g. 
population samples, the optimal 
offset choice is the prevalence of 
the disorder/trait E(Y = 1) in the total 
population (63). Even for studies 
with phenotypic ascertainment 
conditions, this finding approximately 
holds (65,66). In many situations, 
the population prevalence of the 
disease/trait is unknown. Since most 
study designs over-sample affected 
subjects to maximize the genetic 
loading of the sample (e.g. trio-
design), the population prevalence 
of the disease/trait cannot be 
estimated directly from the sample. 
Fortunately, the FBAT statistic 
achieves almost optimal power in 
a relatively large neighbourhood 
around the true population 
prevalence (66). In practice, rough 
estimates for the prevalence will be 
sufficient.

Handling general pedigrees 
and/or missing founders 
in the FBAT approach

The FBAT statistic is very general 
and can be applied to any 
complex pedigree as long the 
expected marker score, E(Xij |Si), 
can be computed, as well as the 
corresponding variance/covariance 
structure, cov(Xij ,Xij’ |Si Tij,Tij’), which 
requires the specification of the 
marker densities p(Xij, |Si Tij) and 
p(Xij,Xij’ |Si Tij,Tij’). For nuclear families 
in which both parents and one or 
multiple offspring are genotyped, 
the univariate density, p(Xij |Si Tij,), 
is completely defined by Mendel’s 
law. Under the null hypothesis of 
no association and no linkage, 
the parental transmissions to all 
offspring are independent, p(Xij,Xij’ 
|Si Tij,Tij’) = p(Xij, |Si Tij,)* p(Xij’ |Si Tij’), 
and computation of the expected 
marker score and its variance/
covariance is straightforward. 
In the presence of linkage, the 
transmissions from the parents to 
the offspring are not independent 
anymore, but rather dependent on 
the recombination fraction which 
is known. Technically, it would be 
possible to remove the dependence 
on the unknown recombination 
fraction by conditioning on the 
identity-by-descent patterns 
among offspring (51); however, 
the inclusion of this additional 
condition would make many families 
uninformative for the computation 
of the test statistic, and would lead 
to a substantial drop in statistical 
power. It is therefore recommended 
to estimate the variance/covariance 
structure directly by using empirical 
variance estimators, as discussed 
above.

The same ideas for the 
computation of the expected marker 
scores and their variance/covariance 
structure are also applicable to 
extended pedigrees in which the 
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genotypes of all founders are known 
(51,61). For the analysis of such 
data, the power of the FBAT statistic 
can be increased by computing the 
conditional marker distribution for 
the complete pedigree instead of 
splitting up the pedigree into nuclear 
families and analysing the data as 
such (51,61). For pedigrees in which 
founder genotypes are missing, the 
computation of the expected marker 
scores and its variance is more 
complex. Instead of conditioning 
on the parental genotypes, the 
distribution of the observed offspring 
genotypes is computed conditional 
on the sufficient statistics for the 
unobserved parental genotypes. 
The advantage of conditioning on 
the sufficient statistic here is that no 
assumptions about the unobserved 
parental genotypes are necessary. 
Such assumptions would make the 
FBAT statistic susceptible to the 
effects of population substructure 
and stratification. Although the 
concept of the conditioning on the 
sufficient statistic for the unobserved 
parental genotypes is very technical, 
the conditional distributed for the 
observed offspring genotypes can 
straightforwardly be computed 
using the algorithm by Rabinowitz 
and Laird (51). The details of the 
algorithm are not discussed here, 
and the interested reader is referred 
to the original paper.

Handling haplotypes and 
multiple markers in the FBAT 
approach

In candidate gene studies, and 
even in genome-wide association 
studies nowadays, closely spaced 
markers/SNPs are often available 
that characterize a gene or a well-
defined region. In such scenarios, 
it might not be the optimal strategy 
to test each marker individually for 
association with the phenotype 
of interest for two reasons. First, 

in general, it is difficult to take the 
LD-structure/correlation structure 
between markers into account when 
adjusting for multiple comparisons. 
This often leads to adjustments 
for multiple comparisons that are 
too conservative. Second, by only 
testing one marker locus at a time, 
the available genetic information on 
the other marker loci is not used. 
Consequently, a more powerful 
strategy would be to test all markers 
that reside in a well-defined region 
simultaneously. Two approaches for 
this are available haplotype tests 
and multimarker tests.

Here a multiloci haplotype is 
defined as a set of alleles, one for 
each marker, that are located on 
the same copy of the chromosome 
and that are inherited from one 
generation to the next without 
recombination. There are several 
situations in which multiloci 
haplotype tests should be more 
powerful than single-marker tests. 
For example, consider the scenario 
in which a true disease susceptibility 
locus (DSL) is located in the region 
that is spanned by the markers, but 
the DSL has not been genotyped nor 
is in sufficiently high disequilibrium 
with one of the genotyped markers 
to be identified by a single-marker 
test. If the set of genotyped markers 
is able to capture the haplotype 
diversity in the region, a multiloci 
haplotype will exist that captures 
the variation at the DSL. Another 
scenario, in which a haplotype 
analysis will be more powerful 
than a single-marker approach, is 
when two or more of the observed 
markers have genetic effects on the 
phenotype of interest. On the other 
hand, if there is only a single DSL 
in the region, and its variation is 
sufficiently “tagged” by one of the 
genotyped markers, a haplotype 
analysis can be suboptimal.

If the phase of the haplotype 
(i.e. which alleles are located on 

the same copy of the chromosome 
and are inherited jointly) is known for 
each subject in the study, the set of 
markers defining the haplotypes can 
be interpreted as a single marker with 
multiple alleles and the FBAT statistic 
can be computed as outlined above. 
However, in most applications, the 
phase of the haplotypes will not be 
known and will have to be inferred. 
Despite the fact that family data 
is available here, for which it is 
generally easier to determine the 
phase of the haplotypes than for 
population-based data, resolving 
the phase in all subjects will not 
be possible, especially if parents’ 
genotypes are missing.

However, an unresolved 
haplotype phase in a study subject 
does not prevent the computation of 
the FBAT statistic. The same trick 
can be applied here as in the case 
for missing parental genotypes. 
The haplotype distribution in 
offspring is computed conditional 
upon both the parental genotypes/
sufficient statistics and whether it 
is possible to infer the phase of the 
haplotypes (67). The FBAT statistic 
can then be calculated by assuming 
that the set of markers defines a 
multiallelic marker locus whose 
alleles are given by the phased 
haplotypes. Since this haplotype 
analysis approach does not make 
any assumptions about population 
parameters (e.g. haplotype 
frequencies, etc.), to infer haplotype 
phase, but conditions upon the 
ability/inability to reconstruct the 
phase, the approach maintains 
its robustness against population 
admixture and stratification. In the 
usual way, the FBAT statistic can 
either be computed for a specific 
target haplotype as a diallelic FBAT 
or as a global haplotype test based 
on a multiallelic FBAT. As discussed 
above, the presence of linkage 
can be accounted for by use of the 
empirical variance estimator.



272

As the numbers of markers 
increase, the advantages of a 
haplotype analysis are outweighed 
by characteristic disadvantages of 
the approach. Inferring the phase of 
a haplotype becomes increasingly 
difficult and numerically complex 
when the number of markers 
exceeds 5–10, particularly when 
parental information is missing or 
extended pedigrees are analysed. 
Furthermore, the assumption of non-
recombination between the markers 
must be carefully considered. In 
this situation, which also applies 
to smaller numbers of markers, 
so-called multimarker FBATs 
can be an attractive alternative. 
Rather than trying to infer the 
underlying haplotype structure, 
multimarker FBATs account for the 
linkage disequilibrium between 
markers by directly estimating 
the variance/covariance structure 
between the markers. To construct 
a multimarker FBAT, in the FBAT 
statistic the univariate marker score 
Xij is replaced by a vector Xij whose 
elements are the genotypes for 
each individual marker. The vector 
of expected marker scores, E(Xij| Si), 
is defined by the expected marker 
scores for each marker which are 
computed individually, conditioned 
upon the corresponding parental 
information/sufficient statistic. The 
linkage disequilibrium between the 
markers is incorporated by using 
the empirical estimator of var(Xij) 
in the calculation of var(U). The 
multimarker FBAT statistic is then 
a quadratic form which has an 
asymptotic χ2 distribution, where the 
degrees of freedom are given by the 
number of markers that are linear 
independent. (A detailed discussion 
of multimarker FBATs is given in 
(68).) Alternative approaches are 
discussed in (69,70).

Complex trait analysis 
in the FBAT approach

Complex phenotypes are tested 
in the FBAT approach by selecting 
an appropriate coding function 
Tij that is selected by the user 
and that will depend on the trait 
type. The choice of the coding 
function should be motivated by 
an underlying phenotypic model, 
describing the phenotypes as a 
function of the genotypes. Since 
the FBAT approach conditions upon 
the parental genotypes and the 
offspring phenotype, the validity 
of the FBAT test will not depend 
upon the correct specification of the 
coding function, but a poor choice 
will affect the statistical power of the 
approach.

A more refined version of the 
phenotype affection status is the 
variable age-at-onset/time-to-onset. 
If the phenotype age-at-onset/time-
to-onset contains more genetic 
information, such an analysis will 
result in greater statistical power 
(e.g. for childhood asthma). It can 
be assumed that an early onset 
is more related to genetic factors 
than is a late onset, which could 
be attributable to environmental 
factors. Various coding functions 
for an age-at-onset analysis are 
discussed in (71) and (72).

For quantitative phenotypes, 
standard phenotypic residuals are 
an obvious choice for the coding 
function, i.e. Tij = (Yij – μ), where Yij 
is the original phenotype and μ is a 
user-defined offset parameter. For 
population samples (a study without 
any phenotypic ascertainment 
conditions), the optimal offset 
choice is the phenotypic sample 
mean. In such a situation, the FBAT 
statistic for the quantitative trait has 
higher statistical power than an 
FBAT statistic that is based on a 
dichotomized version of the same 
quantitative trait (73). To utilize this 

theoretical power advantage in a real 
data analysis, some additional work 
is usually required. By definition, 
quantitative traits contain more 
information and are therefore more 
powerful phenotypes in a statistical 
analysis, but they usually depend on 
other non-genetic factors (e.g. lung-
volume measurements in asthma 
studies depend on age, gender and 
height). Such confounding variables 
can be probands characteristics, 
but they also include environmental/ 
treatment information. For example, 
lung-volume measurements for 
asthmatics depend on smoking 
status/history and on treatment 
for asthma. An unadjusted, raw 
measurement of such a phenotype 
will be confounded by such factors 
and the genetic signal will be 
diluted, resulting in a potentially 
lower statistical power. For such 
phenotypes, it is recommended to 
regress the raw phenotypes on all 
known confounding variables and 
use the regression residuals as the 
coded phenotype in the computation 
of the FBAT statistic. Note that such 
an adjustment is study-specific 
and requires careful statistical 
model building; results might not be 
reproducible in other studies that 
do not have the same covariate 
information. The motivation for a 
within-study adjustment is to reduce 
the variability in the phenotype that is 
attributable to all other non-genetic 
factors. However, this requires 
knowledge and measurement 
of such variables, which are not 
necessarily known before the study. 
For such situations, efficient coding 
functions that do not require any 
covariate adjustment and that are 
able to achieve high power levels 
can be used (74).

For many complex diseases, 
the definition of affection status is 
based on a variety of phenotypes 
which describe and characterize 
the disease and its severity. 
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Consequently, when an association 
with affection status is tested for in 
such a situation, the aggregated 
and dichotomized information is 
assessed all at once. If now, to 
increase statistical power, the 
quantitative traits that define the 
disease and/or describe its severity 
are selected as target phenotypes 
instead of affection status, multiple 
FBATs have to be computed and the 
resulting multiple testing problem 
has to be addressed. Quantitative 
phenotypes for a complex disease 
typically are correlated and cluster 
together into groups (symptom 
groups). In asthma studies, it is 
standard practice to measure 
quantitative phenotypes that 
characterize such things as the lung-
function of a proband (FEV1, FVC) 
and the atopy-reaction (number of 
positive skin tests, IGE-levels) (75). 
Depending on how well understood 
the disease is, symptom groups can 
be defined based on prior knowledge 
about the underlying biological 
pathways, clinical knowledge, or just 
the phenotypic correlation between 
the traits. A test strategy that does 
not incorporate this aspect of the 
data, but that tests all phenotypes 
individually and adjusts for multiple 
comparisons, would be optimal. 
Since the FBAT tests for the same 
symptom group will be correlated, 
standard adjustments for multiple 
testing will be too conservative here. 
Further, if the hypothesis is true that 
the phenotypes in the same symptom 
group are influenced by common 
genetic factors and/or share similar 
environmental confounding, it will 
be more powerful to assess the 
evidence for association for the 
entire symptom group at once. A 
multivariate method that tests all 
phenotypes jointly in a single test, 
without having to adjust for multiple 
comparisons, is the most desirable 
approach in this situation.

the generalized estimating equation 
approach (77). A generalized 
estimating equation model can 
be defined by modeling the m 
phenotypes as a function of the 
genotype, using appropriate trait-
dependent link-functions and a 
predefined variance/covariance 
structure. When a family-based 
score test is derived for this 
estimating equation model, the link-
functions and the assumptions for 
the variance/covariance structure 
cancel out and the model-free FBAT-
GEE statistic is obtained, making 
the multivariate FBAT-GEE statistic 
invariant towards distributional 
assumptions for the phenotype.

Pedigree-based association 
tests (PBATS): Bypassing the 
multiple comparison problem 
in family-based association 
studies

To maintain the three key properties 
of the original TDT approach, the 
FBAT statistic conditions upon 
the phenotype and the parental 
genotypes, which comes at the price 
that not all information about linkage 
and association that is contained 
in the data can be used. While this 
ensures that the robustness and 
the model-free character of the 
original approach are maintained, 
FBATs are in general not the most 
efficient test statistic. However, this 
extra unutilized information can 
be brought into play in a screening 
step before the computation of the 
FBAT statistic. The information can 
be used to construct an optimally 
informed two-stage testing strategy, 
or an “optimal” FBAT statistic, which 
has been denoted as a pedigree-
based association test (PBAT). This 
enhances the power of the FBAT 
approach substantially. FBAT, with 
a prior screening step, can achieve 
power levels that are comparable to 
power levels that would be obtained 

For the FBAT approach, such 
a multivariate test that examines 
all phenotypes simultaneously is 
the FBAT-GEE statistic (76). The 
FBAT-GEE statistic maintains the 
advantages of the original FBAT 
statistic. It is easy to compute and 
does not require any distributional 
assumptions about the phenotypes 
even if the selected phenotypes are 
of different trait types (e.g. normally 
distributed phenotypes, count 
variables, etc.).

FBAT-GEE

For each study subject it is 
assumed that m phenotypes have 
been recorded and are defined 
as a symptom group as described 
above. The vector containing all m 
observations for each proband is 
denoted by Yij = (Yij1,..., Yijm), where 
Yijk is the kth phenotype for the 
jth offspring in the ith family. The 
multivariate FBAT-GEE statistic can 
then be obtained by defining the 
coding vector Tij,

		              
	               Yij1      Ŷij1

                                Tij = Yij - Ŷij1 =  Yijk   -  Yijk 

                                    
	               Yijm     Ŷijm

                                   where the parameter Ŷijk  is 
given either by the observed 
sample means for the kth trait, or 
by the predicted trait value based 
on a regression Ŷijk on its known 
covariates/confounding variables. 
As discussed earlier, in the situation 
of a multivariate trait, the univariate 
coding variable Tij in the FBAT 
statistic is replaced by the vector Tij 

and the FBAT-GEE statistic given by
TFBAT-GEE = CTV—C.
Under the null hypothesis, the 

FBAT-GEE statistic is asymptotically 
χ2-distributed with m degrees of 
freedom. The name of the test 
statistic originates from its link with 



274

by a corresponding population-
based analysis (78).

In particular, in large-scale 
association studies, with numerous 
genotyped markers and multiple 
complex traits, the screening 
step/extra information can be 
used to guide the testing strategy 
with respect to minimizing the 
effects of multiple comparisons, 
model-building and phenotype 
selection. Discussed here is a 
general approach that partitions 
family data into two independent 
components corresponding to 
the population information, and 
the within family information. The 
population information about 
association, which is susceptible 
to population substructure, is used 
for the screening step, or model 
development, and the within-
family information is used for the 
construction of the confirmatory 
FBAT statistic. The idea is similar 
to cross validation, except that each 
subject contributes information to 
both parts of partitioning, minimizing 
the variability of the genetic effect in 
the two subsets. For simplicity it is 
assumed that offspring-parent trios 
are given.

The distribution of the complete 
data is the joint distribution of the 
offspring phenotype, Y, the offspring 
genotype, X, and the parental 
genotype, P (or more generally, the 
sufficient statistic, S). Using Bayes’ 
rule, the joint distribution can be 
partitioned into two independent 
parts:

P(Y, X, S) = P(X|Y,S)P(S,Y).         (3)

If the screening step (e.g. model 
building, hypothesis generation) 
uses only information on S and Y, 
any subsequent hypothesis testing 
that is based on the FBAT statistic, 
whose distribution is given by 
P(X|S,Y), will be independent of 
the prior screening step. There are 

various ways to model the variables 
S and Y so that information about a 
potential association between Y and 
X can be obtained. In general, the 
appropriate model for S and Y will 
depend on the specific design (e.g. 
ascertainment conditions, trait type, 
etc). For example, in the situation of 
an unascertained population sample 
with a quantitative target phenotype, 
the population-based information 
about the association between the 
offspring genotype and phenotype 
can be described by the conditional 
mean model (73,79):

E(Y) = m + a*E(X|S).                     (4)

The genetic effect size, a, can be 
estimated by an ordinary regression 
of the phenotype, Y, on E(X|S). Note 
that E(X|S) is computed solely based 
on the parental genotypes. For the 
uninformative families (i.e. trios with 
doubly homozygous parents), the 
actual offspring genotype, X, is equal 
to E(X|S). Otherwise, if parents are 
informative, the offspring genotype 
X can be thought of as missing 
and being imputed by E(X|S). 
Since the conditional mean model 
is only based on information about 
Y and S, under the null hypothesis 
all its parameter estimates will 
be statistically independent of 
the FBAT statistic. Of course, the 
statistical independence of the 
screening step/conditional mean 
and the FBAT statistic does not hold 
under the alternative hypothesis. 
The conditional mean model (4) can 
therefore be fit repeatedly for any 
choice of genetic model, any number 
of phenotypes and any number of 
markers. Based on the parameter 
estimates for the conditional 
mean model, the Wald test for null 
hypothesis of no association, H0: a 
= 0, can be computed. Alternatively, 
the parameter estimates can be 
used to compute the conditional, 
predicted power of the FBAT statistic. 

Such conditional power calculations 
will also depend upon the observed 
parental genotypes and phenotype 
(73,79). It is generally recommended 
to use the conditional power 
estimates to prioritize information 
for the subsequent FBAT testing 
step (80). This basic idea can be 
extended to handle longitudinal 
and repeated measurements 
(FBAT-PC) (81) and multivariate 
data (69). There the screening step 
can be used to compute optimal 
linear combinations of traits for 
subsequent testing. The approach 
has also been adapted to scenarios 
in which multiple markers are tested 
(69). A method has been proposed 
to estimate the genetically relevant 
age range for age-at-onset data 
(72). This extension is particularly 
useful for diseases in which an 
early onset suggests a strong 
genetic component, while a late 
onset is mostly attributable to non-
genetic/environmental effects (e.g. 
Alzheimer's disease or childhood 
asthma).

Testing strategies for large-
scale association studies

Genome-wide association studies 
offer great potential to the field of 
complex disease mapping, but to 
translate the dramatic increase in 
genetic information at a genome-
wide level into the identification 
of new disease genes (a major 
statistical challenge) the multiple 
testing problem has to be tackled. 
For case–control studies, multistage 
designs have been proposed 
(82,83) as a cost-efficient way of 
handling this problem. In each 
stage of the design, the number of 
genotyped SNPs and genome-wide 
significance are achieved by a joint 
analysis of all stages.

For family-based association 
studies, the concept of partitioning 
the association information into 
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two statistically independent 
components is well suited to 
efficiently address the multiple 
comparison problem within one 
study. By using the decomposition 
(3), a two-stage testing strategy can 
be constructed that consists of two 
statistically independent stages, 
the screening step and the testing 
step, which can be applied to the 
same data set (80). This approach is 
illustrated in Figure 15.2.

A two-stage approach is highly 
effective for screening and then 
testing results when family controls 
are available for application using 
FBAT. In step 1, association analysis 
based on the conditional mean 
model before the FBAT testing 
is used to minimize the multiple 
testing problem. In this example, one 
quantitative trait and M SNPs are 
analysed. In the first step, the marker 
data in the offspring is assumed 
to be missing and imputed by the 
expected markers scores conditional 
on the parental genotypes/sufficient 

statistic. Based on the imputed 
data, the conditional mean model 
is fitted, and its estimates are used 
to compute the power of the FBAT 
statistic for each SNP. The power is 
a function of the observed parental 
genotypes, their frequencies, and 
the genetic effect size estimated 
from the conditional mean model. 
In the final step, the K SNPs with 
the highest power estimates are 
selected to be subsequently tested 
for association with the FBAT statistic 
at a Bonferroni-adjusted significance 
level of ά/K. Since only K SNPs are 
pushed forward to the testing step, 
it is only necessary to adjust for 
K comparisons instead of M. The 
markers that pass this first testing 
step are then validated in the second 
step, as depicted in Figure 15.2.

In family-based designs, the 
screening procedure utilizes 
information on all families, even the 
non-informative ones. Assuming 
moderate to small genetic effect 
sizes, simulation studies have 

shown that if a true DSL, or a SNP 
in LD with a DSL, is included in the 
data set, it is sufficient to select 
only the highest 10 or 20 SNPs for 
subsequent testing to achieve high 
power levels. The key advantage of 
this testing strategy for family-based 
designs is that the same data set is 
used twice; once for the genomic 
screening step and once for the 
testing step. Thereby the effects of 
study heterogeneity are minimized, 
which can cause, in a standard two-
stage design that uses different 
samples in each step, the failure to 
discover an important association. 
Another advantage of this approach 
is that it is only necessary to recruit 
one sample to identify SNPs/
associations that achieve genome-
wide significance. Replications in 
other studies serve the sole purpose 
of generalizing a significant finding 
to other populations.

This testing strategy has been 
successfully applied to a 100 000-
SNP scan for obesity in the family 

Figure 15.2. Using the same data set for genomic screening and testing
Step 1: Screening SNPs using conditional power estimates for the FBAT statistics. The power estimates are based on genetic 
effect size estimates obtained from the conditional mean model.
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plates of the Framingham Heart 
Study. Among the top 10 SNPs 
from that study, as determined 
by estimated conditional power, 
there was a novel SNP whose 
association with body mass index 
(FBAT P-value = 0.0026) reached 
genome-wide significance, after 
having adjusted for 10 comparisons. 
If standard analysis methods would 
have been used (e.g. testing all 
SNPs for association and adjusting 
for multiple testing by the Bonferroni 
or Hochberg corrections), this 
association would have been 
missed. Using the same genetic 
model, the finding was replicated 
in four independent studies, 
including cohort, case–control and 
family-based samples of different 
ethnicities (84). Recently, the 
approach was extended so that 
all genotyped SNPs can be tested 
in the second stage of the testing 
strategy, making a decision on 
how many SNPs should be pushed 
forward to the test step redundant 
(78). Despite the larger number 
of tests in the second stage, this 
approach achieves power levels that 
are about 50% higher than in the 
original Van Steen approach, and 
that are comparable to the power 
levels of a population-based study 
with the same number of probands. 
The approach has been generalized 
so that phenotypic information on 
the parents can be incorporated 
as well (85). Extensions for 
case–control designs have been 
developed (86,87).

Other extensions of the FBAT 
approach include an extension 
to accommodate copy number 
variation calls (88), and an extension 
to allow covariate data from the 
parents to modify the weight 
assigned to transmissions of genetic 
information to the offspring, allowing 
the phenotype of the parents to 
influence the association analysis 
(89).

Software

With family-based designs, there is 
generally a need for special software 
to analyse the data. For the FBAT 
approach, four software packages 
are available. Two packages were 
developed by the original authors 
of the methods and are home-
grown (PBAT, P2BAT). Despite the 
lack of general support for such 
software packages in academia, 
the packages have proven to be 
reliable and user-friendly tools. 
Recently, a commercial package 
with professional user-support 
and documentation has become 
available that is particularly suited 
for less statistical-oriented users 
and for large-scale projects. Table 
15.1 shows an overview of these 
packages and their functions.

Discussion

Studies of families have been 
instrumental for describing the 
genetic architecture of many 
Mendelian and complex diseases. 
For initial characterization of the 
strength of evidence for genetic 
factors influencing disease risk, 
twin studies and evaluations of 
the aggregation of disease within 

families provide key insights. 
For diseases that have strong 
influences from genetic factors, 
segregation analysis followed by 
linkage analysis has been a highly 
effective strategy. When the genetic 
and environmental factors influence 
disease risk in complex ways, 
linkage analysis using a model-
free method is a preferred strategy. 
For diseases with weaker genetic 
influences, or that result from effects 
of many genetic factors with each 
individually having a weak effect 
on disease risk, association studies 
are more successful. Family-based 
association studies are robust to 
population stratification and can 
have power comparable to case–
control studies with unrelated cases 
and controls.

The area of whole-genome 
association scans offers great 
promise for the field of genetic 
association mapping. Most 
predictions agree that studies with 
large sample sizes are needed 
to identify the “needles in the 
haystack,” regardless of which 
design is used (80,83,90). It is much 
easier to achieve such sample sizes 
from existing cohorts, or from case–

Figure 15.2, Step 2: The Testing Step. Select the top K SNPs with the highest power 
estimates for subsequent testing with the FBAT statistic. The P-value of the FBAT 
statistic must be smaller than ά/K to achieve genome-wide/overall significance.

Power Rank Estimated power of the FBAT statistic SNP P-value FBAT statistic

1 0.92 3 0.90

2 0.89 100 0.20

3 0.85 25 0.00001

…. … …

K 0.70 53 0.20
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control studies, than from family 
samples. However the innovative use 
of the population information that is 
included in family-based data sets, 
combined with the robustness of the 
family-based association methods, 
can protect against both population 
substructures and misspecifications 
of the phenotypic model, creating 
a viable and powerful alternative to 

Table 15.1. Software for the analysis of family-based association tests

Package Genetic analysis capability Phenotypic analysis capability Special features

FBAT Single marker, haplotype, 
multi-marker

Binary traits, quantitative/
multivariate traits, ranked traits, 
time-to-onset

X-chromosome, permutation tests

PBAT Single marker, haplotype, 
multi-marker

Binary traits, quantitative traits/
multivariate, ranked traits, time-
to-onset, gene-environment 
interaction

Covariate adjustment, Van Steen 
algorithm for multiple testing, 
X-chromosome, permutation tests

P2BAT 
R-implementation

Single marker, haplotype, 
multi-marker

Binary traits, quantitative traits/
multivariate, ranked traits, time-
to-onset, gene-environment 
interaction

Covariate adjustment, Van Steen 
algorithm for multiple testing, 
X-chromosome, permutation tests

PBAT GoldenHelix 
commercial package

Single marker, haplotype, 
multi-marker

Binary traits, quantitative traits/
multivariate, ranked traits, time-
to-onset, gene-environment 
interaction

Covariate adjustment, Van Steen 
algorithm for multiple testing, 
X-chromosome, permutation 
tests, active user-support and 
professional documentation

population-based studies. Further, 
with the ability to handle extended 
pedigrees with large numbers 
of subjects, the FBAT approach 
allows the continuing utilization of 
existing linkage studies. Recent 
developments to estimate and test 
gene–environment interaction in 
the FBAT approach, without any 
loss of robustness, are an additional 

advantage (91). For many complex 
diseases, genetic interactions with 
environmental exposure variables 
are thought to be crucial for the 
understanding of the disease (e.g. 
smoking status and/or smoking 
history in asthma and COPD 
studies) (92,93).
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Summary

This chapter describes basic 
principles in study design, data 
analysis, and interpretation of 
epidemiological studies of genetic 
polymorphisms and disease risk, 
including the assessment of gene–
environment interactions. The 
case–control design (hospital-
based, population-based or nested 
within a prospective cohort) is 
frequently used to study common 
genetic variants and disease risk. 
Because of their widespread use, 
the analysis of case–control data will 
be the focus of this chapter. Two key 
considerations in the study design 
will be addressed: the selection of 
genetic markers to be evaluated, 
and sample size considerations to 
ensure adequate power to detect 

associations with disease risk. 
Single nucleotide polymorphisms 
(SNPs) are the most frequent form 
of common genetic variation, thus 
the discussion on data analysis 
will be based on the evaluation of 
associations between SNPs and 
disease risk. This chapter will begin 
with the evaluation of quality control 
of genotyping data, which is a critical 
first step in the analysis of genetic 
data. A description of statistical 
methods will follow, aimed at the 
discovery of genetic susceptibility 
loci, including analysis of candidate 
SNPs and genome-wide association 
studies, haplotype analyses, and 
the evaluation of gene–gene and 
gene–environment interactions.

Introduction

The approaches to studying genetic 
susceptibility factors for disease 
have evolved very quickly over the 
last several years, due to advances 
in genotyping technologies, 
substantial reductions in genotyping 
costs, and improvements in the 
annotation of common genetic 
variation, particularly the most 
common type of variant, the single 
nucleotide polymorphism. These 
advances have enabled investigators 
to move beyond evaluating a few 
candidate variants in key genes, to 
conducting more comprehensive, 
as well as exploratory, evaluations 
of common genetic variation in 
candidate pathways/networks to 
disease, and performing genome-
wide association studies (GWAS). 
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Over the last year, there has been 
an explosion of new discoveries 
of susceptibility loci for a wide 
range of diseases derived from 
GWAS (http://www.genome.gov/
gwastudies/). This rapid trend of 
discoveries is likely to continue in 
the near future, as an increasing 
number of epidemiological studies 
use this approach to identify novel 
susceptibility loci. A major factor in 
the success of these breakthroughs 
has been the formation of very 
large collaborative efforts through 
consortia of studies that is creating 
unprecedented opportunities for 
discovery.

The discovery of disease 
susceptibility loci can bring about 
improvements in the understanding 
of disease etiology, and may 
ultimately lead to improvements in 
risk assessment, targeted preventive 
or screening strategies to reduce 
disease incidence and mortality, 
and improvements in therapy 
through the identification of drug 
targets. The aim of this chapter is 
to describe basic principles in study 
design and data analysis in studies 
on common genetic polymorphisms 
and disease. A discussion of biases, 
and other considerations in the 
interpretation of data analyses, is 
outside the scope of this chapter 
and can be found in previous 
publications (1–3).

Study design

The study designs used in molecular 
epidemiology studies, and a 
description of their advantages 
and disadvantages, can be found 
elsewhere in this book (see Chapter 
14) and in previous publications 
(4). Discussed here are aspects of 
these epidemiologic study designs 
that are most relevant to studies of 
genetic susceptibility to disease. 
The hereditability of a disease, 
or the proportion of variation in 

disease susceptibility due to genetic 
factors, is directly related to the 
ability to identify susceptibility 
loci in epidemiological studies 
(5). Therefore, one of the first 
considerations is to evaluate the 
heritability, or a priori evidence, that 
the disease of interest is caused by 
genetic variation.

The case–control design (3,6), 
either nested in a prospective 
cohort or by retrospective sampling 
of a population, is by far the most 
commonly used design in genetic 
epidemiology studies of unrelated 
individuals. Hospital-based case–
control studies are particularly 
popular, as the hospital setting 
facilitates the rapid enrolment 
of subjects, and the collection 
and processing of biological 
specimens with high participation 
rates. The case–control design 
is of particular importance for 
the study of uncommon diseases 
that occur in small numbers in the 
population or prospective cohort 
studies. Given that most members 
of a prospective cohort will not 
develop disease, these studies 
often use sampling strategies, such 
as nested case–control and (less 
commonly) case–cohort designs, 
to improve efficiency (7). In these 
designs, only samples from cases 
and a random subset of non-cases 
are analysed, reducing the DNA 
extraction and genotyping costs 
considerably. The case–cohort 
design allows for the evaluation of 
several disease endpoints using the 
same comparison group (referred 
to as a subcohort); however, since 
the same disease-free subjects 
are repeatedly used as controls 
for different disease endpoints, 
depletion of DNA samples from this 
group can be an issue. Until whole-
genome sequencing is cost-effective 
and commonly available, whole-
genome amplification of DNA, from 
cases and controls can be used to 

address the problem of limited DNA 
in epidemiologic studies; however, 
this amplified DNA might not be 
suitable for all genomic assays (8).

Biased sampling, or non-
random selection of cases and/or 
controls, can be used to improve 
efficiency to discover genetic 
markers associated with disease. 
For instance, selection of cases with 
a family history of breast cancer 
can lead to gains in power to detect 
genetic susceptibility loci, assuming 
a polygenic model of inheritance with 
loci interacting multiplicatively (9). 
However, the generalizability of risk 
estimates and evaluations of gene-
environment (G-E) interactions can 
be compromised.

Genotyping hundreds of 
thousands of genetic markers in 
thousands of individuals can be 
costly. Multistage designs are 
commonly used to reduce the cost 
of genotyping very large numbers 
of samples (10). In these designs, 
a proportion of samples are 
genotyped for a large number of 
markers (e.g. SNPs that represent 
genetic variation across the genome 
in GWAS). In subsequent stages, 
only those markers showing the 
most significant associations with 
disease are genotyped in additional 
samples (10). The reduced cost 
is offset by a reduction in power 
compared to a study genotyping all 
markers in all available samples. 
Since the majority of genetic 
association studies use some sort of 
case–control design, the description 
of methods for data analyses in the 
section Analysis of Genetic Data, 
which follows, will focus on case–
control data.

Selection of genetic markers

This chapter focuses on single 
nucleotide polymorphisms (SNPs) 
– the most common form of 
variation in the human genome. A 
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SNP is a DNA sequence variation 
occurring when a single nucleotide 
base differs among members of a 
population. There are thought to be 
at least 10 million SNPs in the human 
genome, and the vast majorities are 
bi-alleleic, having only two alleles 
or nucleotide variant forms. SNPs 
occur throughout the genome and 
can be measured (genotyped) 
accurately. Although the genotyping 
costs have decreased dramatically 
in the last few years, it is still cost-
prohibitive to genotype all known 
SNPs or sequence the entire human 
genome. Therefore, current studies 
must select subsets of markers to be 
evaluated.

SNP selection strategies take 
advantage of the correlation among 
genetic variants located close 
together on the same chromosome, 
or linkage disequilibrium (LD), 
to select a minimal set of tag 
SNPs that capture the majority of 
common genetic variation in human 
populations (11,12). The selection 
of tag SNPs has been aided by the 
International HapMap Project (http://
www.hapmap.org/), a public resource 
that has genotyped millions of SNPs 
in 270 individuals from different 
ethnicities (30 Yoruba from Ibidan, 
Nigeria, 45 Japanese residents of 
Tokyo, 45 Han Chinese, and 30 
Caucasian trios from Utah, USA) 
(13). Several methods have been 
proposed to use extensive data sets 
like the HapMap to select tag SNPs. 
Pairwise tagging is a method where 
tag SNPs are selected by examining 
the LD measures between pairs of 
SNPs using a squared correlation 
coefficient, r2. A SNP is said to ‘cover’ 
another SNP if the r2 value between 
them exceeds a given threshold 
(e.g. 0.80). The Carlson algorithm to 
select optimal tag SNPs is iterative 
and begins by considering all SNPs 
as potential tags. At each step, the 
SNP that covers the most correlated 
SNPs is chosen as a tag SNP. That 

SNP and all other SNPs that it covers 
(called a bin) are removed, and the 
algorithm begins again and continues 
until all SNPs are either taken as 
tags or are covered by a tag (14). 
Multimarker or aggressive tagging 
algorithms examine correlations 
among two or more SNPs using a 
generalized correlation coefficient 
to determine coverage (15,16). This 
approach typically reduces the 
total number of tag SNPs required; 
however, the selection algorithm is 
computationally more intense than 
pairwise methods, and statistically 
more complex, since an appropriate 
multimarker test should be used to 
test the associations with disease. 
Multimarker tagging approaches 
are also more affected by missing 
genotype data, since several SNPs 
are often required to perform tests. 
The current generation of genotyping 
arrays used to perform GWAS 
include about 300 000 to 1 million 
SNPs to capture common genetic 
variation. The proportion of SNPs in 
HapMap covered by SNPs in each of 
these genotyping assays depends on 
the ancestral origin of the underlying 
population.

Sample size considerations

As in any epidemiological study, 
sample size considerations are 
critical for the design of studies 
of genetic associations and G-E 
interactions (10,17,18). The main 
parameters that determine the 
required sample size to attain a 
specified statistical power are:
• Disease prevalence in the 
population
• Magnitude of association (often 
measured by the odds ratio)
• Alpha-level or P-value threshold to 
designate a ‘statistically significant’ 
finding
• Genotype or allele frequency in the 
population
• Mode of inheritance

Generally, hundreds to 
thousands of subjects are needed 
to evaluate genetic associations 
with risk of complex diseases, 
as the magnitude of association 
between individual genetic variants 
on disease risk tends to be small 
(see http://www.genome.gov/
gwastudies/ for a catalogue of 
discoveries using GWAS in different 
diseases and traits).

Most studies measure genetic 
markers for disease rather than 
directly measuring the causal 
variant itself, as it is often unknown. 
The sample size needed to detect 
an association between a genetic 
marker and disease depends on the 
degree of linkage disequilibrium, or 
correlation due to physical proximity, 
between the marker and the 
causative variant. In approximate 
terms, the sample size requirements 
for studies using single SNPs as 
genetic markers are increased by a 
factor of 1/r2, where r2 is the squared 
correlation between the marker and 
the causal unmeasured SNP (19). 
Sample size approximations are 
more complex when the disease 
susceptibility locus is in LD with 
multiple SNPs (10).

One limitation of standard 
power calculation methods is that 
they focus on the power for the 
detection of a single susceptibility 
locus with a given minor allele 
frequency (MAF) and disease odds 
ratio. In GWAS, however, there is 
likely to be a variety of susceptibility 
SNPs with a spectrum of MAF and 
disease odds ratios. The goal is 
to discover a certain number of 
underlying susceptibility loci, not 
some specific loci. A recent report 
has suggested novel approaches to 
power calculation that can provide 
realistic assessment for several 
probable discoveries in GWAS, 
accounting for the likely distribution 
of effect sizes for the underlying 
susceptibility loci (20).
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An important challenge in large-
scale evaluations of candidate 
genes/regions/pathways and 
GWAS, is to identify the few variants 
truly associated with disease among 
the large number being tested 
(21,22). Given the low probability 
of a true association (i.e. low prior 
probability) and the small expected 
magnitude of true associations 
(often resulting in low statistical 
power, particularly for less common 
variants), the standard threshold for 
statistical significance of an α-level 
of 0.05 results in the identification 
of a very high percentage of false-
positive findings (23). Therefore, 
several authors have recommended 
reducing the P-value threshold to 
maintain a low probability that a 
statistically significant finding is a 
false-positive (i.e. false-positive 
report probability (FPRP)) (24,25). 
For instance, P-value thresholds 
of 10−4–10−5 were estimated for 
variants in candidate genes, and 
10−7 for random variants to reach 
high probabilities of true findings (~ 
>80%) (25). Inversely, FPRP also 
depends on the prior and statistical 
power to detect an association. 
Therefore since the priors are often 
low, to reach a desirably low FPRP, 
the sample size of the study should 
be large enough to attain adequate 
statistical power. For instance, a 
P-value of 0.0024 for a SNP with 
a prior probably of 0.001 in a study 
of 300 cases and 300 controls will 
correspond to an FPRP of 72%; 
however, increasing the sample size 
to 1500 cases and 1500 controls, 
and keeping everything else 
constant, would lower the FPRP 
to 20% (23). Figure 16.1 shows the 
sample size requirements to detect 
genetic associations with a per-
allele OR ranging from 1.1–1.5 for 
a variety of frequencies of the at-
risk allele (assuming a log-additive 
mode of inheritance) and P-value 
threshold of 10−5. Sample size 

needs increase dramatically for 
small changes in the OR when the 
magnitude of the OR is small, and for 
allele frequencies in the extremes 
(i.e. away from 0.50). The minimum 
sample size to detect a per-allele 
OR of 1.2 (i.e. assuming log-additive 
risk per allele and homozygous 
variant OR = 1.44) is 3300 cases 
and 3300 controls, whereas at least 
12 000 cases and 12 000 controls 
are needed to detect a per-allele 
OR of 1.1 (i.e. homozygous variant 
OR = 1.21). Sample size needs 
would increase by a factor of 1.4 if a 
P-value threshold of 10−7 were to be 
used instead of 10−5. These numbers 
illustrate that current studies of 
hundreds or a few thousand cases 
and controls have adequate power 
to detect an OR between 1.2–1.5 for 
common risk alleles (frequency > 
10%); however, much larger studies 
are needed to detect ORs of 1.1 for 
less-common risk alleles.

The statistical power of 
multistage GWAS designs depends 
on several factors: total number 
of available samples, number of 
samples and markers genotyped in 
each stage, α-level, the size of the 

genetic effects to be detected, and 
type of analysis (10). The price of 
genotyping for different technologies 
used at each stage is also an 
important factor determining the 
optimal design of multistage studies. 
In general, joint analysis of data from 
the different stages is more powerful 
than replication analysis (26). As the 
cost of genotyping and sequencing 
methods continue to decrease, 
studies will be able to scan all 
individuals and eventually obtain a 
full genomic sequence, which will 
allow the evaluation of rarer variants 
as well as the mapping of causative 
variants. Sample size requirements 
for more complex analyses of 
genotype data, such as pathway-
based, haplotype and novel high-
dimensional analyses, are less well 
understood.

Evaluation of G-E interactions 
often requires large sample sizes 
that are further increased by the 
presence of errors measuring 
environmental and/or genetic 
exposures, even when the errors 
are small (17,27). Although 
multiplicative parameters for G-E 
interactions tend to be attenuated 

Figure 16.1. Sample size requirements to attain 80% power to detect a range of per-
allele odds ratios (OR) for an association between disease risk and a bi-allelic SNP
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by differential misclassification of 
exposure (17), this type of bias could 
lead to overestimation of the main 
effects of the exposure, joint effects, 
and subgroup effects, or additive 
interactions. Thus, high-quality 
exposure assessment and almost 
perfect genotype determinations 
are required for the evaluation of 
G-E interactions. This highlights the 
importance of validating genotype 
assays and including quality 
control samples during genotype 
determinations. This will help 
assess the reproducibility of the 
assays to identify problematic ones 
for possible re-genotyping or assay 
optimization.

There are several free statistical 
software programs to carry out 
power calculations for genetic 
association studies. POWER (http://
dceg.cancer.gov/bb/tools/power) 
can be used for binary outcome 
studies (case–control or cohort 
studies) based on a logistic-like 
regression model with one or two 
covariates (e.g. gene-exposure 
interactions) (18); POWER for 
Genetic Association Analyses 
(http://dceg.cancer.gov/bb/tools/
pga) can be used in case–control 
studies, fine-mapping studies, and 
whole-genome scans, for power 
and sample size calculations 
under various genetic models and 
statistical constraints; QUANTO 
(http://hydra.usc.edu/gxe/) is 
useful in matched case–control, 
case–sibling, case–parent, and 
case-only designs to compute 
sample size or power calculations 
to evaluate genetic associations, 
G–E interaction, or gene–gene 
(G–G) interaction; the CaTS Power 
Calculator (http://www.sph.umich.
edu/csg/abecasis/CaTS/) is a 
user-friendly interface for power 
calculations for large genetic 
association studies, including two-
stage GWAS (26); a spreadsheet 
can be downloaded to calculate 

FPRP (http://jnci.oxfordjournals.org/
cgi/content/full/96/6/434/DC1) (23).

Current case–control or cohort 
studies usually include between 
a few hundred to a few thousand 
cases and a similar numbers of 
controls. Therefore, to meet the 
larger sample size requirements 
to identify weak associations (Cf. 
Figure 16.1) and interactions, 
especially when considering disease 
subtypes, an increasing number of 
consortia of existing studies have 
been and continue to be formed 
(28). Consortia can achieve the 
large sample sizes necessary to 
confirm or refute associations by 
coordinating the analysis of pooled 
data from many studies, as well as 
evaluating consistency of findings 
across studies of different quality 
and with different sources of biases 
(29). However, comparability of 
data on environmental exposures 
across studies may be a limitation. 
Therefore, very large, well-designed 
studies with high-quality exposure 
data and tumour specimens 
might be needed. To date, there 
are very few examples of gene–
environment interactions that 
have been demonstrated in large 
pooling efforts. One example is 
the demonstration of interactions 
between cigarette smoking and 
polymorphism in the NAT2 and 
GSTM1 genes in the context of a 
bladder cancer GWAS (30).

Analysis of genetic data

Quality control of DNA 
and genetic data

Quality control analyses are 
conducted both before and after 
genotyping of DNA samples (31). 
Ideally, DNA samples should 
be accurately quantified before 
genotyping (e.g. using fluorescence 
nucleic stains, such as PicoGreen® 

(Molecular Probes Inc.)), and 

profiled to obtain a “DNA fingerprint” 
using a panel of genetic markers 
that uniquely identify each sample 
(e.g. the Amp/STR® Identifiler® kit 
(Applied Biosystems) uses 15 SNPs 
and the Amelogenin marker for 
gender determination). This allows 
precise verification of duplicate 
DNA samples, identification of 
unexpected duplicates (e.g. due to 
sample collection, storage, labelling 
or plating errors), identification of 
gender mismatches between the 
DNA and self-reported gender, 
and identification of contaminated 
samples that should be excluded 
from further analyses. After 
genotyping assays have been 
performed, the quality of the 
resulting genotyping calls can 
be assessed by evaluating the 
scatter plots of allele-specific probe 
intensity values used for genotype 
determination. SNP genotype calls 
are made based on the clustering 
patterns of the probes, where 
clusters for each homozygote and 
heterozygote genotype state should 
be observed. High quality assays 
will demonstrate tight clusters with 
clear separation between them 
(Figure 16.2A versus 16.2B).

Genotyping completion rates 
can be calculated for DNA samples 
or loci:

• Overall completion rates—
number of loci with genotype calls 
divided by the total number of 
genotyped loci

• Completion rates by sample—
number of loci with genotype calls 
for a given sample divided by the 
total number of genotyped loci in 
that sample

• Genotype completion or call 
rates—number of samples with 
genotype calls for a given SNP 
divided by the total number of 
genotyped samples

Decreased completion 
rates often reflect poor assay 
performance, which may be due to 
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chemical and physical properties of 
the assay or the quality of the input 
DNA. Completion rates should also 
be calculated separately by DNA 
source, processing laboratory, DNA 
extraction method, case–control 
status and genotyping plate to detect 
systematic variation in genotype 
quality. Low genotype call rates can 
help detect loci with problematic 
assays that require re-genotyping, 
a new assay, or selection of a 
surrogate SNP. Completion rates by 
sample or plate can detect problems 
with specific samples or plates 
that could result in exclusion of 
data from those samples or plates. 
Analyses of completion rates by 
case–control status can detect 
assay performance differences due 
to varying DNA quality for cases 
and controls, which would result 
in differential misclassification. 
When large numbers of SNPs are 
genotyped, such as in GWAS, it is 
useful to look at the distribution and 
plot the completion rates by sample 
or loci (genotype calls) to detect 
outliers. Figure 16.3A shows an 
example of such plots, which utilize 
data from a scan using the Illumina 
HumanHap 1M assay with good 

overall completion rates for most 
samples and loci.

Sample heterozygosity is 
the percentage of heterozygous 
genotypes in autosomal SNPs for a 
given sample. For instance, SNPs 
included in the Illumina HumanHap 
1M genome-wide genotyping assay 
in populations of European origin 
have a mean heterozygosity of 
about 27%. Although samples from 
different racial origins will have 
different heterozygosity values, 
extreme outlier values can reflect 
sample quality or assay performance 
problems, which is reflected by a 
correlation between high (or low) 
sample heterozygosity and reduced 
sample completion rates. Plotting 
heterozygosity for all samples and 
against sample completion can help 
identify low performing samples 
(see Figure 16.3B for an example).

Analyses of data from duplicate 
quality control samples include 
calculation of percent agreement 
of informative genotypes (i.e. 
concordance of non-missing 
genotype calls for DNA samples from 
the same individual) among pairs of 
samples. As with completion rates, 
genotype concordance should also 

be evaluated by plate and sample, 
since this can give clues as to the 
source of error (e.g. systematic 
errors often reflect sample handling 
or plate labelling and orientation 
problems, whereas random errors 
reflect assays’ reproducibility).

In very large, randomly mating 
populations with no selection, 
genotype frequencies are expected 
to be constant and ‘in equilibrium’ 
from generation to generation. 
This phenomenon is called Hardy–
Weinberg equilibrium (HWE), 
and the expected genotype 
frequencies under HWE are called 
Hardy–Weinberg proportions 
(HWP). It should be noted that 
although HWE and HWP are often 
used interchangeably, HWE is a 
multigenerational phenomenon 
and cannot be directly assessed in 
standard epidemiological studies. 
Under random mating and no 
selection, HWP implies HWE; 
however, under selection and 
non-random mating, genotype 
frequencies can be in HWP but 
not HWE. For a bi-allelic SNP with 
A-allele frequency p and a-allele 
frequency q = (1-p), the expected 
genotype proportions under HWP 

Figure 16.2. Examples of genotype clustering plots used to make genotype calls (polar cluster plots of the normalized intensity 
and allelic intensity ratio)
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are p2 for genotype AA, 2pq for Aa 
and q2 for aa. Extreme departures 
from HWP in the control population 
(departures in cases could be due to 
associations with disease) can reflect 
assay problems. Other reasons are 
also possible, such as non-random 
mating, selection, population 
admixture, and a genetically non-
homogeneous control population. 
Therefore, a very careful evaluation 
of quality control measures should 
be performed when significant 
departures from HWP (e.g. using 
an exact test (32), Pearson’s χ2 
test comparing observed and 
expected genotype frequencies) are 
observed for a specific SNP assay. 
Evaluation of HWP for all genotyped 
SNPs (i.e. comparison of expected 
and observed number of SNPs 
with significant HWP departures) 
can be helpful in determining if 
the observed departure reflects a 
problem with the controls, such as 
a problem during control selection, 

or the source population not being 
in HWE due to non-random mating. 
If there is no evidence of genotyping 
errors or control selection problems, 
the likely explanation for the 
observed departure is chance. In 
that case, methods of analyses for 
associations between the genotype 
and disease that assume HWP can 
be helpful in evaluating the impact of 
a chance departure on estimates of 
effect, such as the odds ratio (33).

In summary, a list of quality 
control checks before risk analysis 
of genotype data can include:

• Verifying duplicate samples and 
identifying unexpected duplicates 
using DNA profiling data

• Examining genotype clustering 
in scatter plots

• Identifying discrepancies 
between self-reported and 
genetically determined gender

• Completion rates by sample—
excluding data from DNA samples 
with low completion rates

• Genotype call rates—excluding 
data from assays with low call rates

• Examining sample 
heterozygosity and excluding outlier 
samples

• Genotype concordance 
among verified duplicate samples 
(excluding assays with low genotype 
concordance)

• Genotype concordance among 
samples not from the same sample 
(excluding assays with unexpectedly 
high genotype concordance)

• Testing for deviations of Hardy–
Weinberg proportions

Discovery of genetic 
susceptibility loci

Described here are statistical 
analyses of SNP data derived from 
candidate genes or regions, as well 
as genome-wide approaches in a 
case–control study (population, 
hospital-based or nested in a 
prospective cohort). Methods of 

Figure 16.3. Examples of quality control plots using data from 1M Illumina platform
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analyses for prospective cohort 
data (e.g. Cox proportional-hazards 
regression analyses or analyses 
of quantitative traits) will not be 
addressed. The analyses described 
below can be implemented 
using widely available statistical 
packages, such as the commercial 
packages Stata (http://www.
stata.com/), SAS (http://www.sas.
com/) or the software R Project of 
Statistical Computing (http://www.r-
project.org/). R is being used more 
frequently in analyses of genetic 
data, as many novel statistical 
methods are written and freely 
distributed as R add-on packages, 
providing a very flexible computing 
and graphical toolset.

Association between individual 
SNPs and disease risk: 
Genotype-based analyses

In genotype-based analyses, 
each individual SNP is evaluated 
in relation to disease risk by 
comparing the genotype distribution 
for cases and controls. The odds 
ratio (OR) approximates the ratio 
of disease incidence in exposed (or 
susceptible) and unexposed (or non-
susceptible) individuals, and is often 
used as a measure of association 
in case–control studies, as it does 
not require estimates of the actual 
incidence rates (34). Table 16.1 
illustrates a 2x3 table often used 
to display the number of cases and 
controls with the three possible 
genotypes in the population under 
study. This data can be used to 
estimate genotype ORs for subjects 
carrying the heterozygous and 
uncommon homozygous genotypes 
relative to subjects with the common 
homozygous genotype. Genotype-
based ORs can be estimated using 
logistic regression models (34) with 
disease status as the outcome and 
the SNP as the explanatory variable 
coded as either indicator or dummy 

for each genotype. Although these 
analyses yield unbiased and efficient 
estimates of the OR, the estimate of 
the intercept parameter is biased 
due to the retrospective nature of 
the case–control design (35). Data 
from studies with cases individually 
matched to controls by variables 
such as age, hospital or region 
should be analysed by conditional 
logistic regression models to ensure 
unbiased and efficient estimates of 
the OR (34). However, when data on 
genotype or exposure information 
is missing for either the case or the 
control in a matched pair, information 
from both subjects is lost resulting 
in decreased efficiency. Therefore, 
individually matched studies are 
often analysed as unmatched 
studies, adjusting for categories 
of the matching factors using 
indicator variables. This can result 
in incomplete adjustment for the 
matched design, but the impact is 
generally minimal and compensated 
for by the gain in efficiency.

Below is the form of a logistic 
model for genotype (G) variables 
(additional variables can be added 

to adjust for potential confounders) 
and disease (D) outcome:

Pr(D|G) = exp(β0+ βAa Aa + βaa aa)/
(1+exp(β0+ βAa Aa + βaa aa) 

or
logit (Pr(D|G)) = β0+ βAa Aa + βaa aa

where Aa, aa are 0,1 indicator 
variables for each genotype (AA is 
the reference).

The genotype-specific OR and 
95% confidence intervals (CI) can be 
estimated from the logistic regression 
coefficients and its standard error 
(SE) as:

OR(Aa) = exp(βAa); 
95% CI = exp(βAa ± 1.96 SE (βAa))
OR(aa) = exp(βaa); 
95% CI = exp(βaa ± 1.96 SE (βaa))
The null hypothesis (H0) for a 

test of SNP-disease association 
(sometimes called co-dominant test) 
can be written as:

H0: OR(Aa) = 1.0 and OR(aa) =  
1.0 with 2 degrees of freedom (df)
Hypothesis testing can be 

carried out by conventional score-
test, Wald test or likelihood ratio test. 

Table 16.1. Genotype frequencies and odds ratio (OR) estimates for genotype-based 
analyses in a case–control Study 
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The variance of the OR estimates for 
each genotype is inversely related to 
each of the cell counts (Table 16.1), 
which gives an intuitive sense of why 
the larger the cell counts are, the 
smaller the variance and the tighter 
the confidence intervals. This also 
shows that estimation of genotype-
specific ORs can be unreliable for 
uncommon SNPs with only a few 
subjects carrying the homozygous 
variant genotype (aa).

Genotype ORs can also be 
estimated under the assumption 
of specific models of genetic 
inheritance, such as the log-
additive (or multiplicative) model, 
which assumes a log linear trend 
for genotypes with an increasing 
number of variant alleles; the 
recessive model, which assumes the 
same risk for Aa and aa carriers; and 
the dominant model, which assumes 
the same risk for AA and Aa carriers. 
When using these approaches, 
keep in mind that these models of 
inheritance were originally developed 
for simple Mendelian diseases with 
near-complete penetrance, and thus 
might be over simplistic for complex 
diseases that are influenced by 
variants in multiple loci. Estimates 
of ORs and tests for genetic 
associations under different models 
for genetic risk can be obtained 
using logistic regression models with 
disease status as the outcome. The 
three possible genotypes for a given 
SNP are often coded as 0 for AA, 1 
for Aa, and 2 for aa. ORs for Aa and 
aa (relative to AA) can be estimated 
by including two dummy variables 
for Aa and aa in a logistic regression 
model of the form:

Logit (P(D|G)) = β0+ βG G
Log-additive trend model: G coded 
as 0 for AA, 1 for Aa, 2 for aa

exp(βG) = per allele OR
Dominant model: G coded as 0 for 
AA and 1 for (Aa+aa)

exp(βG) = OR(Aa/aa) vs AA
Recessive model: G coded as 0 for 

(AA+Aa) and 1 for aa
exp(βG) = OR(aa) vs AA/Aa

The H0 for a test of association under 
the models above can be written as:

H0: OR = exp(βG) = 1.0, 1 df.
The power to detect disease 

susceptibility loci is maximized 
when the assumed genetic model of 
inheritance is the true model. Thus, 
since the true mode of inheritance 
is often unknown, one might chose 
to test several models (with the 
caveat mentioned above that simple 
modes of inheritance might not hold 
for complex diseases). However, 
reporting the most significant finding 
after testing different models will 
result in an inflated type 1 error or 
an underestimate of the precision of 
the confidence intervals. Therefore, 
it is important to use appropriate 
statistical tests, such as permutation 
testing (36), to account for testing 
of multiple models. Multiple testing 
might result in no increases or even 
decreases in power, compared to 
testing only one pre-defined model 
with good performance under 
different alternative models, such 
as the 2 df genotype-based test or 
the trend test under the log-additive 
model (37). The advantage of the 
1 df trend test, assuming a log-
additive model, is that it uses one 
less df; it is generally more powerful 
than the 2 df genotype-based test, 
when the genetic effect is additive 
or log-additive; and it has good 
power to detect dominant effects. 
However, the trend test has poor 
power to detect recessive effects. 
Although the 2 df test for genotype 
effects has substantially better 
power to detect recessive effects, 
the actual power is often low. It 
should be noted that, even if the 
underlying model for the disease 
loci were recessive, the association 
with disease with a marker SNP 
(correlated with the causal SNP) 
would tend to look log-additive due 
to misclassification of subjects with 

respect to the true genotypes for the 
disease allele. Finally, a 2-sided test 
for trend is not affected by the sign 
of the LD between the minor allele 
of the marker SNPs and the causal 
SNP, whereas this can be affected 
for the other tests (38). No matter 
what model is used for testing for 
associations, genotype-specific 
estimates of the OR are often 
presented (unless the homozygous 
carriers are very uncommon), 
since they do not make any 
assumptions about the underlying 
mode of inheritance, and provide 
more information of the possible 
underlying models.

Association between individual 
SNPs and disease risk: Allele-
based analyses

In genotype-based analyses, the 
unit of observation is the subject or 
genotype, whereas in allele-based 
analyses, the unit of observation is 
the allele. Since each subject has 
two alleles at any autosomal locus, 
the total number of observations 
in allele-based analyses is twice 
the number of subjects. Table 16.2 
illustrates a 2x2 table for the allele 
frequencies for cases and controls, 
and the allele-based ORs and 
variance. Allele-based tests for 
association with disease assume 
independent distribution of alleles 
in the population, or HWP, for both 
cases and controls (39). HWP in 
controls implies HWP in cases 
only if there is no association with 
the disease (i.e. under the H0), or if 
the alleles have multiplicative (log-
additive) effects on disease risk. 
Therefore, if the control population 
is in HWP, the allele-based tests 
with variance estimates under 
Ho are valid, but estimation of 
confidence intervals will require 
the additional assumption that the 
alleles have multiplicative effects. It 
should be noted that under HWP, the 
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allele-based test is asymptotically 
equivalent to the trend test in 
genotype-based analyses (39). 
The interpretation of the allele-
based ORs is less intuitive than the 
genotype-based ORs, as individuals 
always carry a combination of two 
alleles, and thus might not have a 
useful risk interpretation. Because 
of the more restricted interpretation 
and set of assumptions of the allele-
based analyses, genotype-based 
analyses are often preferable (39).

Association between other types 
of variants and disease risk

The previous section described 
analyses of SNP variants, which 
have two alleles for any autosomal 
loci (males are hemizygotes, i.e. 
they have only one allele for SNPs 
in X-linked genes). Analyses of 
other types of genetic variation, 
for instance multiallele variants in 
variable tandem repeats (VTR) 
or copy number variations (CNV), 
follow similar principles and will not 
be discussed here. Because of the 
increased number of categories, 
model-based analyses of multiallelic 
loci or haplotypes can be very helpful 
in reducing the number of parameters 
to be estimated (40).

Haplotype analyses

Haplotype analyses exploit the 
LD, or correlation among genetic 
markers that are physically close, 
to improve the statistical efficiency 
and interpretability of studies of 
genetic associations with disease 
risk (41). These analyses can be 
aimed at comprehensively scanning 
a candidate region for disease 
susceptibility loci, or used to detect 
associations with markers that 
act in cis (i.e. when two or more 
variants affect disease only if they 
are on the same chromosome). 
A methodological challenge in 

studies of unrelated individuals is 
the estimation of phased haplotypes 
using unphased genotype data. The 
estimation of haplotype frequencies 
among cases and controls is done 
iteratively using methods such as 
the expectation-maximization (EM) 
algorithm, which can be implemented 
using software packages such as 
PROC HAPLOTYPE in the SAS 
Genetics Package, SNPHAP (http://
www-gene.cimr.cam.ac.uk/clayton/
software/snphap.txt) and tagSNP 
(http://www-hsc.usc.edu/~stram/
tagSNPs.html). There is a wide 
range of statistical methods to 
analyse haplotype associations with 
disease using regression models 
that allow for the adjustment of 
potential confounders (41,42). Single-
imputation or “plug-in” methods model 
estimates of individual haplotypes 
as if they were observed, whereas 
marginal regression methods take 
into account phase ambiguity in 
the estimation of measures of 
association between haplotypes 
and disease risk (41,43). The main 
advantage of plug-in methods 
is that they are computationally 
simple; they can be implemented 
using standard statistical software, 

which uses estimates of posterior 
haplotype probabilities. More 
advanced methods use EM type 
algorithms for simultaneous 
estimation of haplotype frequencies 
and haplotype-disease odds ratio 
parameters. These methods produce 
more accurate variance estimates 
and confidence intervals, since they 
properly account for the fact that 
haplotype phases are not directly 
observed. These methods require 
specialized software, such as the 
R function haplo.glm in the haplo.
stats package, Chaplin (http://www.
genetics.emory.edu/labs/epstein/
software/chaplin/) or HAPSTAT 
(ht tp: //www.bios.unc.edu/~ l in /
hapstat/).

Analysis of GWAS data

GWAS generate very large 
genotype data sets, often including 
billions of genotypes per study (e.g. 
1 million SNPs in 4000 subjects) 
that require the development of 
tools to accommodate the demands 
for data storage, management, 
quality control and risk analyses. 
These tools are likely to expand 
and improve to meet the needs of 

Table 16.2. Allele frequencies and odds ratio (OR) estimates for allele-based 
analysis in a case–control Study 
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increasingly large data sets. Two free 
and available tools that can meet the 
needs of data management, quality 
control, population stratification and 
association analyses of GWAS data 
are PLINK (http://pngu.mgh.harvard.
edu/~purcell/plink) (44) and the 
Genotype Library and Utilities (GLU) 
package (http://code.google.com/p/
glu-genetics).

Analyses of GWAS data usually 
include: quality control analysis of 
genotype data, as described above; 
analysis of population structure and 
decisions on the need and method 
for adjustment for population 
stratification; definition of the 
analytical data set after exclusions 
of data from samples or loci based 
on quality control analyses; and 
analysis of the association between 
genotypes and disease risk.

Analysis of population structure. 
Epidemiological studies often collect 
information on self-reported ethnicity 
and geographical location from 
cases and controls. Self-reported 
ethnicity, race and geographical 
location are surrogates for a 
complex mixture of unmeasured 
factors, which reflect variation 
in genetic background, culture, 
language, religion and health-
related behaviour (45). Because 
these unmeasured factors could 
introduce confounding bias when 
related to disease and exposures of 
interest, cases are usually matched 
to controls by race, ethnicity and 
geographical location to facilitate 
adjustment during the analyses. 
However, population substructure 
information (i.e. heterogeneous or 
admixed populations) not captured 
by self-reported ethnicity could 
lead to population stratification or 
confounding bias due to differences 
in allele frequency and disease risk 
across subpopulations (46–48). 
Population structure analyses use 
multilocus genetic data to assign 
individuals to populations of origin. 

This determines if there is population 
substructure not accounted 
for by variables measured in 
epidemiological studies. Population 
structure in GWAS can be analysed 
using a Bayesian clustering 
approach (49). This method uses 
information on linkage between a 
set of SNPs and Hardy–Weinberg 
disequilibrium to decompose a 
group of individuals (e.g. cases and 
controls) into genetically similar 
populations or clusters. Reference 
subjects of fixed populations (e.g. 
Asian, European and African from 
HapMap) can be used to guide 
the clustering process, to estimate 
the degree of admixture of each 
study sample. The SNPs for these 
analyses are selected from SNPs 
in the scan with high completion 
rates and low residual LD (e.g. r2 

< 0.1–0.01 for pairs of SNPs less 
than 200Kb apart). As an outcome 
of these analyses, each individual 
is assigned an admixture coefficient 
reflecting the estimated degree of 
membership with each population. 
The degree of membership in a 
structure analysis, assuming the use 
of the three HapMap populations 
as fixed reference populations, 
can be plotted in an equilateral 
triangle, also called an admixture 
plot. Membership estimates for 
each of the three populations are 
represented by the distance to each 
of the three corners of the triangle. 
The software STRUCTURE can be 
used to carry out these analyses 
and can be downloaded from http://
pritch.bsd.uchicago.edu/software.
html.

Genetically-determined race 
using admixture analyses can be 
compared to self-reported race and 
ethnicity to identify, and possibly 
exclude, outliers from subsequent 
risk analyses. Figure 16.4A shows 
an example of an admixture plot 
generated by STRUCTURE from 
a population self-identified as 

Caucasians. Red dots represent 
cases and green dots represent 
controls.

According to this plot, most 
subjects are estimated to be of more 
than 85% European descent (i.e. 
they are clustered in the European 
corner) with no evidence for 
substructure. The few subjects that 
are estimated to be of less than 85% 
European descent can be excluded 
from risk analyses to reduce 
population heterogeneity. However, 
if strong evidence for population 
structure were to be found, this 
method cannot be easily used to 
adjust for population structure in 
the risk analyses. EIGENSTRAT is 
a software that has been proposed 
to detect and adjust for population 
stratification in GWAS (50). This 
method uses principal component 
analyses (PCA) to reduce high-
dimensional genotyping data to lower 
dimensions that can be used in the 
analyses. These analyses produce 
a set of continuous variables, called 
principal components (PC), that 
capture the maximum of the genetic 
variation across individuals in a 
data set (Figure 16.4B). Each PC is 
defined as the top eigenvector of a 
covariance matrix between samples, 
thus the name EIGENSTRAT. 
Inclusion of related individuals in 
PCA analyses can create problems 
because of the high genetic 
correlation between relatives. 
Epidemiological studies of unrelated 
individuals can occasionally 
unknowingly enrol family members. 
Therefore, analyses to determine 
the degree of relatedness between 
individuals, such as Pedigree 
Relationship Statistical Test 
(PREST) analyses (http://galton.
uchicago.edu/~mcpeek/software/
prest/) (51), should be carried out 
before the PCA analysis to identify 
and exclude relatives. Significant PC 
from these analyses can be used to 
model ancestry differences between 
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in missing genotype data due to 
assay failures (e.g. 2% of samples 
with missing genotypes for a 
SNP with 98% completion rate), 
and increasing genetic coverage 
through imputation of SNPs that 
have not been genotyped. These 
methods use information from a 
reference panel, such as HapMap, 
to impute untyped SNPs. In addition 
to increasing power, SNP imputation 
can sometimes help localize signal 
for an association in a region, 
and facilitate the combination of 
data from studies using different 
genotyping chips or platforms, 
including overlapping, but not 
identical, sets of SNPs. Several 
methods and software are available 
to impute SNP data, such as IMPUTE 
(ht tp: //mathgen.stats.ox.ac.uk /
impute/impute.html) (53), MACH 
(http://www.sph.umich.edu/csg/
abecasis/MACH/download/) (54), 
and BimBam (http://stephenslab.
uc h i c ag o .e du /s o f t wa re .h t m l ) 
(55). In all of these methods, it 
is important to keep in mind that 
imputation accuracy will depend 

Figure 16.4A. Example of an triangular admixture plot generated by STRUCTURE 
for a population self-defined as Caucasians in the USA. The ancestry estimate is 
represented by the distance to each side of the triangle. Red dots represent cases and 
green dots represent controls. Reprinted by permission from Macmillan Publishers 
Ltd: Nature Genetics, copyright (2007).

Figure 16.4B. Example of principal component analysis (PCA) to identify principal components (PC) that account for population 
structure

cases and controls and thus adjust 
for population stratification. These 
analyses can be performed using the 
EIGENSOFT package that includes 
population genetics methods (52) 
and the EIGENSRTAT stratification 

correction method (http://genepath.
med.harvard.edu/~reich/Software.
htm) (50).

SNP imputation methods can 
increase the power of studies of 
genetic regions or GWAS by filling 
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on many factors: completeness 
and accuracy to the reference SNP 
panel; the quality of the data (e.g. 
large amounts of missing data will 
decrease accuracy); density of 
SNPs and LD pattern in the region 
(i.e. areas with low coverage or low 
LD are more difficult to impute); 
the similarity of the LD structure 
between the reference population 
(e.g. HapMap) and the population 
under study (e.g. admixed or unique 
populations, such as Amish, might 
be difficult to impute); and allele 
frequency (i.e. rare SNPs are 
harder to impute). Thus, findings 
from analyses of data, including 
imputed SNPs, should be carefully 
interpreted taking into account these 
limitations.

Definition of the analytical data 
set. Analysis of quality control of 
the genotype data and population 
structure can be used to identify 
and exclude samples and loci 
from analyses (e.g. samples with 
low completion rates, samples 
from subjects with discrepancies 
between the self-reported race and 
ethnicity and genetically determined 
race, or loci with low call rates across 
samples or with discordant results 
in duplicated QC samples). Other 
criteria based on epidemiological 
data can also be used to define the 
analytical data set; for instance, 
exclusion of subjects with missing 
data in key variables, such as age, 
or exclusion of rare subtypes of 
disease, such as rare histological 
types of cancer, to decrease disease 
heterogeneity.

Analysis of association between 
genotypes and disease risk. 
The primary aim of analysis of 
GWAS data is to discover markers 
for genetic susceptibility loci. 
Initial analyses usually evaluate 
associations between each individual 
SNP and disease risk and follow the 
principles previously described. In 
multistage designs, an important 

consideration in the analysis is the 
criteria used in the first stage to 
select SNPs to be genotyped in 
subsequent stages (10). A subset 
of the most significant P-values for 
SNP-disease associations is often 
used to select SNPs to be carried 
forward to subsequent stages. Other 
approaches, such as hierarchical 
regression models incorporating 
prior knowledge on the SNP selection 
procedures, can also be used (56). 
In general, joint analysis of data from 
different stages is more powerful 
than replication analysis (26).

Graphical representation of 
results can be very helpful for 
summarizing the large amounts 
of GWAS data. For instance, 
quantile-quantile plots (Q-Q plots) 
for observed P-values for a test of 
the null hypothesis of no association 
between each SNP and disease 
risk against expected P-values 
under the null hypothesis can be 
useful. These plots summarize both 
systematic bias and evidence for 
association. Most SNPs in a GWAS 
will not be associated with disease 
risk; therefore, associated P-values 
will appear in the diagonal of the 
Q-Q plot. Small departures at the 
extreme of the Q-Q plot suggest 
associations with disease. Large 
departures from the diagonal can 
reflect systematic biases leading to 
increases in false-positive findings 
(e.g. due to different DNA quality 
for cases and controls or population 
stratification). Figure 16.5 shows 
an example of a Q-Q plot from an 
analysis of a GWAS of hair colour, 
before (back dots) and after (red dots) 
adjusting for population stratification 
using PC (57). This example shows 
how adjustment by PC was able to 
reduce a large deviation from the 
diagonal that reflected bias due 
to population stratification. Plots 
of the –log10 (P-value) for all SNP 
associations with disease sorted by 
chromosomal location, can also be 

helpful in showing the distribution of 
P-values and identifying the location 
of associations with genomic 
significance.

Analysis of additional outcomes. 
Data from GWAS can also be used 
in ancillary analyses to evaluate 
genetic association with secondary 
outcomes measured in cases 
and controls (e.g. other diseases 
or exposures, such as height or 
smoking habits). The original case–
control sampling can affect measures 
of association with secondary 
outcomes (58,59); however, bias 
is only introduced when both the 
secondary outcome and the genetic 
loci under study are associated 
with the risk of the primary disease 
(58). Because most genetic loci in 
GWAS will not be associated with 
the primary disease, naïve analyses, 
ignoring the sampling design, will be 
valid for most loci.

Hierarchical-Bayesian methods

Prior information on the expected 
magnitude of genetic associations 
(e.g. the OR likely to vary from 
1.1–1.5) can be used in hierarchical 
models to provide more constrained 
estimates than the conventional, 
frequentist analytical approaches 
mentioned above (60,61). Other 
advantages of this approach are that 
it can be used to address problems 
of multiple comparisons and to 
incorporate biological information 
from pathway in the analyses.

Hierarchical models can also 
be used in selecting SNPs to be 
followed-up in multistage GWAS 
(60,61). These models can increase 
the power to detect susceptibility loci 
by incorporating known information 
about the SNPs into the selection, 
rather than just relying on measure 
of association in the data set. Wider 
use of hierarchical models has 
been limited by the unfamiliarity 
of epidemiologists with software 
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packages to fit these models. 
However, their use may increase 
now that SAS codes are available 
for analysing epidemiologic data 
with hierarchical models (60,61).

Evaluation of interactions

Complex diseases are likely to be 
caused by the interplay of multiple 
environmental exposures and 
genetic susceptibilities, hence the 
importance of evaluating G-G and 
G-E interactions (62). Specifically, 
evaluation of interactions can:

• Facilitate the identification of 
underlying risk factors for disease 
(e.g. improve power to detect a 
risk factor that varies according 
to the levels of another factor by 
stratifying on the modifier factor)
• Provide insights into the 
biological mechanisms of disease
• Provide public health benefits, 

such as improved risk prediction 
models and strategies for 
disease prevention (e.g. benefits 
of targeting subjects susceptible 
to specific exposures)
In practice, however, evaluation 

of interactions can be quite 
challenging because it requires 
very large studies with high-
quality exposure assessment and 
availability of biological specimens. 
Even in well-designed, well-
powered epidemiological studies, 
exploring interactions can be a 
computationally daunting task, 
particularly in studies of a very large 
number of genetic markers, such as 
GWAS, evaluated in hundreds of 
thousands of SNPs.

Definition of interaction

In epidemiology, an interaction 
between two factors is usually 

defined as the statistical evaluation 
of whether the association between 
one factor (e.g. cigarette smoking) 
and disease risk varies according 
to the value of the other factor (e.g. 
NAT2 genotype). A multiplicative 
interaction occurs if the association 
between the two factors is measured 
in a multiplicative scale by the relative 
risk (or odds ratio), and an additive 
interaction occurs if the association 
is measured in the additive scale 
by the risk difference (63). A 
multiplicative or additive interaction 
can also be described as a departure 
of the joint effect of the two factors 
from the expected effect under a 
multiplicative or additive model, 
respectively. Table 16.3 shows the 
definitions of measures of association 
between two dichotomous factors 
(an environmental exposure (E) 
and a genotype (G)) and disease 
risk, including joint effects and 
stratum-specific effects, as well 
as multiplicative and additive 
interactions (64,65). A set of three 
ORs characterize the E and G 
associations with disease: OR(G|E = 
0), OR(E|G = 0), and OR(G,E). These 
ORs can be re-parameterized as the 
stratum-specific odds ratios and the 
interaction ORs (i.e. OR(G|E = 0), 
OR(G|E = 1), and ORint; or OR(E|G 
= 0), OR(E|G = 1), and ORint). 
The relationship between these 
parameters is shown in Table 16.3.

The biological implications 
of these two statistical forms of 
interactions have long been debated 
in the epidemiologic literature. The 
main problem in making biological 
inferences based on epidemiological 
interactions is that the presence or 
absence of interaction depends on 
the scale in which the association 
with disease is measured. The 
correspondence between statistical 
and biological modes for interaction 
can be defined under simple 
biological models (62). For instance, 
under models such as the single-

Figure 16.5. Example of a Quartile-Quartile (Q-Q) plot of observed quartiles of 
log10(P-values) against the expected values under the null hypothesis. Black and 
red dots represent P values from analyses not adjusted and adjusted, respectively, 
for population stratification using principal components (57).
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hit or the sufficient-component-
cause, two factors with biologically 
independent actions on disease 
result in additive joint effects on 
the incident rate of the disease (3). 
However, relationships between 
biological actions and statistical 
models in complex diseases with 
multiple known and unknown causes 
cannot be easily made, except when 
the interaction is independent of the 
scale of measurement of association 
(66,67). These interactions occur 
when the effect of one or both 
factors exists only in the presence 
of the other, and can be referred 
to as non-removable interactions. 
Using notation from Table 16.3, 
‘non-removable interactions’ can be 
defined as:
• OR(G|E = 0) = 1 and OR(E|G = 0) = 1 
and OR(E,G)≠1
• OR(G|E = 0) = 1 and OR(E|G = 0)≠1 
and OR(E,G)≠OR(E|G = 0)
• OR(G|E = 0)≠1 and OR(E|G = 0) = 1 
and OR(E,G)≠OR(E|G = 0)

The interaction between the 
NAT2 genotype and smoking status 

in bladder cancer risk, where NAT2 
slow acetylators are at increased 
risk of bladder cancer compared 
to rapid acetylators only among 
cigarette smokers, is an example 
of non-removable interactions 
(68). Crossover, or qualitative 
interactions, where the effect of one 
factor is reversed by the presence 
of the other, is an extreme form of 
non-removable interactions (69). 
There are only a few established 
examples of such interactions in 
the epidemiologic literature; for 
instance, the interaction between 
BMI and menopausal status, where 
BMI reduces the risk of breast 
cancer among pre-menopausal 
women, while it increases the risk 
among post-menopausal women 
(70). It is unclear how often G-E 
or G-G interactions are going to 
show crossover effects; however, 
biologically, this extreme type of 
interaction is generally believed to 
be rare.

Statistical evaluation 
of interaction

Interactions between two factors. 
Table 16.3 shows different 
definitions of interactions between 
two risk factors (either a G-E or G-G 
interaction) and the null hypotheses 
that can be tested using data from 
case–control studies of genetic 
associations. Logistic regression 
models, including interaction terms 
between two or more factors, are 
commonly used to test multiplicative 
interactions:

logit (Pr(D|G, E)) 
= β0 + βG G + βE E + βGE G*E

OR(G|E = 0) = exp(βG)

OR(E|G = 0) = exp(βE)

OR(G,E) = exp(βG)*exp(βE)*exp(βGE)

OR(E|G = 1) = exp(βE + βGE)

OR(G|E = 1) = exp(βG + βGE)

Table 16.3. Odds ratio (OR) estimates for the effects of two binary factors, exposure (E) and genotype (G) 
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Re-parameterization to obtain 
stratum-specific ORs:

logit (Pr(D|G, E)) = β0 + βG|E = 0 G0 + 
βG|E = 1 G1 + βE E,

where G0 and G1 are two dummy 
variables defined as:

G0 = G if E = 0; 0 otherwise

G1 = G if E = 1; 0 otherwise

OR(G|E = 0) = exp(βG|E = 0) = exp(βG)

OR(G|E = 1) = exp(βG|E = 1)

Test for multiplicative interaction 

H0: βGE = 0 or exp(βGE) = ORint = 1

In addition to characterizing and 
testing differences in the relative risk 
of a factor across levels of another 
factor, interactions can also be used 
to increase the power to discover 
susceptibility loci. This is achieved 
by accounting for the underlying 
heterogeneity of the genetic risk due 
to G-G and G-E interactions (71,72). 
An omnibus test of the joint null 
hypothesis of no genetic main effects 
and interaction (e.g. Ho: βG = 0 and 
βGE = 0 in model above) can be used 
for this purpose. Thus, using notation 
from Table 16.3, one can specify 
three tests for detecting a genotype 
effect defined as:

• G-only test: H0: OR(G) = 1, 1 df
• Subgroup-specific test: 
H0: OR(G|E = 1) = 1, 1 df
• Omnibus test: H0: OR(G|E = 0) 
= 1 and OR(G|E = 1) = 1, 2 df
The power of the omnibus test 

to detect a genetic effect depends 
on the precision of both the main 
effect and the interaction parameter. 
Therefore, strategies that improve 
the efficiency of the interaction 
parameter can increase the power 
of the omnibus test. For instance, 
assuming independence between 

genetic factors, or between genetic 
and environmental factors, can lead 
to important gains in power; however, 
violation of these assumptions 
can lead to false-positive findings. 
Sampling strategies, such as 
oversampling for uncommon 
exposures, could interact with 
genetic markers and also increase 
the power of the omnibus test. The 
power advantage of the omnibus 
test, compared to testing for genetic 
main effects, is decreased by the 
presence of error in measuring the 
interacting exposure (2). The gain 
in power of the omnibus test with 
respect to the main effect test is 
robust to exposure measurement 
error. For poorly measured 
exposures, such as diet, there might 
not be much benefit in accounting 
for an underlying G-E interaction 
to detect genetic effects. The 
disadvantage of the omnibus test 
derived from the increase in degrees 
of freedom spent to account for the 
interaction and the performance 
of the test is that it can become 
poor when the degrees of freedom 
required to model the interaction 
becomes large. For example, when 
genetic variation is characterized 
by tag SNPs within a gene or 
region, the number of parameters 
in standard methods required 
to model interactions with other 
genes of exposures can become 
very large. Methods to address 
this limitation have been proposed 
(72). Another strategy is to perform 
multiple omnibus tests for a given 
genetic factor over a large number 
of other factors, such as potentially 
interacting SNPs or exposures. This 
approach can retain a gain in power, 
even after adjustment for multiple 
testing (15,72,73).

The odds ratio interaction 
parameter can be estimated using 
only data from cases, if the two 
interacting factors are independent 
in the source population of the 

cases and the disease is rare in the 
population (74). This can be easily 
shown if the ORint is expressed as:
ORint = OREG|cases/OREG|controls = 1.0,
where OREG|cases is the OR for the 
association between G and E 
among cases and OREG|controls is the 
OR for the association between G 
and E among controls.
If the G-E independence assumption 
holds (i.e. OREG|controls = 1.0), then 
ORint = OREG|cases

.
An important limitation of this 

approach is that it does not allow 
the estimation of other important 
parameters estimable in case–
control data, such as the stratum-
specific effects and joint effects of 
G and E. However, when data from 
a case–control study is available, 
assuming independence between 
interacting factors can be used to 
increase the power to detect an 
interaction, without the limitation 
of the number of parameters that 
can be estimated (75,76). As in the 
case-only approach, these methods 
are subject to severe biases leading 
to detection of spurious interactions 
or masking of true interactions if the 
assumptions are violated. Two-step 
procedures first test for the G-E 
independence among the controls, 
and, based on the acceptance or 
rejection of the Ho, a second test 
uses the case-only (77) or case–
control estimator. However, when 
the G-E association in the controls 
is modest or the sample size is 
small, the test in the first step might 
not have adequate power to reject 
Ho. Empirical Bayes methods have 
been proposed to address the trade-
offs between bias and efficiency due 
to the independence assumption. 
A comparison of the different 
approaches mentioned above has 
been previously described (2,78,79).

Restricting evaluation of 
interactions only to loci that have 
previously shown some evidence of 
an overall association with disease, 
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independent of the exposures of 
interest, substantially reduces the 
possible number of interactions to 
be evaluated. Of course, the cost 
of reducing complexity through this 
approach is that interactions that 
result in very weak or no overall 
associations with disease can easily 
be missed. Data mining techniques 
that attempt to address this problem 
are discussed in the next section. 
Variation in allele frequencies 
among interacting SNPs can have a 
strong impact on the power to detect 
their main effects, which can result 
in difficulties to replicate findings 
across populations (73). As larger 
numbers of epidemiological studies 
obtain comprehensive genetic 
data and the methods to evaluate 
interactions are further developed, 
the scientific community will be in 
a better position to characterize 
complex G-G interactions and 
evaluate their impact in risk 
characterization in the population.

Evaluation of high-order 
interactions

Many of the principles described 
above for studies on interactions 
between two factors, such as one 
G-E or G-G pair, also apply to 
studies of higher order interactions 
with three or more risk factors. 
One of the main difficulties in 
studying higher order interactions 
is the complexity of the models 
to capture relationships between 
many factors, since the number 
of possible combinations can be 
very large. Several data mining 
methods have been proposed to 
select models evaluating high order 
interactions in genetic studies. One 
method is the traditional stepwise 
regression approach, which uses 
statistical significance testing to 
decide whether higher or lower 
interaction terms should be kept 
in the model (80). Other methods 

include the Focused Interaction 
Testing Framework that uses a 
series of marginal and omnibus 
tests controlling for false discovery 
rates to detect susceptibly loci (81). 
Classification and Regression Tree 
(CART) is a data mining method that 
is increasingly being used to explore 
high order G-G and G-E interactions, 
and can be implemented using 
the Rpart package in R (82,83). 
This method uses a recursive-
partitioning algorithm that splits a 
collection of subjects into groups 
based on the factor that results in 
the highest discrimination in the 
disease risk. The procedure starts 
with all the subjects in the study 
(root node) and ends with a set of 
final groups of subjects (nodes) 
with homogeneous disease risk. 
The problem of overfitting the data 
is minimized by cross-validation 
resulting in “pruning” or “trimming” 
of the tree. The main limitation of 
CART is that the resulting model can 
be very sensitive to peculiarities of 
the data set being used to generate 
it, and thus might not be replicated 
in independent data sets. The 
output models from CART can be 
stabilized by bagging, a procedure 
that combines results from a group 
or ensemble of trees generated by 
repeated bootstrap sampling of 
the data (84). The Random Forest 
procedure minimizes the correlation 
between the ensemble of trees by 
choosing a random subset of factors 
or exposures for growing the trees 
in each bootstrap replication (85). 
A useful feature of these ensemble 
approaches is that they can generate 
measures of variable importance of 
the contribution of each factor on 
risk, and these measures can be 
used as an omnibus test statistic 
capturing both the main effect of a 
factor and the interactions with other 
factors. P-values associated with the 
measures of variable importance 
can be generated using permutation-

based resampling methods. The 
randomForest package available in 
R implements this procedure.

The main feature of logic 
regression (86), compared to logistic 
regression models and CART, is that 
it allows combinations of exposures 
using “and” and “or” operations 
rather than only “and.” For instance, 
in a study evaluating the interaction 
between SNPs in three loci, a logic 
regression permits models to have 
similar risk of disease for subjects 
with the variant allele in locus 1 
and variant alleles in either locus 2 
or 3. This specifying “or” operator 
allows the flexibility of specifying 
biologically plausible models in 
which one variant resulting in 
disruption of a protein product only 
requires a variant in a class of 
genetic loci to determine the risk 
of a disease. In this model, the risk 
of carrying multiple variants in this 
class of loci is no higher than just 
carrying one variant. The optimal 
logic-tree is determined by cross-
validation as in CART. Ensamples 
of logic trees can be generated by a 
Markov Chain Monte Carlo method 
that defines measure of variable 
importance (87). Logic regressions 
can be implemented using the 
LogicReg package in R.

The multifactorial dimension 
reduction (MDR) non-parametric 
method has also been proposed to 
evaluate high order G-G and G-E 
interactions (88). In contrast to tree-
based methods that hierarchically 
build complex models, MDR reduces 
the dimensionality of multilocus 
genotype data by creating binary 
variables defining high-risk and 
low-risk groups. This method 
then evaluates the ability of the 
derived binary exposure variables 
to predict disease risk using cross-
validation and permutation testing. 
The parsimony of this method is 
appealing; however, its performance 
depends on how well the simple 
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dichotomization of high-risk and 
low-risk captures the underlying 
joint effects of multiple susceptibility 
loci (88,89). Information software to 
perform MDR analyses (90) can be 
found at http://chgr.mc.vanderbilt.
e d u / r i t c h i e l a b / m e t h o d .
php?method=mdr, and an open-
source version can be downloaded 
from http://www.epistasis.org/
software.html.

The advantage of data mining 
methods is the flexibility to explore 
complex, high-order interactions 
without parametric constraints. 
However, this can also be a limitation 
since information on natural or 
highly plausible constraints is lost, 
which can result in decreased 
power and selection of implausible 
models of interaction. For instance, 
in studies of G-G interactions it 
might be reasonable to assume 
some sort of monotonic trend with 
increasing number of variant alleles 
on disease risk. In the case of SNP 
data, this would mean that the risk 
of carrying two variant alleles in a 
given locus is larger than carrying 
only one variant allele, irrespective 
of the genotype status of other 
loci. In logistic regression models, 
or other parametric models, this 
constrain is imposed by assuming 
additive or multiplicative (log-
additive) effects of the variant on 
disease risk. Recent discoveries 
from GWAS studies provide support 
for additive or multiplicative effects 
of genetic markers on disease risk, 
although these studies might have 
been underpowered to detect other 
models, such as recessive mode of 
inheritance. When evaluating G-E 
interactions, on the other hand, it 
might also be reasonable to assume 
some sort of dose–response 
relationship between a continuous 
exposure, such as smoking dose, 
BMI, or dietary intake of vegetables, 
and disease risk. This limitation 
can be addressed by the FlexTree 

method, which allows imposing 
parametric constraints in binary 
tree-based regression models (91). 
An R-package to implement this 
method can be requested at http://
www-stat.stanford.edu/~olshen/
flexTree/.

In summary, data mining 
methods are promising tools for 
exploring higher-order G-G and G-E 
interactions. Their ability to identify 
reproducible interactions, however, 
has not yet been demonstrated. 
Different methods have 
complementary strengths, and thus 
the best analytical strategy might be 
to use a combination of methods and 
follow-up findings in independent 
data sets for replication.

Analyses of complex 
pathways or networks

Candidate genes are often selected 
from among genes involved in 
biochemical pathways that are 
known or thought to be related to 
the risk factors (e.g. carcinogen 
metabolizing genes in lung 
cancer, and other smoking-related 
cancers). However, the information 
on how the different genes act in 
the biological pathway is typically 
ignored in conventional analyses 
of the data. As information on the 
biochemical pathways and networks 
increases, thanks to the use of 
profiling or “omics” technologies, 
such as metabolomics, proteomics 
and transcriptomics, the interest 
in incorporating biochemical 
information in pathway/network 
analyses of epidemiological studies 
will grow. Hierarchical-Bayesian 
methods (92) have been proposed 
to integrate pathway information 
into the analyses, although the 
quantification and integration of 
biologic information from different 
sources can be very challenging 
and potentially limit the usefulness 
of these approaches. The need for 

methodologies for pathway analyses 
of complex data from molecular 
epidemiology studies is increasing, 
and novel methodologies to meet 
these requirements will likely be 
developed in the near future.

Concluding remarks

In the coming years, important 
advances in the understanding of 
the genetic contribution to complex 
diseases are likely to be made, 
facilitated by further advances 
in genotyping and sequencing 
technology. The initial discovery 
of markers of susceptibility in 
epidemiological studies is just the 
beginning of new areas of research. 
Others include:

• Identification of causal genetic 
variants through fine mapping and 
functional laboratory studies;

• Evaluation of differences 
in genotype frequencies and 
associations with disease in ethnic 
groups;

• Evaluation of complex 
interactions and joint effects of 
multiple susceptibility loci;

• Evaluation of G-E interactions 
that might facilitate the discovery and 
characterization of environmental 
risk factors for disease;

• Evaluation of heterogeneity 
of genetic associations by disease 
subtypes;

• Evaluation of the impact of 
susceptibility loci on individual risk 
prediction, and identification of 
population groups with low and high 
risk of disease; and

• Evaluation of associations 
between susceptibility loci with 
additional outcomes, such as disease 
recurrence, survival and response to 
therapy.

Therefore, this promising field 
of research is likely to lead to better 
understanding of disease etiology, 
enhancements in risk prediction at 
the individual and population levels, 
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and improvements in treatment of 
disease.
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Biomarkers in clinical medicine
Xiao-He Chen, Shuwen Huang, and David Kerr

Summary

Biomarkers have been used in 
clinical medicine for decades. With 
the rise of genomics and other 
advances in molecular biology, 
biomarker studies have entered a 
whole new era and hold promise 
for early diagnosis and effective 
treatment of many diseases. A 
biomarker is a characteristic that is 
objectively measured and evaluated 
as an indicator of normal biological 
processes, pathogenic processes 
or pharmacologic responses to a 
therapeutic intervention (1). They 
can be classified into five categories 
based on their application in different 
disease stages: 1) antecedent 
biomarkers to identify the risk of 
developing an illness, 2) screening 
biomarkers to screen for subclinical 
disease, 3) diagnostic biomarkers 
to recognize overt disease, 4) 
staging biomarkers to categorise 

disease severity, and 5) prognostic 
biomarkers to predict future disease 
course, including recurrence, 
response to therapy, and monitoring 
efficacy of therapy (1). Biomarkers 
can indicate a variety of health or 
disease characteristics, including 
the level or type of exposure to 
an environmental factor, genetic 
susceptibility, genetic responses to 
environmental exposures, markers 
of subclinical or clinical disease, or 
indicators of response to therapy. 
This chapter will focus on how 
these biomarkers have been used 
in preventive medicine, diagnostics, 
therapeutics and prognostics, 
as well as public health and their 
current status in clinical practice.

Introduction

Health sciences have been 
experiencing a shift from population-
based approaches to individualized 
practice. The focus on individuals 
could make public health strategies 
more effective by allowing 
practitioners to direct resources 
towards those with the greatest 
need. However, the success of 
these efforts will largely depend 
on the continued identification 
of biomarkers that reflect the 
individual’s health status and risk 
at key time points, and successful 
integration of these biomarkers into 
medical practice. To be clinically 
useful, tests for biomarkers must 
have high predictive accuracy, 
and be easily measurable and 
reproducible, minimally invasive, 
and acceptable to patients and 
physicians (2). Once a proposed 
biomarker has been validated, it 
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can be used to assess disease risk 
in a general population, confirm 
diagnosis of disease in an individual 
patient, and tailor an individual’s 
treatment (choice of drug treatment 
or administration regimes). In 
evaluating potential drug therapies, 
a biomarker may be used as a 
surrogate for a natural endpoint, such 
as survival or irreversible morbidity. 
If a treatment alters the biomarker, 
which has a direct connection to 
improved health, the biomarker 
serves as a surrogate endpoint for 
evaluating clinical benefit. More 
recently, with rapid advances 
in the molecular approaches to 
biology, genetics, biochemistry and 
medicine, and in particular with the 
rise of genomics, transcriptomics, 
proteomics and metabolomics, 
molecular biomarkers appear to 
hold the promise of transforming 
medical practice into personalized 
medicine—the right treatment at the 
right dose for the right person at the 
right time for the right outcome.

Context and public health 
significance

Clinical medicine covers disease 
prevention, diagnosis and 
treatment. Biomarkers play a critical 
role in all these aspects. There are 
three major types of biomarkers: 
biomarkers of exposure, effect 
and susceptibility. A biomarker 
of exposure is an exogenous 
chemical or its metabolite(s), or the 
product of an interaction between a 
xenobiotic agent and some target 
molecule or cell that is measured in 
a compartment within an organism. 
Specific markers of exposure 
include the presence of a xenobiotic 
compound or its metabolites in body 
tissues or fluids and in excretory 
products. For example, blood lead 
concentration has been used as 
a marker for lead exposure; saliva 
cotinine (a metabolite of nicotine) 

level has been used as a marker in 
investigating adolescents’ cigarette 
consumption. A biomarker of effect 
is a measurable alteration of an 
endogenous factor that is shown 
to be linked with impairment or 
disease resulting from exposure to 
an exogenous agent. For example, 
the alteration in pulmonary function 
tests in children after exposure to 
environmental tobacco smoke is 
a biomarker of effect (3). Somatic 
mutations have been used as 
biomarkers of effect after exposure 
to carcinogens. A biomarker of 
susceptibility indicates individual 
factors that can affect response to 
environmental agents. These reflect 
variations between individuals 
in genetic structure, some of 
which make the individual more 
susceptible to health effects from 
environmental exposures (4). For 
example, skin cancer is related to 
excessive sun exposure, but not 
everyone develops skin cancer even 
with the same amount of exposure. 
Three recent studies revealed 
that genetic variants associated 
with three sections of genes were 
found to be linked with increased 
risk of skin cancer: 1) the variant 

of the TYR gene that encodes a 
R402Q amino acid substitution, 
previously shown to affect eye 
colour and tanning response, was 
associated with increased risk of 
developing cutaneous melanoma 
(CM) and basal cell carcinoma 
(BCC); 2) variations in a haplotype 
(set of closely associated genes) 
near the ASIP gene, known to 
affect pigmentation traits, conferred 
significant risk of CM and BCC; and 
3) an eye colour variant in gene 
TYRP1 was also associated with 
risk of CM (5–7). The relationship 
between these biomarkers and their 
relationship with clinical medicine 
are illustrated in Figure 17.1.

There are two layers of exposure 
and effect biomarkers. The first 
represents hazardous exposures 
to a healthy human body that could 
cause negative biological effects 
(e.g. functional changes, somatic 
mutations) and eventually cause 
disease. Another layer indicates 
treatment exposures to a diseased 
human body that could induce 
positive biological effects and lead 
to the improvement of conditions 
or to the complete recovery from 
disease. Susceptibility biomarkers 

Source: Adapted from (106)

Figure 17.1. Simplified flowchart of classes of biomarkers (indicated by boxes) 
representing a continuum of changes. Solid arrows indicate progression, if it occurs, 
to the next class of marker. Dashed arrows indicate that individual biomarker 
influences and/or indicates the rates of progression
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are present in every step of the 
process. For example, some 
individuals exposed to air pollutants 
show severe biological effects and 
manifest disease symptoms, while 
others experience little or no effect. 
The same discrepancy appears with 
drug treatment. While some patients 
benefit and are cured, others show 
no effect from treatment or develop 
severe side-effects or die. In clinical 
medicine, the first layer is more 
related to disease prevention and 
diagnosis, while the second layer is 
more relevant to disease treatment 
and recovery.

Biomarkers in preventive 
medicine

Preventive medicine aims to promote 
and preserve health and longevity 
in individuals and populations, use 
epidemiological approaches to 
define high-risk groups, prevent and 
limit disease and injury, facilitate 
early diagnosis through screening 
and education, enhance quality of 
the health care system and improve 
quality of life. To realize these aims, 
medical practitioners need the 
proper tools to facilitate decision-
making and effect evaluation; 
biomarkers play an important role in 
these goals.

Exposure biomarkers have been 
used in the workplace for many 
years to identify exposed individuals. 
For example, macromolecule 
adducts and mutagenicity in urine 
have been successfully applied 
to identify workers exposed to 
carcinogens and as indicators of 
changes of exposure. Biomarkers 
of renal effects of cadmium, lead 
effects on haemoglobin synthesis 
and organophosphate effects on 
cholinesterase activities have been 
validated and are widely used in 
routine monitoring activities (8).

Antecedent and screening 
biomarkers have been used in 

preventive medicine for several 
decades to: screen before birth for 
genetic disorders, such as Down 
syndrome; screen newborn babies 
for genetic diseases, such as 
phenylketonuria (PKU) (9); check 
whether an individual is a carrier 
for a recessive disorder (where 
abnormal genes must be inherited 
from both parents to lead to the 
condition), such as cystic fibrosis; 
and indicate whether someone 
with a family history of a late-onset 
disease, such as Huntington’s, 
is likely to develop the disease. 
These tests are aimed largely at 
single-gene disorders that have 
Mendelian patterns of inheritance. 
The identification of genetic variants 
responsible for diseas, in these 
single-gene disorders can lead 
directly to clinically helpful and 
reasonably accurate predictions 
and diagnosis of disease. Early 
diagnosis and proper treatment 
can make the difference between 
lifelong impairment and healthy 
development.

Common, complex diseases 
such as cancer, heart disease and 
diabetes contribute to the major 
disease burden and mortality both in 
developed and developing countries. 
These common diseases are caused 
by genetic and environmental 
factors (e.g. lifestyle and diet, and 
the interaction between them). 
Therefore, it is very difficult to define 
a single biomarker that could identify 
the risk of developing a particular 
disease. Although there are some 
rare subtypes of common diseases, 
such as breast and colorectal 
cancer, with a clear hereditary 
pattern, biomarkers for a single 
or several defective genes could 
indicate a lifetime risk of developing 
these cancers (e.g. overexpression 
of HER2/neu oncogene and loss 
of function mutations in BRCA1 
and BRCA2 tumour suppressor 
genes for breast cancer (10–12), 

and activating mutation in Ras 
oncogene and loss of function 
mutations in APC and p53 tumour 
suppressor genes for colon cancer) 
(12). Subtypes of these cancers and 
most other common diseases are 
less deterministic; even apparently 
simple Mendelian disorders may 
prove to have widely variable 
clinical phenotypes. For example, 
thalassaemia, an apparently simple 
genetic disease, has substantial 
complexities (13). Individuals with 
exactly the same globin mutations 
may suffer either from a severe life-
threatening disorder or be relatively 
unaffected. Despite this, great 
efforts have been made towards 
simultaneous, systematic analysis 
of larger numbers of biomarkers 
for disease prediction, although 
these approaches are more suited 
to research than routine diagnostic 
activity. Biomarkers may help predict 
those individuals more susceptible to 
common disorders, so that specific 
attention can be directed towards 
them (e.g. enrolment in a screening 
programme). However, translating 
these biomarkers into clinical 
medicine to help prevent people 
having these common diseases still 
has a long way to go. As Kofi Annan, 
the former Secretary General of 
the United Nations, said, “We are 
under no illusion that preventive 
strategies will be easy to implement. 
For a start, the costs of prevention 
have to be paid in the present, while 
its benefits lie in the distant future. 
And the benefits are not tangible—
when prevention succeeds, nothing 
happens. Taking such a political risk 
when there are few obvious rewards 
requires conviction and considerable 
vision.” (14).

Biomarkers in diagnostics

Biomarkers have been used in 
disease diagnosis for over a century, 
beginning when the ABO blood 
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group system was first discovered 
and used to detect ABO haemolytic 
disease of the newborn (HDN) and 
transfusion reactions. The four 
basic ABO phenotypes are O, A, B 
and AB. After it was found that blood 
group A’s red blood cells (RBCs) 
reacted differently to a particular 
antibody (later called anti-A1), the 
blood group was divided into two 
phenotypes, A1 and A2. RBCs with 
the A1 phenotype react with anti-A1 
and account for about 80% of blood 
type A. RBCs with the A2 phenotype 
do not react with anti-A1 and 
makeup about 20% of blood type A. 
HDN, caused by ABO antibodies, 
occurs almost exclusively in infants 
of blood group A or B who are 
born to group O mothers (15). This 
is because the anti-A and anti-B 
formed in group O individuals tends 
to be of the IgG type (and therefore 
can cross the placenta), whereas 
the anti-A and anti-B found in the 
serum of group B and A individuals, 
respectively, tends to be of the IgM 
type. Although uncommon, cases of 
HDN have been reported in infants 
born to mothers with blood group 
A2 (16) and blood group B (17). 
The most common cause of death 
from a blood transfusion is clerical 
error, in which an incompatible 
type of ABO blood is transfused. 
If a recipient who has blood group 
O is transfused with non-group 
O RBCs, the naturally occurring 
anti-A and anti-B in the recipient's 
serum binds to their corresponding 
antigens on the transfused RBCs. 
These antibodies fix complement 
and cause rapid intravascular 
haemolysis, triggering an acute 
haemolytic transfusion reaction 
that can cause disseminated 
intravascular coagulation, shock, 
acute renal failure and death. 
Routine biomarker tests can confirm 
the diagnosis.

Another important use of 
biomarkers in clinical medicine is 

the early detection and diagnosis 
of chromosome and single-gene 
disorders. Both cytogenetic and 
molecular genetic biomarkers have 
been used to accomplish this. 
Conditions caused by a change 
in the number (e.g. aneuploidy) or 
structure of chromosomes (e.g. 
translocation, inversion, deletion, 
and duplication) are known as 
chromosome disorders. Biomarkers 
used in the chromosome analysis 
developed in 1956 soon led to the 
discovery that several previously 
described conditions were due to an 
abnormality in chromosome number. 
For example, in Turner syndrome, 
only one intact X chromosome is 
present (45, X); all or part of the 
second X is deleted. Patients with 
Down syndrome have an extra 
chromosome 21 (47, XX/XY, +21). 
Patau syndrome is the result of 
trisomy 13, while trisomy 18 causes 
Edwards syndrome. The biomarker 
test in this case is assessment of 
chromosome numbers.

Microdeletion/microduplication 
syndromes are a group of 
chromosome disorders that could be 
detected by biomarker copy number 
variation (CNV). “Micro” represents 
submicroscopic, meaning that these 
deletions, normally smaller than 
3Mb, cannot be detected using a 
microscope. New technologies, 
especially array comparative 
genomic hybridization (array-CGH), 
enabled many malformations 
and syndromes to be recognized. 
Figure 17.2 shows recently detected 
or confirmed microdeletions/
duplications collected in DECIPHER 
(DatabasE of Chromosomal 
Imbalance and Phenotype in 
Humans using Ensembl Resources) 
(https://decipher.sanger.ac.uk/). 
Applications of new biomarkers in 
these disorders have generated 
particular interest. For example, 
most Angelman and Prader-
Willi syndromes are related to 

microdeletion involving the proximal 
part of the long arm of chromosome 
15q (15q11–12). It is now known 
that if the deletion occurs de novo 
on the paternally inherited number 
15 chromosome, the child will have 
Prader-Willi syndrome; a deletion 
occurring at the same region on 
the maternally inherited number 
15 chromosome causes Angelman 
syndrome. Non-deletion cases also 
exist and are often due to uniparental 
disomy (i.e. both homologues of 
a chromosome pair are inherited 
from only one of the parents), with 
both number 15 chromosomes 
being paternal in origin in Angelman 
syndrome and maternal in origin in 
Prader-Willi syndrome. This “parent 
of origin” effect is referred to as 
genomic imprinting and methylation 
of DNA. Here, CNV and mythelation 
biomarkers, coupled with clinical 
observations, have helped identify 
new underlying genetic mechanisms 
(18).

The most widely used 
biomarkers identified during the last 
few decades are for the diagnosis 
of single-gene disorders. More 
than 10 000 human diseases are 
believed to be caused by defects in 
single genes, affecting 1–2% of the 
population (18). The disease can be 
relatively trivial in its effects (e.g. 
colour blindness), or lethal like Tay-
Sachs (a fatal inherited disease of 
the central nervous system; babies 
with Tay-Sachs lack an enzyme 
called hexosaminidase A (hex A) 
which is necessary for breaking 
down certain fatty substances 
in brain and nerve cells). Other 
disorders, though harmful to those 
afflicted with them, appear to offer 
some advantage to carriers. For 
example, carriers of sickle cell 
anaemia and thalassemia appear 
to have enhanced resistance to 
malaria. Some other examples 
of single-gene diseases are 
cystic fibrosis, Marfan syndrome, 
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Huntington disease and hereditary 
haemochromatosis. Early detection 
and diagnosis of these disorders rely 
on rapidly developed biomarkers, 
especially molecular biomarkers. 
For example, phenylketonuria (PKU) 
is a common genetic disorder (1 in 
12 000 births) which results from 
a deficient enzyme required for 
the metabolism of the amino acid 
phenylalanine. Failure to recognize 
the disorder early in life results 
in mental retardation. Routine 
biochemical screening of newborn 
infants for PKU was recommended 
by the Ministry of Health in the United 
Kingdom in 1969, after it had been 
shown that a low phenylketonuria 
diet could prevent the severe 
learning disabilities. Cystic fibrosis 
is another example of a single-

gene disorder where molecular 
biomarkers play an important role in 
diagnosis. Cystic fibrosis is the most 
common life-threatening autosomal 
recessive disorder in Caucasians, 
affecting 1 in 2500 newborns. The 
disease results from a defect in 
the cystic fibrosis transmembrane 
conductance regulator (CFTR). 
Diagnosis of cystic fibrosis is based 
on the combination of suggestive 
clinical symptoms, elevated chloride 
levels on a standardized sweat 
test, family history and genetic 
testing to identify the presence of 
CFTR mutations. Over 1000 CFTR 
mutations have been identified, with 
the ΔF508 being the most common 
in all ethnic groups. Mutation 
panels using PCR to detect the 
most common mutations are widely 

available in clinical DNA diagnostic 
laboratories (19).

To date, approximately 20 000 
chromosomal abnormalities have 
been registered on laboratory 
databases, and over 10 000 
single-gene traits and disorders 
have been identified. While on an 
individual basis most of these are 
very rare, collectively they make 
a major contribution to human 
morbidity and mortality. Screening 
biomarkers have been used to 
help early detection and diagnosis 
of these disorders. Current nationally 
managed screening programmes in 
the United Kingdom include: antenatal 
screening for Down syndrome, 
sickle-cell disease and thalassemia; 
newborn screening for PKU, 
congenital hypothyroidism, sickle-
cell disease, thalassemia, cystic 
fibrosis and hearing impairment; 
and adult screening for breast 
cancer, cervical cancer and sight-
threatening diabetic retinopathy. 
Applications of biomarkers in these 
screening programmes have greatly 
helped people with early intervention 
(e.g. diet), decision-making (e.g. 
marriage and childbearing) and 
early treatment.

Many of our most common 
diseases run in families, but they 
lack the simple inheritance patterns 
characteristic of single-gene 
disorders. In complex disorders, 
pedigrees reveal no Mendelian 
inheritance patterns, and gene 
mutations are often neither 
sufficient nor necessary to explain 
the disease phenotype (20). The 
more complicated nature makes 
genetic analysis for early diagnosis 
much more difficult than for single-
gene or chromosomal disorders. 
There has been significant activity 
in the development of biomarkers 
for the diagnosis and prognosis 
of common diseases such as 
heart disease and cancer. Since 
the start of the 21st century, there 

Figure 17.2. Known syndrome microdeletions/duplications from DECIPHER 
(https://decipher.sanger.ac.uk/)
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has been an explosion of high-
throughput genomic, proteomic 
and metabolomic technologies that 
have furthered our understanding 
of molecular mechanisms that 
underlie these common diseases. 
These technologies are forming the 
basis for more advanced molecular 
diagnostics in which DNA, RNA, 
protein and metabolite data are 
integrated with traditional clinical 
profiles to give clinicians the ability to 
accurately diagnose diseases (21–
24). To date, although a large number 
of candidate biomarkers have been 
identified which have the potential 
to be used for both early diagnosis 
and therapeutic guidance in cancer, 
heart disease, Alzheimer's disease, 
rheumatoid arthritis and asthma, 
only a fraction have been approved 
in tests by the US Food and Drug 
Administration (FDA) (Table 17.1) 
(25). Even among those biomarkers 
approved by FDA tests, few of them 
have lived up to their initial promise. 
For example, the carcinoembryonic 
antigen (CEA) test for colon cancer 
initially claimed to have 100% 
sensitivity and specificity (26); later 
investigations found much lower 
levels of discrimination (27). The 
cancer antigen 125 (CA125) test 
was also hailed as a groundbreaking 
diagnostic test for ovarian cancer, 
but it is now considered less 
reliable, as only 50% of women 
with treatable, early-stage ovarian 
cancer have increased CA125 levels, 
while women with other conditions, 
such as endometriosis, can have 
increased levels (28). Prostate 
specific antigen (PSA), currently 
the best overall serum biomarker 
for prostate cancer, has high 
sensitivity (greater than 90%) but 
low specificity (~25%), which results 
in many men having biopsies when 
they do not have detectable prostate 
cancer (29–32). The serum tumour 
biomarker for breast cancer (CA15–
3) has only 23% sensitivity and 

69% specificity, and is only useful 
in monitoring therapy for advanced 
breast cancer or recurrence (33). 
For a biomarker to be valuable in 
clinical practice, it must have high 
sensitivity and specificity.

The lack of sensitivity and 
specificity for single markers is 
not surprising given the degree of 
heterogeneity present in both solid 
tumours and the human population at 
large. Thus, a prevailing hypothesis 
is that a panel of biomarkers would 
cumulatively possess a higher 
sensitivity and specificity than any 
single biomarker (34).

Biomarkers in therapeutics 
and prognostics

Biomarkers play an important role 
in disease treatment, prognosis 
and management in many different 
ways. Several common diseases 
are very heterogeneous, as the 
same disease may show different 
phenotypes, may be caused by 
different genetic mechanisms, and 
may respond differently to the same 
treatment. For example, biomarker 
Philadelphia chromosome, t(9;22) 
translocation, is found in 95% of 
cases of chronic myeloid leukaemia 
(CML) and in some cases of acute 
lymphoblastic leukaemia (ALL). 
CML is caused by a chromosomal 
rearrangement that creates a 
fusion between two normal proteins 
producing one abnormal protein, 
BCR-ABL, that promotes a rapid 
increase in the number of white 
blood cells. This biomarker led to the 
development of Gleevec® (imatinib 
mesylate), which binds specifically 
to BCR-ABL and inhibits its action. 
Appropriate prescription of the drug 
can be confirmed by a diagnostic 
test that detects the presence of the 
BCR-ABL gene. Studies show vastly 
improved response rates and lower 
toxicity for CML patients receiving 
imatinib compared with patients 

receiving standard chemotherapy 
(35). Over 90% of patients receiving 
imatinib respond positively to initial 
treatment, and many experience 
complete remission. The presence 
or absence of this biomarker 
can also facilitate appropriate 
application of another drug, 
Busulfan (Busilvex®, Myleran®). 
According to the prescribing 
information, “Busulfan is clearly less 
effective in patients with chronic 
myelogenous leukemia who lack the 
Philadelphia (Ph1) chromosome. 
Also, the so-called ‘juvenile’ type 
of chronic myelogenous leukemia, 
typically occurring in young children 
and associated with the absence 
of a Philadelphia chromosome, 
responds poorly to Busulfan. The 
drug is of no benefit in patients 
whose chronic myelogenous 
leukemia has entered a ‘blastic’ 
phase.” Therefore, the presence of 
the Philadelphia chromosome can 
aid the diagnosis and treatment of 
these diseases.

Biomarkers can also work as 
a surrogate endpoint to indicate 
the treatment response. A clinical 
endpoint is a characteristic or 
variable that reflects how a patient 
feels, functions or survives. A 
surrogate endpoint is a biomarker 
intended to substitute for a clinical 
endpoint. It is expected to predict 
clinical outcome (benefit or harm, 
or lack of benefit or harm) based 
on epidemiological, therapeutic, 
pathophysiological or other 
scientific evidence. For example, in 
cancer treatment, the application of 
FDG-PET, which is on clinical trial 
by the US FDA, National Cancer 
Institute (NCI) and the Center for 
Medicare Studies (CMS), may have 
an important role as a surrogate 
endpoint for assessing the clinical 
efficacy of oncologic therapies. FDG-
PET represents fluorodeoxyglucose 
positron emission tomography, an 
imaging method to detect gamma 
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Table 17.1. US FDA-published list of valid genomic biomarkers, approved drug labels, and test recommendation (1 = test required, 
2 = test recommended, 3 = information only)

Source: (25)
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rays. It measures glucose uptake 
by tumours using a radioactive 
form of fluorine incorporated in 
a sugar molecule. Tissues that 
accumulate radioactive glucose are 
visible through positron emission 
tomography. It is believed that 
FDG-PET could become a tool for 
gauging a cancer patient’s response 
to chemotherapy or radiation by 
accurately measuring tumour 
metabolism. Physicians will quickly 
know whether or not the tumour is 
responding to therapy and when to 
switch therapies to provide the best 
chance for curing or managing the 
cancer. Cervical tumour uptake 
of F-18 FDG, measured as the 
maximal standardized uptake value 
(SUVmax) by PET, and its association 
with treatment response and 
prognosis in patients with cervical 
cancer were evaluated. It was found 
that a higher SUVmax was associated 
with an increased risk of lymph node 
metastasis at diagnosis (P = 0.0027) 
(36).

Biomarkers can help reduce 
adverse drug reactions. Studies 
estimate that over 2 million serious 
adverse drug reactions (ADRs) 
occur annually in the United 
States, and as many as 137 000 
deaths are caused by ADRs (37). 
Using biomarkers to indicate if the 
patient is suitable for treatment 
with certain drugs, and what dose 
is appropriate for the patient, could 
prevent some of these deaths. Any 
given drug can be therapeutic to 
some individuals and ineffective 
to others, and likewise some 
individuals suffer from adverse drug 
effects whereas others experience 
drug resistance. Often, distinct 
molecular mechanisms underlie 
therapeutic and adverse effects. 
Studies have linked differences in 
drug responses to differences in 
genes that code for the production 
of drug-metabolizing enzymes, drug 
transporters or drug targets (38–

40). These genetic variations could 
be used as biomarkers to direct a 
physician’s drug choice for a patient 
and prevent adverse drug reactions. 
For example, the anticoagulant drug 
warfarin, marketed as Coumadin® 
by Bristol-Myers Squibb, is used 
to prevent potentially fatal clots in 
blood vessels. Approximately 2 
million people start warfarin therapy 
each year to prevent blood clots, 
heart attacks and stroke. However, 
too much or too little of the drug 
can cause serious, life-threatening 
bleeding or blood clots. According to 
the FDA’s adverse events reporting 
database, complications from 
warfarin are the second (just after 
that from insulin) most common 
reason for patients to go to the 
emergency department. Variability 
in the response to warfarin has 
been linked to mutations in two 
genes: CYP2C9 and VKORC1. 
Clinical studies have shown that 
patients with variations in these two 
genes may need a lower warfarin 
dose than patients without those 
variations. Recently, the FDA 
cleared the first test to detect gene 
variants in patients that are sensitive 
to the anticoagulant warfarin.

Thiopurine methyltransferase 
(TPMT) is another example of a 
biomarker being applied to drug 
treatment. TPMT is responsible 
for inactivating purine drugs used 
for treating acute lymphoblastic 
leukaemia (ALL) and other diseases 
(41). Variations in the TPMT gene 
can cause changes in TPMT 
enzymatic activity and thus drug 
metabolism. One in 300 patients has 
TPMT deficiency. In these patients, 
the normal dose of purine causes an 
accumulation of active compound, 
which may lead to a potentially fatal 
bone marrow reaction resulting in 
leucopenia, an abnormal lowering 
of the white blood cell counts. 
Therefore, if TPMT deficiency 
is detected, the dose is lowered 

by 10–15% to keep the systemic 
level of the drug comparable to 
that in patients with normal TPMT 
who have been given a standard 
dose of the drug (http://www.
personalizedmedicinecoalition.org/
communications/pmc_pub_11_06.
php). (More information on genomic 
biomarkers for drug usage can be 
found at http://www.fda.gov/Drugs/
ScienceResearch/ResearchAreas/
Pharmacogenetics/ucm083378.
htm.)

Biomarkers in clinical trials 
and drug discovery

With rapid advances in the molecular 
approaches to biology, genetics, 
biochemistry and medicine, a 
significant number of new drugs and 
treatments have been developed. 
But most of these discoveries 
still remain in the research field. 
Efficiently and effectively translating 
these discoveries into clinical 
practice is complex and involves 
the integration of scientific rationale 
and the regulatory process. 
Various models depict translational 
research as a process occurring 
in two stages (42–44). The first 
(sometimes referred to as type 1 
(T1) translation) uses the findings 
from basic research, including 
preclinical studies, to inform the 
development and testing of an 
intervention in clinical trials, such 
as Phase I-III clinical trials. The 
second (type 2 (T2) translation) 
involves the translation of findings 
from clinical research into clinical 
and public health practice and policy 
(42,43). This section discusses 
how biomarkers have been used in 
clinical trial and drug development, 
and what changes can be brought 
about by biomarker application in 
these fields in clinical medicine.

A clinical trial is defined as a 
prospective study comparing the 
effect and value of intervention(s) 



  Unit 4 • Chapter 17. Biomarkers in clinical medicine 311

U
n

it
 4

C
h

a
p

te
r

  1
7

against a control in human beings 
(45). Clinical trials are commonly 
classified into four phases. Phase 
I trials select drug dose, schedule 
and associated toxicities. Phase 
II trials determine the degree of 
efficacy and govern admission to 
Phase III testing. Phase III trials 
compare a new treatment against 
the existing standard treatment; if it 
gives better results, it may become 
the new gold standard. Phase IV 
trials are carried out after a drug 
has been licensed. Information is 
collected about side-effects, safety 
and the long-term risks and benefits 
of a drug (http://www.cancerhelp.
org.uk/help/default.asp?page=52). 
For example, the conventional drug 
development process will normally 
proceed through all four stages over 
many years. A new drug is estimated 
to cost between US$800 and 
US$1700 million, and is expected to 
take anywhere between 7–12 years 
to be approved and launched. The 
complexity and duration of clinical 
trials are determined by the use 
of a long-term clinical endpoint 
(e.g. clinical progression, survival) 
to assess the clinical benefit of a 
new treatment or drug. Biomarkers 
have the potential to be used in 
clinical trials as validated surrogate 
endpoints to indicate drug efficacy 
or toxicity, or to make a “go/no-go” 
decision.

Biomarkers can be influential in 
every phase of drug development, 
from drug discovery and preclinical 
evaluations, through each phase 
of clinical trials and into post-
marketing studies (Figure 17.3). 
Biomarkers have been used to 
identify and justify targets for 
therapy. For example, 95% of 
CML patients possess a mutation 
called Philadelphia chromosome, a 
translocation between chromosome 
9 and chromosome 22 that produces 
a specific tyrosine kinase enzyme, 
BCR-ABL. Novartis’ Gleevec® 

(imatinib mesylate) specifically 
targets this enzyme by attaching to 
the cancerous cells and stopping 
them from growing and spreading. 
But in some patients, the cancer 
cells mutate just enough to be 
resistant to imatinib. Bristol-Myers 
Squibb produced another drug, 
dasatinib (BMS-354 825), that 
inhibits five tyrosine kinase proteins, 
including BCR-ABL and SRC (a 
protein that may play a role in 
imatinib resistance). This new agent 
shows very good response in those 
who are resistant to imatinib.

Biomarkers play an important 
role in preclinical studies. Critical 
proof-of-concept studies typically 

involve appropriate animal models. 
In cancer studies, for example, the 
complexities of modeling human 
cancer in experimental systems 
are well known and have impeded 
cancer drug development over the 
years (46). Genetically engineered 
cancer models have improved 
the situation, but most current 
models have limited capability for 
predicting clinical effects. Models 
that feature biomarker properties, 
comparable with those seen in 
patient populations, will enhance 
their utility as predictive models. 
Specific effects on biomarkers in 
such models can, in turn, provide 
proof-of-concept for therapeutic 

Figure 17.3. Roles of biomarkers (grey) and their associated technologies (blue) 
along the different phases of drug development and post-launch (yellow)

Source: (25)
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approaches (46). For instance, in 
a preclinical study of dasatinib, 
biomarkers Phospho-BCR-ABL/
phospho-CrkL were investigated 
in K562 human CML xenografts 
grown s.c. in severe combined 
immunodeficient mice. Results 
showed that following a single oral 
administration of dasatinib at a 
preclinical efficacious dose of 1.25 
or 2.5 mg/kg, tumoural phospho-
BCR-ABL/phospho-CrkL were 
maximally inhibited at  3 hours and 
recovered to basal levels by 24 
hours. The time course and extent 
of inhibition correlated with the 
plasma levels of dasatinib in mice. 
Pharmacokinetic/pharmacodynamic 
modelling predicted that the plasma 
concentration of dasatinib required 
to inhibit 90% of phospho-BCR-
ABL in vivo was 10.9 ng/mL in mice 
and 14.6 ng/mL in humans, which is 
within the range of concentrations 
achieved in CML patients who 
responded to dasatinib treatment in 
the clinic (47).

Use of biomarkers can shorten 
the clinical trial duration. In diseases 
with a long natural history, the 
final result of comparative trials 
with survival endpoints is often not 
known for 5–10 years after the study 
onset. If these clinical endpoints 
could be replaced by validated 
surrogate endpoints (biomarkers) 
that could be measured earlier, 
more conveniently or more 
frequently, then new drugs could be 
validated quicker and administered 
to patients. In addition, clinical trials 
could get by with smaller sample 
sizes, and costs could be lowered 
by using stratified patients based on 
molecular biomarkers. Traditional 
drug development relies on the 
random assignment of sufficient 
numbers of participants with a 
particular condition to investigational 
drug and control groups to enable 
detection of statistically significant 
drug responses. Some patients may 

be less genetically predisposed 
to respond to the investigational 
medication than others. As such, 
it is typical to enrol large numbers 
of patients to ensure sufficient 
power to detect with statistical 
certainty any true treatment effect 
among those who are responsive 
to the medication. In contrast, 
the application of biomarkers to 
clinical trials enables targeted 
selection of subjects and smaller 
trials by identifying subjects more 
likely to respond to a drug based 
on their genotype (48). The use 
of biomarkers may lead to more 
precise and effective inclusion and 
exclusion criteria in clinical trials 
and can be used at multiple points in 
the drug development process (49). 
Biomarkers will be most valuable 
when genotypes for adverse 
response and optimal efficacy for 
a given compound occur at a high 
frequency in the patient population 
(50). By applying biomarker-based 
stratification, based on these 
genotypes or protein biomarkers to 
predict and monitor drug response, 
specific subgroups of subjects 
examined in Phase III clinical trials 
would be expected to demonstrate 
greater response to and/or fewer 
adverse effects from the drug being 
studied. These trials would likely 
decrease drug development time, 
costs and potentially speed up the 
approval of drugs (51).

Examples/case studies

The goals of using biomarkers in drug 
treatment are to minimize toxicity 
and to maximize the effectiveness 
of therapy. Here are two cases of 
biomarker applications: UGT1A1 for 
minimizing toxicity and HER2 for 
maximizing drug efficiency.

UGT1A1 and irinotecan

Irinotecan (Camptosar®), a 
topoisomerase I poison, is approved 
for use in combination with 
5-fluorouracil (5-FU) and leucovorin 
chemotherapy for first-line treatment 
of metastatic colorectal cancer, and 
also as a single agent in second-line 
salvage therapy of 5-FU refractory 
metastatic colorectal cancer. It is also 
commonly used to treat esophageal, 
non-small cell lung cancer, breast 
cancer and other solid tumours 
in a second- or third-line setting 
(52). Although it prolongs survival, 
it also causes severe diarrhoea 
and neutropenia in 20–35% of 
patients treated. Fatal events during 
single-agent irinotecan treatment 
have been reported (53,54). UDP-
glucuronosyltransferase (UGT1A1) 
is responsible for the clearance 
by glucuronidation of drugs (e.g. 
irinotecan) and endogenous 
substances (e.g. bilirubin). As shown 
in Figure 17.4, the primary active and 
toxic metabolite of irinotecan, SN-
38, is inactivated by UGT1A1 to form 
SN-38G, which is eliminated via the 
bile. It has been determined that 
variations of the TA repeat length in 
the UGT1A1 promoter TATA element 
may lead to decreased gene 
expression, accumulation of SN-38, 
and irinotecan-related toxicities.

The UGT1A1 gene is located 
on chromosome 2q37. The 
polymorphic TA repeat in the 
5′-promoter region of UGT1A1 may 
consist of 5, 6, 7 or 8 repeats. The 
wild-type allele (UGT1A1*1) has six 
TA repeats, and the variant allele 
(UGT1A1*28) has seven TA repeats. 
Patients who are homozygous for 
the UGT1A1*28 allele, glucuronidate 
SN-38, less efficiently metabolize 
than patients who have one or 
two wild-type alleles; therefore, 
homozygous patients are exposed 
to higher plasma concentrations of 
SN-38 (52,55). In a meta-analysis, 
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data presented in nine studies was 
reviewed that included 10 sets of 
patients (a total of 821 patients) 
and assessed the association of 
irinotecan dose with the risk of 
irinotecan-related haematologic 
toxicities (grade III–IV) for patients 
with a UGT1A1*28/*28 genotype 
(52). As shown in Table 17.2, the 
risk of toxicity was higher among 
patients with a UGT1A1*28/*28 
genotype than among those with 
a UGT1A1*1/*1 or UGT1A1*1/*28 
genotype at both medium and high 
doses of irinotecan; however, risk 
was similar at lower doses (52).

In 2005, the FDA approved the 

inclusion of UGT1A1 genotype-
associated risk of toxicity on the 
irinotecan package insert and cites 
that a clinical test (Invader UGT1A1 
Molecular Assay; Third Wave 
Technologies Inc.) to detect common 
UGT1A1 alleles is available. The 
FDA-approved label for the test 
states that “Individuals who are 
homozygous for the UGT1A*28 allele 
are at increased risk of neutropenia 
following initiation of Camptosar 
treatment. A reduced initial dose 
should be considered for patients 
known to be homozygous for the 
UGT1A*28 allele. Heterozygous 
patients may be at increased risk 

of neutropenia; however clinical 
results have been variable and such 
patients have been shown to tolerate 
normal starting doses.” (http://www.
fda.gov/Drugs/ScienceResearch/
ResearchAreas/Pharmacogenetics/
ucm083378.htm).

However, as shown in Figure 
17.4, irinotecan interacts with multiple 
polymorphic drug metabolizing 
enzymes and transporters (54,56–
62), being inactivated by CYP3A4 
to APC and requiring conversion 
by carboxyesterases to the active 
metabolite SN38. The latter in 
turn is inactivated by UGT1A1 
glucuronidation as the main 
degradation pathway. In addition, 
irinotecan and its metabolites serve as 
substrates for transporters, including 
the ABC transporters (ATP-drive 
extrusion pumps) MDR1, MRP2, and 
BCRP. Each of these factors displays 
interindividual variability, with 
functional polymorphisms potentially 
contributing to variable irinotecan 
response. Haplotype analysis has 
provided additional insight into the 
regulation of gene transcription 
(54,56,57,62), but a quantitative 
assessment of all factors is lacking. 
As a result, use of TA repeat 
polymorphisms in predicting in vivo 
UGT activity and SN38 exposure 
after irinotecan administration has 
been only partially successful. 
The Clinical Pharmacology 
Subcommittee, Advisory Committee 
for Pharmaceutical Science, 
reviewing the product, further noted 
that “...although there is indication 
to start with a lower dosage, it is 
not necessarily an indication that 
sensitive patients will do well with 
this dosage” (54). This example 
illustrates that pharmacogenetic 
(PGx) testing can identify patients 
who are likely to respond differently 
to a particular drug and indicate the 
appropriate dosage, but that testing 
does not necessarily translate into 
dosing instructions. Hence, the 

Figure 17.4. The irinotecan pathway shows the biotransformation of the chemotherapy 
prodrug, irinotecan, to form the active metabolite SN-38, an inhibitor of DNA 
topoisomerase I. SN-38 is primarily metabolized to the inactive SN-38 glucuronide 
by UGT1A1, the isoform catalysing bilirubin glucuronidation. Used with permission 
from PharmGKB and Stanford University; http://www.pharmgkb.org/do/serve?objId
=PA2001&objCls=Pathway#
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value of prospective genotyping for 
UGT1A1 in irinotecan therapy must 
be determined empirically in the 
intended target populations (63).

HER2 and trastuzumab 
(Herceptin®)

Human epidermal growth factor 
receptor 2 (HER2), also known as 
ErbB2 and Neu, is a cell surface 
glycoprotein with intrinsic TK activity 
that is involved in cell growth and 
development (46,64). In normal 
quantities, HER2 promotes normal 
cell growth, but when a genetic 
mutation causes HER2 to be 
overexpressed on the cell surface, 
certain breast cancer cells are 
prompted to multiply uncontrollably 
and invade surrounding tissue 
(46,65). The cloned HER2, 
associated with a form of metastatic 
breast cancer, appeared as a 
potential monoclonal-antibody 
target in 1985. It has many of the 
properties required for such a target; 
it is overexpressed on the surface of 
tumour cells and not on normal cells, 
it has an extracellular domain that is 

readily accessible, and expression 
of the receptor is stable in primary 
tumour tissues and metastatic 
deposits. HER2 became a potential 
biomarker with the initial observation 
that the HER2 gene was amplified in 
25% of axillary lymph node-positive 
breast cancers, and, when present, 
correlated with poor prognosis (66). 
Additional studies confirmed that 
HER2 protein overexpression was 
also a prognostic biomarker in breast 
cancer, correlating with decreased 
relapse-free and overall survival 
(66–68). Moreover, additional 
clinical data have shown that HER2 
amplification/overexpression is a 
predictive biomarker for greater 
or lesser response to certain 
chemotherapies or hormonal 
therapies in breast cancer (69–73).

The role of HER2 as an 
oncogenic protein and clinically 
relevant biomarker led directly to the 
development of a specific targeted 
therapy: trastuzumab (Herceptin®; 
Genentech, South San Francisco, 
CA), a humanized IgG1 monoclonal 
antibody with high affinity and 
specificity for HER2. The clinical 

trials were started in 1992. In 
advanced breast cancers with HER2 
overexpression, trastuzumab was 
shown to be active as a single agent 
in second- and third-line therapy 
(74,75), and subsequently as first-
line therapy (76). Trastuzumab is 
particularly effective in combination 
with chemotherapy. In 1998, the 
drug was approved in the United 
States by the FDA as Herceptin. 
This drug was able to get a fast 
track approval status for two 
reasons: it demonstrated efficacy 
in patients previously resistant to 
more conventional treatments, and 
a diagnostic test was able to identify 
the patients that were expected to 
benefit from it. The HercepTest is the 
first example of a pharmacogenomic 
test that is marketed along with 
a drug. There are two tests to 
determine HER2 status and 
select patients for treatment with 
trastuzumab. The first approved was 
an immunohistochemistry (IHC) test, 
the HercepTest, which measures 
the level of expression of the HER2 
protein. The possible outcomes of 
the test are reported as numbers 

Table 17.2. Predictive value of UGT1A1*28 genotype upon irinotegan-induced Grade III-IV haematological toxicity 

OXA, oxaliplatin; 5FU, 5-fluorouracil; RAL, raltitrexed; CAP, capecitabine
Adapted from the summary table of analyses on 10 clinical trials that assessed the diagnostic value of the homozygous UGT1A1*28 genotype to predict irinotecan-induced grade 
III-IV hematologic toxicity (52, with permission of Oxford University Press). Other related references are (100–105).
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from 0 to 3+, with 0 representing no 
overexpression and 3+ representing 
high overexpression. Only 3+ is 
defined as HER2 positive. The 
most recently approved method, 
fluorescence in situ hybridization 
(FISH), detects the underlying gene 
alteration in the patient's tumour 
cells. FISH makes the number of 
HER2/neu gene copies visible. 
In healthy cells, there are two 
copies of the HER2/neu gene per 
chromosome. If FISH detects more 
than two copies of the HER2 gene, it 
means that the cell is abnormal and 
is HER2-positive. This abnormality 
is also referred to as HER2 gene 
amplification. The results of the 
FISH test can be reported as 
positive or negative.

Recent comparison of FISH and 
IHC shows that FISH appears to 
be superior at providing prognostic 
information with respect to the 
detection of higher-risk breast 
cancers (77). Unfortunately, it is 
expensive and requires additional 
equipment and training beyond 
what is commonly found in most 
laboratories. For this reason, it is 
recommended that only IHC results 
of 2+ (which represents a little 
overexpression of HER2) should be 
retested with FISH to prevent false-
negative outcomes (78), as shown 
in Figure 17.5.

The HER2 case is one of the 
most successful applications of 
biomarkers in drug development and 
disease treatment. The advantage 
of this case is the co-development 
of drugs and diagnostic tests, which 
greatly reduced the number of 
patients involved in the clinical trials 
and facilitated a fast-track approval 
status. It is known that women 
with HER2+ breast cancer do not 
respond well to standard therapy, 
and that patients whose breast 
cancers lack HER2 overexpression 
are highly unlikely to respond to 
trastuzumab alone (46). Moreover, 

HER2 positivity could predict the 
effect of adjuvant treatment of 
other drugs. For example, it was 
reported that HER2 positivity was 
associated with a significant benefit 
from the addition of paclitaxel to 
the treatment regimen (79). The 
interaction between HER2 positivity 
and the addition of paclitaxel was 
associated with a hazard ratio 
for recurrence of 0.59 (P = 0.01). 
Patients with a HER2-positive breast 
cancer benefited from paclitaxel 
regardless of estrogen-receptor 
status, but paclitaxel did not benefit 
patients with HER2-negative, 
estrogen-receptor-positive cancers.

The effect of adjuvant 
trastuzumab in the treatment 
of HER2-positive early breast 
cancers has been evaluated in 
randomized controlled trials and 
in a meta-analysis of published 

randomized trials. Results of a study 
on trastuzumab use after adjuvant 
chemotherapy in HER2-positive 
breast cancer patients found that one 
year of this treatment combination 
had a significant overall survival 
benefit after a median follow-up of 
two years (Figure 17.6) (80).

A meta-analysis of five 
randomized controlled trials was 
performed comparing adjuvant 
trastuzumab treatment for HER2-
positive early breast cancer. Pooled 
results from the trials showed a 
significant reduction of mortality (P 
< 0.00001), recurrence (P < 0.0001), 
metastases rates (P < 0.0001) and 
second tumours other than breast 
cancer (P = 0.007), as compared to 
no-adjuvant-trastuzumab patients 
(81). 
However, there are still questions 
about the HER2 biomarker and 

Figure 17.5. Algorithm for HER2 testing 

Adapted from http://www.iap-aus.org.au/2001no3.html.



316

Figure 17.6. Exploratory disease-free survival subgroup analysis for one year of trastuzumab versus observation

Source: (80). Reprinted from The Lancet, Copyright (2007), with permission from Elsevier.
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trastuzumab treatment. For example, 
almost half of HER2-positive breast 
cancer patients are non-responsive 
to trastuzumab therapy or become 
drug resistant during treatment. 
Although other biomarkers have 
been investigated, and some drugs 
are in clinical trial, no breakthrough 
drug has been reported yet. Another 
unsolved issue is toxicity. In the 
meta-analysis, they reported more 
grade III or IV cardiac toxicity after 
trastuzumab (203/4555 = 4.5%) 
versus no trastuzumab patients 
(86/4562 = 1.8%); therefore, careful 
cardiac monitoring is warranted (81).

Strengths, limitations 
and lessons learned

Biomarkers have been used in 
disease prevention, diagnosis, 
treatment, prognosis and drug 
development for many years, 
but have only recently shown 
the potential to revolutionise the 
health paradigm into a new era. 
The successful completion of the 
human genome sequencing project 
laid the foundation for identifying 
mechanism-based biomarkers. 
Although US$1000 per individual 
for sequencing is still a ways off, 
BioNanomatrix and Complete 
Genomics Incorporated have 
formed a joint venture to develop a 
system capable of sequencing the 
entire human genome in eight hours 
at a cost of less than $100. By its 
completion, the proposed technology 
will have the potential to enable 
improvements in the diagnosis and 
personalized treatment of a wide 
variety of health conditions, as well 
as the ability to deliver individually 
tailored preventive medicine 
(ht tp://nanotechwire.com/news.
asp?nid=5087&ntid=130&pg=1).

Recently developed “omics” 
technologies, such as genomics, 
transcriptomics, proteomics, 
metabolomics and other high-

throughput technologies, offer 
useful tools for biomarker discovery. 
Genomics studies organisms in 
terms of their genomes (i.e. their full 
DNA sequences) and the information 
they contain (an indication of what 
can happen). Transcriptomics is 
used to analyse gene expression 
(what appears to be happening). 
Proteomics is used to investigate 
proteins (compounds that make 
things happen). Metabolomics 
is used to measure metabolites 
(substances that indicate what has 
happened and is happening). It is 
widely known that early diagnosis 
and effective treatment of common 
diseases requires capturing and 
interpreting information at different 
levels and using a variety of novel 
techniques (as shown in Figure 17.3).

Computational technology and 
bioinformatics play a major role in 
the discovery of new biomarkers, the 
validation of potential biomarkers, 
and the analysis of disease states. 
For example, Figure 17.7 shows 
the detail of a subnetwork of the 
protooncogene MYC. Two types 
of technologies have made this 
work possible: the advent of a 
new wave of high-throughput 
biotechnology, with its sequencers, 
gene expression arrays, mass 
spectrometers and fluorescence 
microscopes; and information 
technology for qualitative changes 
in the way biological knowledge is 
stored, retrieved, processed and 
inferred.

Large and well-organized 
consortia and networks, as well 
as updated regulatory systems, 
guarantee the validation of 
biomarkers and their successful 
translation into clinical practice. A 
good example of this is the FDA 
consortium that includes members 
of the pharmaceutical industry and 
academia, and aims to observe 
how genetic biomarkers contribute 
to serious adverse events. The 

consortium launched two projects: 
to address drug-related liver toxicity; 
and to study a rare but serious drug-
related skin condition called Stevens-
Johnson syndrome. The Biomarkers 
Consortium has launched a web site 
to encourage researchers to submit 
biomarker project concepts (http://
www.biomarkersconsortium.org/).

In clinical medicine, there are still 
many challenges that must be met 
before the full value of biomarkers, 
especially molecular biomarkers 
(e.g. cancer biomarkers), can be 
realized.

First, identification of highly 
prevalent targets that constitute key 
master promoters of oncogenesis in 
specific tumours is still very difficult. 
For instance, the oncogenetic 
process in malignant gliomas is 
driven by several signalling pathways 
that are differentially activated or 
silenced with both parallel and 
converging complex interactions. To 
date, no new molecule seems to be 
promising enough to justify a large 
Phase III trial (82).

Second, once a potential target 
is identified, it is not easy to discover 
new agents capable of restoring 
normal cell functions through 
interaction with the target. A major 
hurdle is that tumour cells acquire 
drug resistance. Certain cancers 
are effectively treated because the 
targeted drug is applied. But very 
often patients develop secondary 
mutations that recruit other kinases 
that are not affected by the inhibitor to 
substitute for the pharmacologically 
impaired kinase, and to restore 
downstream molecular signalling 
cascades that contribute to tumour 
growth (82–84).

Third, there are still many 
methodological issues to resolve. 
For example, how to define proper 
criteria for responsiveness, avoid 
measurement errors, interpret 
laboratory results, educate medical 
staff to accept and use biomarkers in 
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their daily medical practice, and how 
to help the public better understand 
genetic tests (85).

Finally, ethical and social issues 
must be considered. Individual, 
family and societal goals may 
conflict with current health care 
practices and policies in regards 
to genetic testing. Current health 
care policies do not fully address 
these concerns. One major barrier 
is the potential loss of societal 
benefits, such as employment or 
insurability, based on one’s genetic 
characteristics, which is referred 
to as genetic discrimination (85). 
Other issues include genetic testing 

on those who lack the capacity to 
consent, genetic testing on stored 
tissue samples and tissue banks, 
and ensuring appropriate monitoring 
of genetic tests. These concerns 
warrant the attention and action of 
society as a whole.

Future directions 
and challenges

Multiple targets, prevention and 
prediction, personalization and 
cooperation will be the future 
directions of biomarker applications 
in clinical medicine.

Multiple biomarkers will be more 
frequently applied in clinical tests, 
especially for common diseases. 
“Multiple” could represent many 
markers from the same profile, or 
markers from different profiles, 
such as DNA, mRNA, microRNA 
or protein and gene expression. 
In 2007, for example, the FDA 
approved a gene-based breast 
cancer test designed to determine 
the likelihood of early stage breast 
cancer recurrence within 5–10 years 
after treatment. The test called 
MammaPrintTM (Agendia) is a DNA 
microarray-based diagnostic kit that 
measures the level of transcription 

Figure 17.7. Detail of a subnetwork of the protooncogene MYC. Nodes are colour-coded according to their target status and 
available validation of direct MYC binding
 

Source: (107). Reprinted by permission from Macmillan Publishers Ltd: Nature Genetics, copyright (2005).
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of 70 genes in breast cancer 
tumours. The profiles are scored 
to determine the risk or recurrence 
and with it the need for adjuvant 
therapy (86). There is currently 
a great deal of research being 
done on multitargeted therapies, 
which simultaneously target some 
of the many signalling pathways 
involved in tumour development 
and proliferation. “Mixing cocktails,” 
as Charles L. Sawyers recently 
described it (84), will continue to 
grow, but should be under the 
appropriate molecular guidance.

Preventive and predictive 
biomarkers will play a key role in 
future health care. New agents, 
such as antiangiogenesis/vascular-
targeting drugs, have moved from 
cancer therapy to cancer prevention. 
Molecular and epidemiologic 
studies of cancer risk and drug 
sensitivity and resistance began 
ushering in the era of personalized 
prevention (84,87). Development 
of new treatments has increased 
the need for markers that predict 
outcome and those that direct which 
treatment options are most likely to 
be effective for a particular patient 
with a particular tumour (88).

Personalized medicine is the 
use of detailed information about 
an individual’s inherited and/
or acquired characteristics and 
their phenotypic data to select a 
preventative measure or medication 
that is particularly suited to that 
person at the time of administration. 
This revolution in clinical care is 
predicated on the development and 
refinement of biomarkers, enabling 
disease prevention, and diagnosis 
and treatment of patients and 
populations (89). Biomarkers will be 
used before birth and throughout 
life. For example, a couple planning 

to have children could be tested 
for specific biomarkers to avoid 
haemolytic disease of the newborn 
(HDN) and some recessive diseases 
(carrier parents have a 25% chance 
of passing on the disease to the 
baby). Children with a family 
history of diabetes, heart disease 
or cancer may take a genetic test 
to adjust their lifestyle or consider 
preventive treatment. Therapeutic 
and prognostic biomarkers should 
be applied to all kinds of patients, 
especially cancer patients, to direct 
their treatment plans and predict 
the treatment outcomes. Within 
the foreseeable future, when the 
US$100 genome sequencer is 
developed, everybody would be 
able to have their whole-genome 
information on their ID card.

In the first decade of the 21st 
century, the fast-growing application 
of omics technologies in translational 
research and clinical medicine have 
been witnessed. It has accelerated 
biomarker development, improved 
the accuracy for diagnosis/treatment, 
and advanced personalized 
medicine. One example is the 
application of omics in reproductive 
medicine, in particular in vitro 
fertilization (IVF) treatment, an 
assisted reproduction. A key step 
in assisted reproduction is the 
assessment of oocyte and embryo 
viability to determine the embryo(s) 
most likely to result in a pregnancy. 
Although conventional systems such 
as morphological charaterization 
and cleavage rating have been 
successful in improving pregnancy 
rates, their precision is far from ideal 
(90,91). It was reported that two out 
of three IVF cycles fail to result in 
a pregnancy, and more than eight 
out of 10 embryos fail to implant 
(92). The presence of aneuploidy 

in embryos frequently causes failed 
implantation and pregnancy. In a 
recent study, CGH, a genomics 
approach, was used in assessment 
of embryo aneuploidy and achieved 
implantation and pregnancy rates 
of 68.9 and 82.2%, respectively 
(93). Alternatively, using microarray 
CGH (aCGH) and single nucleotide 
polymorphism microarray have the 
potential for further improvement in 
assessment of embryo aneuploidy 
at a higher resolution, as they can be 
used to detect more refined regions 
(less than megabases, or even less 
than kilobases of nucleotides) in 
any chromosome (94,95). Other 
omics have also been applied 
to assessing embryo viability, 
such as metabolomics (96,97), 
transcriptomics (98) and proteomics 
(99). These omics technologies 
present unique advantages as well 
as their own intrinsic limitations. 
However, a combined strategy of 
omics may enhance the thorough 
screening of gametes and embryos 
for their viability and reproductive 
potential. The applications of omics 
technologies in other medical 
fields are in different stages of 
development and ever expanding. 
It is envisioned that the biomarkers 
derived from those omics will realize 
their full potential before long in all 
fields of clinical medicine.

In summary, biomarkers 
have been widely used in 
clinical prevention, diagnostics, 
therapeutics, prognostics, clinical 
trials and drug development. With 
mapping of the human genome 
complete, rapid development of new 
technologies and the collaboration 
of different disciplines, biomarkers 
promise personalized medicine, 
though many challenges remain to 
be overcome.
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Summary

The rapidly growing number of 
molecular epidemiology studies 
is providing an enormous, often 
multidimensional, body of evidence 
on the association of various disease 
outcomes and biomarkers. The 
testing and validation of statistical 
hypotheses in genetic and molecular 
epidemiology presents a major 
challenge requiring methodological 
rigor and analytical power. The 
non-replication of many genetic 
and other biomarker association 
studies suggests that there may 
be an abundance of spurious 
findings in the field. This chapter 
will discuss ways of combining 
evidence from different sources 
using meta-analysis methods. 
Research synthesis not only aims 
at producing a summary effect 
estimate for a specific biomarker, 

but also offers a unique opportunity 
for a meticulous attempt to critically 
appraise a research field, identify 
substantial differences between or 
within studies, and detect sources 
of bias. Systematic reviews and 
meta-analyses in human genome 
epidemiology are specifically 
discussed, as they comprise the 
bulk of the available evidence in 
molecular epidemiology where 
these methods have been applied 
to date. Considered here are issues 
regarding validity and interpretation 
in genetic association studies, as 
well as strategies for developing 
and integrating evidence through 
international consortia. Finally, there 
is a brief look at how combining 
data through meta-analysis may be 
applied in other areas of molecular 
epidemiology.

Introduction

The number of molecular 
epidemiology studies is constantly 
growing, and this trend is 
expected to accelerate (1–4), 
especially with improvements 
in genotyping technology that 
allow massive testing of genetic 
variants in minimal time and at a 
decreasing cost on a genome-
wide association study platform 
(5–8). The number of potentially 
identifiable genetic markers, and 
the multitude of clinical outcomes 
to which these may be associated, 
make the testing and validation of 
statistical hypotheses in genetic 
and molecular epidemiology a task 
of unprecedented scale. Currently, 
more than 6000 original articles 
on human genome epidemiology 
findings are published annually, and 
the numbers are increasing (9,10). 
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Yet, there has been considerable 
concern about non-replication in 
gene-disease association studies 
(11–19) and other areas of molecular 
epidemiology. The combination 
of high-throughput genotyping, 
selective reporting, and exploratory 
statistical analyses in studies with 
limited sample sizes could potentially 
generate a scientific literature 
replete with spurious findings and 
lead to wasted resources, unless 
mechanisms are put in place to 
promptly evaluate evidence as 
it accumulates (20,21). Related 
concerns also apply to other fields of 
molecular epidemiology where large 
amounts of data are produced and 
it is important to achieve unbiased 
integration of the evidence.

Combining evidence from 
different sources is discussed here. 
The goal of research synthesis is to 
estimate and explain between-study 
heterogeneity, arrive at summary 
effects, and appraise the quality and 
reliability of the evidence procured by 
many studies on the same research 
question. Specifically, systematic 
reviews and meta-analyses in 
human genome epidemiology are 
discussed, as they comprise the 
bulk of the available evidence in 
molecular epidemiology where these 
methods have been applied. Issues 
regarding validity and interpretation 
in genetic association studies are 
considered, as well as strategies 
for developing and integrating high-
quality genomic evidence through 
international consortia. Finally, 
means for applying combined data 
through meta-analysis in other 
areas of molecular epidemiology are 
briefly examined.

Systematic reviews 
and meta-analyses: 
Definitions

Systematic reviews and meta-
analyses provide valuable tools 

for summarizing genetic effects 
and for identifying and explaining 
the underlying differences and 
observed discrepancies between 
studies. The term systematic 
review has been used as a contrast 
to traditional review. Systematic 
reviews use a predefined, structured 
approach to the collection and 
integration of available evidence, 
whereas traditional reviews offer a 
non-structured, non-standardized 
appraisal of the current literature 
distorted in varying degrees by 
the reviewer’s personal opinion 
and experience. The goal of 
this systematic approach is to 
guarantee the transparency and 
completeness of the review process. 
Meta-analyses use quantitative 
research synthesis methodology 
to derive summary estimates of 
the studied effects and to describe 
and explain the variability between 
and within studies (22). Systematic 
reviews and meta-analyses are 
well-established approaches to 
research synthesis in clinical trials, 
where their strengths and limitations 
have been widely assessed (23). 
Increasingly, they have also been 
applied to observational studies (24); 
meta-analyses of observational data 
are currently as common as those 
of clinical trials. Meta-analyses of 
gene–disease association studies 
have been accepted as a key 
method for establishing the genetic 
components of complex diseases 
(14,17). In 1998, The Human 
Genome Epidemiology Network 
(HuGENet) was launched as a 
global collaboration of individuals 
and organizations interested in 
accelerating the development of the 
knowledge base on genetic variation 
and common diseases. HuGENet 
has promoted the publication of 
HuGE reviews as a means of 
integrating evidence from human 
genome epidemiologic studies, that 
is, population-based studies of the 

impact of human genetic variation 
on health and disease (25). Initial 
efforts to apply quantitative methods 
were cautious, but there is now wide 
agreement that a meta-analysis 
of the evidence is almost always 
indicated and can provide more 
useful insights than a simple narrative 
review, provided the caveats of data 
synthesis are properly recognized. 
By the end of 2009, approximately 
1200 systematic reviews and meta-
analyses had been published on 
human genome epidemiology topics 
(ht tp: //www.cdc.gov/genomics/
hugenet/default.htm); most of 
them, however, tried to integrate 
information on only one or a few 
specific gene–disease associations 
at a time. The unknown extent of 
unpublished data and the likelihood 
of biases inherent in single studies 
threaten the credibility of genetic 
findings.

While most meta-analyses in 
the past have been retrospective 
exercises, there is an increasing 
interest for prospective collaborative 
analyses that use the same 
statistical methods as traditional 
retrospective meta-analyses. 
Collaborative meta-analyses may 
be undertaken by consortia or 
networks of investigators working 
on the same disease and/or set of 
research questions. Participating 
teams may combine already-
collected data, perform projects 
that use both retrospectively and 
prospectively collected information, 
or develop new collaborative 
projects on a completely 
prospective basis. With the advent 
of genome-wide association studies 
(GWAS), it is common practice to 
immediately seek replication of 
proposed discovered associations 
by other teams of investigators 
and publish the combined data in 
the same article. As a more recent 
alternative, meta-analyses have 
been implemented by combining 
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multiple data sets at the discovery 
stage under a consortium umbrella 
(26–28). This is a prospective 
use of meta-analysis methods. 
Furthermore, for many diseases and 
research questions, numerous such 
coalitions of investigators may exist; 
bringing their data together presents 
a new field of application for meta-
analysis methods.

Reviewing methods: 
Basic aspects

Recommendations have been 
developed regarding the conduct 
of systematic reviews and meta-
analyses. In 2006, HuGENet 
posted online the first edition of a 
handbook for conducting HuGE 
reviews (29,30). The reporting of 
these studies may need further 
improvement and standardization 
in the literature and should 
become more evidence-based 
with increasing experience. Such 
standards may follow the examples 
of similar initiatives for genetic 
association studies (e.g. STREGA 
(31)), as well as other designs and 
disciplines (e.g. CONSORT (32,33), 
MOOSE (34), PRISMA (35), STARD 
(36) and TREND (37)).

First, typical retrospective 
systematic reviews and meta-
analyses will be discussed. A 
typical systematic review includes 
the following stages: 1) formulation 
of the research question requiring 
appraisal of the available evidence, 
2) identification of the eligible studies 
and data extraction, 3) synthesis of 
the available evidence, 4) assessing 
and addressing potential biases, 
and 5) interpreting the results.

Research questions

Formulating the research question is 
fundamental for systematic reviews, 
as for any other research endeavour. 
Decisions must be made upfront 

about which gene and variants 
and which disease and outcomes 
to assess, as well as the eligibility 
criteria for the study designs and the 
study and population characteristics. 
Different eligibility criteria may lead 
to different data being synthesized 
and possibly different conclusions.

Data

Identifying the studies eligible for 
inclusion in a systematic review 
requires comprehensive, systematic 
literature searches. One must 
specify which eligible databases 
to search, and decide whether 
to consider data without regard 
for their prior publication in peer-
reviewed literature or the specific 
language(s) of publication (38). (For 
more details on issues pertaining to 
the eligibility and choice of sources 
of data, see (39).) Data extraction 
for published information is typically 
performed by two independent 
investigators with critical discussion 
of any discrepancies.

Data synthesis

Synthesizing the available evidence 
is best done in a quantitative way, 
producing summary estimates of the 
assessed effect and estimates of the 
between-study heterogeneity, as 
well as measures of the uncertainty 
thereof. A quantitative synthesis 
must be strongly encouraged, 
whenever feasible, as a means of 
producing a summary estimate, but 
most importantly for quantification 
of heterogeneity and identification of 
potential bias. Some key issues on 
methods for evaluation of between-
data set heterogeneity and for 
obtaining summary effects will be 
touched on briefly; a discussion on 
issues of multivariate models and 
adjustments will follow.

Heterogeneity

One should distinguish between 
clinical, biological and statistical 
heterogeneity. Statistical 
heterogeneity can be tested in any 
quantitative synthesis. Its presence 
may signal genuine biological 
and clinical heterogeneity or bias 
and errors. Often it is difficult to 
pinpoint what the exact reasons are 
for heterogeneity, and inferences 
should be cautious. Conversely, the 
absence of demonstrable statistical 
heterogeneity cannot be interpreted 
as proof of clinical and biological 
homogeneity.

Several heterogeneity tests and 
metrics are traditionally used in 
meta-analyses. (For more details and 
mathematical formulas, see (39).) 
The Q statistic provides a χ2-based 
test and is considered significant for 
P < 0.10, but it is still underpowered 
in most meta-analyses whenever 
there are few (roughly < 20) data 
sets combined (40).

The between-study variance, 
τ2, is not commonly used as a 
metric of heterogeneity, because 
its magnitude depends on the 
respective effect size metric (e.g. 
standardized mean difference, 
odds ratio, hazard ratio) and it is not 
comparable among meta-analyses 
using different effect metrics (41). 
However, a useful metric often 
neglected is the ratio of τ over the 
effect size. This ratio can provide a 
measure of the extent of variability 
(between-study standard deviation) 
as compared with the effect 
size. Given that many molecular 
epidemiology effects are small, the 
relative magnitude of the uncertainty 
versus the effect is a useful measure 
to consider. The most popular 
metric for conveying between-
study heterogeneity is nevertheless 
the I2. This metric has the major 
advantage that it is independent 
of the number of studies, and 
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thus can be standardized for use 
across different meta-analyses with 
different effect metrics and different 
numbers of studies (40). I2 is directly 
interpreted as the percentage of 
total variation across studies due to 
heterogeneity rather than chance, 
and it takes values between 0 and 
100% (42). Values over 50% indicate 
large heterogeneity. However, I2 also 
becomes uncertain when only a few 
studies are combined, as in the large 
majority of current meta-analyses 
(41,43), and therefore presentation 
of 95% confidence intervals should 
be considered routinely. This 
will help avoid spuriously strong 
inferences regarding heterogeneity 
or lack thereof.

Summary effects

To date, most meta-analyses have 
used either fixed or random effects 
methods for combining the data 
across eligible studies and data 
sets. Fixed effects models assume 
a common effect estimate for all 
studies and attribute all observed 
between-study variability to chance. 
Fixed effects models include 
inverse-variance weighting, and 
Mantel-Haenszel and Peto methods 
(44), and seem inappropriate in 
the presence of demonstrable or 
anticipated heterogeneity if used as 
the single methodology for the effect 
estimate calculation. In the absence 
of demonstrable heterogeneity, keep 
in mind that failure to reject the null 
hypothesis of homogeneity does not 
prove homogeneity. Random effects 
assume that there is a different 
underlying effect size for each study. 
There are many different proposed 
estimators for the between-
study variance; the most popular 
was suggested by DerSimonian 
and Laird (45). Random effects 
accommodate between-study 
heterogeneity and thus should 
be preferred in the presence or 

anticipation of heterogeneity. In the 
absence of any heterogeneity, fixed 
and random effects give similar 
results in any case.

Unfortunately, these issues 
are not yet well understood in the 
literature, as shown by empirical 
evaluations of candidate gene meta-
analyses and also meta-analyses 
of GWAS (46,47). Until recently, 
the choice of model for combining 
results from candidate gene studies 
lay on the straightforward concept 
of underlying heterogeneity. 
Nevertheless, in a GWAS setting, the 
presence of heterogeneity may not 
necessarily correspond to replication 
failure, but can signal difficulty in 
extending the probed association in 
diverse populations (48). In light of 
the generally limited power to detect 
moderate signals of effect at the 
discovery stage, the exclusive use of 
random effects models, and the more 
conservative confidence intervals 
produced when heterogeneity is 
present would result in forbidding 
possibly true signals to pass the 
genome-wide significance threshold 
and seek further replication however 
large the discovery data sets might 
be (power desert phenomenon) (49). 
Thus, it would be more appropriate to 
report the results from both models 
and make critical decisions on the 
basis of the stage at which meta-
analysis is performed.

Besides traditional fixed and 
random effects models, there is 
an increasing application of more 
fully Bayesian methods in meta-
analysis. Their discussion is beyond 
the scope of this chapter, but the 
interested reader is referred to a 
reference textbook (50) and the 
WinBUGS software manual (51).

Adjustments for other 
variables

Both adjusted and unadjusted effect 
estimates from single studies may 

be combined in meta-analyses. 
Questionnaire-based data are used 
to some extent to adjust effects 
estimates, including minimum 
information, such as age and sex, or 
more complex data, such as clinical 
features of the disease under study 
defining a potentially differentiating 
risk profile, where genetic or other 
molecular information could add 
additional information (52). This is 
more likely to be the case in large 
multicenter clinical trials or cohort 
studies, where a “nested” genetic 
association study is performed.

An issue with adjusted estimates 
is to ensure that similar or at least 
comparable adjustments have been 
performed across different studies. 
For retrospective efforts there is 
usually large variability in the types 
of adjustments. Moreover, even data 
on the same variables may have been 
collected across different studies 
using different questionnaires or 
procedures, and standardization 
may be difficult or even impossible. 
Finally, caution should be used when 
differentiating between variables 
that are independent predictors and 
others that may be surrogates of 
the genetic/molecular effect under 
study.

Assessing and addressing 
potential biases

There are often considerable and 
justifiable concerns regarding the 
quality and validity of molecular 
epidemiology studies. Critical 
appraisal of the studies included in 
a systematic review is of paramount 
importance for identifying the 
sources of bias inherent in each 
study. The types of biases include 
selection bias, information bias 
and confounding. Moreover, issues 
such as multiple testing should be 
considered, as well as concerns 
pertinent to specific types of 
biomarkers and studies (e.g. Hardy–
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Weinberg equilibrium violations 
for genetic association studies). 
Appraisal of potential biases is 
often hampered by poor reporting 
of the primary studies. Poor 
reporting of observational studies 
(53) is a common challenge in 
synthesizing evidence; statements 
about STrengthening the Reporting 
of OBservational studies in 
Epidemiology (STROBE) (54–56), 
and STrengthening the REporting 
of Genetic Associations (STREGA) 
(31), a similar effort in human 
genome epidemiology sponsored by 
the Human Genome Epidemiology 
Network (HuGENet), contribute to 
the transparency of reporting and 
the prompt identification of potential 
sources of study discrepancies and 
bias.

Detailed discussion of the specific 
biases that may be encountered in 
single studies is beyond the scope 
of this chapter. Some suggested 
references follow for the interested 
reader: selection bias (57–65); 
information bias involving biomarker 
measurement (e.g. genotyping), 
capture of environmental factors, 
or outcome assessment (8,66–69); 
and confounding which for genetic-
association studies in particular 
manifests primarily through 
population stratification (70–75). 
For genome-wide investigations and 
other massive testing approaches, 
even minor biases on any of these 
fronts may create some highly 
statistically significant spurious 
signals among the many thousands 
being probed. Therefore, careful 
selection of cases and controls, high 
standards of genotyping and quality 
control, and routine use of principal 
component analysis, genomic 
control, family-based design, 
or other techniques that more 
rigorously control for stratification, 
are indispensable.

Interpreting the results

Interpreting the results of a 
systematic review and meta-analysis 
on an assessed biomarker includes 
consideration of the quantity and 
quality of the evidence and rigorous 
scrutiny for publication bias and 
selective reporting in the field at 
large. In terms of the quantity of 
accumulated evidence, it is unclear 
how much genetic information would 
be sufficient to validate a genetic 
association. Empirical evidence has 
demonstrated that initial research 
publications often fail to predict 
the subsequently established 
genetic effects and may even show 
substantial discrepancies with later 
research (14,76).

Publication and selective 
reporting bias

The tendency to publish studies with 
positive rather than negative results 
(preferring studies with large effects 
or statistically significant results) 
introduces publication bias (13,34). 
Publication bias is very difficult to 
address in a retrospective collection 
of published evidence. Tests such 
as funnel plots are notoriously 
unreliable and subjective, and they 
should be abandoned. Even formal 
statistical testing for funnel plot 
asymmetry cannot fully discriminate 
between publication bias and 
other sources of bias or genuine 
heterogeneity. In addition, the tests 
are generally underpowered (77–79) 
and subject to extensive limitations 
that make them useful only in a few 
meta-analyses (80). If these tests 
are employed, a suitable modified 
regression test should be selected 
that has appropriate type 1 error 
properties (81). Such tests would be 
more correctly called tests for small 
study effects, since they essentially 
evaluate whether small studies differ 
in their results from larger ones.

Another common issue that 
could have an increasingly important 
impact in molecular epidemiology 
is selective reporting of specific 
analyses and outcomes among 
the many that may be performed, 
often in pursuit of nominal statistical 
significance (82–85). Ideally, 
straightforward a priori hypotheses 
should be explicitly reported, and 
study objectives and future analyses 
should be documented at their 
outset under a collaborative initiative 
(20,31). However, this may not be 
as transparent as it should be, and 
lack of transparency is compounded 
by the exploratory nature of much 
molecular epidemiological research. 
A meta-analysis diagnostic that can 
be used to evaluate the presence 
of “significance-chasing” biases, 
including publication and other 
selective reporting biases, has been 
proposed (86). The test is most 
useful for application across many 
meta-analyses (e.g. evaluation of 
large research fields), while it is 
expected to be underpowered for 
meta-analyses with few studies.

Causal inference

An observed association may 
be spurious or real. Spurious 
associations may be due to chance, 
bias within studies, or bias across 
studies (reporting biases affecting 
the whole research field of interest). 
For genetics of common diseases, 
real associations, not attributable 
to confounding, may be due to a 
direct causal variant or to a variant 
in linkage disequilibrium (LD) with a 
direct causal variant (13,87,88). They 
can be a source of the heterogeneity 
found between studies of gene-
disease associations.

Traditional epidemiological criteria 
for establishing causation include 
consistency, strength, biological 
plausibility (including analogy), dose–
response, temporality, experimental 
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support, and coherence (89,90). 
Nevertheless, rarely are all of these 
issues taken into account, and the 
last three are not really relevant to 
human genome epidemiology. In 
genetic epidemiology, replication 
as an expression of consistency 
has received the greatest attention 
(13,14,17). Strength would be 
difficult to assess, as genetic effects 
are generally modest with odds 
ratios below two or even below 
1.5 (91). Furthermore, the size of 
an effect is a characteristic of the 
genetic association being studied 
rather than a biologically consistent 
feature, as it depends on the relative 
prevalence of other causes (92).

In theory, biological plausibility 
should be an important criterion 
for causation, bringing under the 
same denominator epidemiologic 
evidence and diverse forms of 
biological evidence (93–99). 
Biological data on gene function, 
and on the tissue(s) in which a gene 
is expressed, could contribute to 
making a causal inference about 
gene-disease associations. On 
the other hand, there is concern 
that a biological argument can 
be constructed for virtually any 
associated allele because of 
the “...relative paucity of current 
understanding of the mechanisms 
of action of complex trait loci.” (11). 
Thus, some form of mechanistic 
evidence might be identified and 
(mis)used selectively to reinforce 
an assertion of causality. Empirical 
evidence suggests very low 
agreement between biological 
and epidemiological evidence 
for common genetic variants and 
complex diseases (100). While 
candidate gene studies are often 
based on some biological knowledge 
of the candidate gene, genome-
wide linkage and association 
studies initially identify variants 
without consideration of their 
biological function. Yet, the absence 

of mechanistic evidence or evidence 
of high quality would not exclude 
inferring that an association is causal 
if other guidelines for causation 
are satisfied. As knowledge of the 
genome is incomplete, biological 
plausibility may not always be 
apparent (97,101-103).

Criteria for assessing 
cumulative evidence

For genetic associations, a 
consensus approach recently 
developed interim guidelines 
for grading of the cumulative 
epidemiological evidence (104). The 
grading considers three aspects 
(known as the Venice criteria): 
amount of evidence, consistency of 
replication, and protection from bias 
(Table 18.1, Figure 18.1). Particularly 
for retrospective meta-analyses, 
protection from bias cannot be 
assumed if: the effect size is small 
(odds ratio deviating less than 
1.15 from the null), the summary 
results lose their formal statistical 
significance when the first study 

that proposed the association is 
removed or when Hardy–Weinberg 
equilibrium-violating studies are 
removed, there are strong signals 
of small-study effects (e.g. a 
significant modified regression 
test) or significance-chasing bias 
(as discussed above), or if there 
are other demonstrable major 
biases in any aspect. Additional, 
yet weaker, signals for potential 
bias would be unclear/misclassified 
phenotypes with possible differential 
misclassification against genotyping 
or vice versa, major concerns for 
population stratification, or any 
other reason (case-by-case basis) 
that would jeopardise the validity 
of the proposed association. For 
prospective consortium-endorsed 
meta-analyses, all of the above 
parameters must be taken into 
consideration with the exception 
of small effect size, small study 
effects, and significance-chasing 
bias based on the basic assumption 
that selective reporting bias is not 
operating in the field.

Figure 18.1. Categories for the credibility of cumulative epidemiological evidence. 
The three letters correspond (in order) to amount of evidence, replication and 
protection from bias. Evidence is categorized as strong when there is A for all three 
items, and is categorized as weak when there is a C for any of the three items. All 
other combinations are categorized as moderate

Source: (104). Reproduced with permission of Oxford University Press.
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Table 18.1. Considerations for epidemiologic credibility in the assessment of cumulative evidence on genetic associations

Criteria Categories Proposed operationalization

Amount of evidence A  Large-scale evidence

B  Moderate amount of evidence

C  Little evidence

Thresholds may be defined based on sample size, 
power, or false discovery rate considerations. The 
frequency of the genetic variant of interest should be 
accounted for. As a simple rule, it is suggested that 
category A contains over 1000 subjects (total number 
of cases and controls assuming 1:1 ratio) evaluated 
in the least common genetic group of interest, B 
corresponds to 100–1000 subjects evaluated in this 
group, and C corresponds to <100 subjects evaluated 
in this group.*

Replication A  Extensive replication including at least one well-
conducted meta-analysis with little between-study 
inconsistency

B  Well-conducted meta-analysis with some metho-
dological limitations or moderate between-study 
inconsistency

C  No association, no independent replication, failed 
replication, scattered studies, flawed meta-analysis, or 
large inconsistency

Between-study inconsistency entails statistical 
considerations (e.g. defined by metrics such as I2, 
where values of ≥50% are considered large, and values 
of 25–50% are considered moderate inconsistency) 
and also epidemiological considerations for the 
similarity/standardization, or at least harmonization, of 
phenotyping, genotyping, and analytical models across 
studies.

Protection from bias A  Bias, if at all present, could affect the magnitude but 
probably not the presence of the association

B  No obvious bias that may affect the presence of the 
association, but there is considerable missing informa-
tion on the generation of evidence

C  Considerable potential for or demonstrable bias that 
can affect even the presence or not of the association

A prerequisite for A, is that the bias due to phenotype 
measurement, genotype measurement, confounding 
(population stratification), and selective reporting 
(for meta-analyses) can be appraised as not being 
high, plus there is no other demonstrable bias in any 
other aspect of the design, analysis, or accumulation 
of the evidence that could invalidate the presence of 
the proposed association. In category B, although no 
strong biases are visible, there is no such assurance 
that major sources of bias have been minimized 
or accounted for, as information is missing on how 
phenotyping, genotyping and confounding have been 
handled. Given that occult bias can never be ruled out 
completely, note that even in category A the qualifier 
“probably” is used.

* For example, if the association pertains to the presence of homozygosity for a common variant and if the frequency of homozygosity is 3%, then category A amount of evidence 
requires over 30 000 subjects, and category B between 3000 and 30 000.
Adapted from (104)

Networks in human genome 
epidemiology

Although meta-analyses of 
published data provide a 
mechanism for combining evidence 
from different sources, they cannot 
overcome methodological flaws 
originating from the primary studies. 
An alternative approach that may 
also help improve the quality of the 
primary data is a meta-analysis of 
individual participant data (MIPD), 
which involves collecting and 
analysing detailed data on individual 
subjects and, ideally, prospective 

meta-analysis of data collected from 
consortia of investigators (105).

Meta-analysis of individual 
participant data (MIPD)

The MIPD may offer some 
advantages over the meta-analysis 
of published data. In theory these 
advantages include: standardization 
of definitions of cases, molecular 
markers and other variables of 
interest, enhanced ability to contact 
meta-analysis of time-to-event 
outcomes, testing of the assumptions 
of time-to-event models, better 

control of confounding, standardized 
multivariable and adjusted 
analyses, consistent treatment of 
subpopulations, and assessment 
of sampling bias. Not every one of 
these advantages may be relevant 
in all MIPD applications and some 
may be impossible. For example, 
when studies have already been 
established with specific case 
definitions, it may not be possible 
to go back and achieve perfect 
standardization of definitions across 
all studies, or some adjusting 
variables may have been collected 
only in some of the studies but not 
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others. Furthermore, an MIPD is 
far more labour-intensive and time-
consuming than a meta-analysis of 
published data and may remain a 
retrospective effort (106).

Consortia and prospective 
collaborative efforts

An increasing number of consortia of 
investigators have been operating in 
molecular epidemiology. The value 
of such collaborative multicentre 
studies has long been recognized 
by epidemiologists for tackling 
important questions that are beyond 
the scope of a study at a single 
institution (107). Collaboration is of 
even greater significance in human 
genome epidemiology, due to 
the intrinsic characteristics of the 
field that can be better addressed 
through collaborative efforts (108): 
small sample sizes, weak expected 
genetic effects, genotype frequency 
variation in populations of different 
ethnic origin, and publication/
selective reporting bias. Networks of 
scientists from multiple institutions 
can cooperate in research efforts 
involving, but not limited to, the 
conduct, analysis and synthesis of 
information from multiple population 
studies (3,20).

HuGENet has launched a global 
network of consortia working on 
human genome epidemiology, aimed 
at coordinating different research 
teams working on the same theme 
(109,110). The goal of the HuGENet 
Network of Investigator Networks 
is to create a resource to share 
information, offer methodological 
support, generate inclusive 
synopses of studies conducted in 
specific fields, and to facilitate rapid 
confirmation of findings. As of this 
writing, consortia in the Network 
of Investigator Networks comprise 
between five and more than 1000 
teams, with accumulated sample 
sizes ranging from 3000 to over a 

half-million participants. Many other 
new consortia are continuously 
being developed. In particular for 
GWAS, it has become standard 
practice to try to replicate the 
derived associations across several 
other replicating teams as part of 
the first article to be published on 
a new proposed association (48). 
The replicating teams may already 
belong to an established consortium. 
Alternatively, their assembly may 
occur on an opportunity basis, but this 
may also form a nucleus for further 
collaborations. Besides choosing 
research targets based on agnostic 
massive testing approaches, 
other targets selected for study by 
consortia may be chosen based 
on a priori biological plausibility, 
supporting linkage evidence from 
genome-wide data, a perception of 
potentially high population risk (e.g. a 
common polymorphism), the number 
and consistency of published reports 
for a specific molecular marker, or 
a high-profile controversy in the 
literature (111,112). Also, consortia 
are increasingly being used to 
replicate associations derived 
from genome-wide association 
approaches independently from 
the first article that describes and 
partially replicates the associations 
(113).

Standardization issues

Members of consortia may share 
both prospective and retrospective 
features in the study design and 
accumulation of information. 
Standardization is one of the more 
significant benefits of consortia 
initiatives. Coordinating centres 
receive the incoming data, including 
both genotype and phenotype 
information, and guarantee 
adequate quality and transparency. 
Data standardization is best 
implemented at the beginning of a 
de novo collaborative study, while 

developing tools for data collection 
and definition of data items, and 
should achieve agreement on 
common data definitions to which 
all data layers must conform (114). 
Nevertheless, it may be difficult to 
achieve complete standardization 
if some data are already available. 
In this situation, consortia should 
still aim to maximize harmonization 
of data obtained from different 
sources.

Standardization or harmonization 
is crucial in order for a network 
to perform better than single 
studies. These processes increase 
the credibility of the derived 
evidence even when non-genetic 
measurements are difficult to 
standardise across teams. One 
criterion for the influence and 
success of a network may be its ability 
to adopt standards for phenotypes 
and covariates to establish the 
use of consistent definitions in 
subsequent studies. Standardization 
of genotypes, on the other hand, is 
usually achieved through central 
genotyping of all samples (115). 
Quality control of genotype results 
is typically straightforward, but 
additional checks are required in 
a multiteam collaboration. In the 
absence of central quality control, 
consortia may depend on post-hoc 
analyses, such as deviation from 
Hardy–Weinberg equilibrium (116) 
in the controls, to identify possible 
genotyping (or other) errors. Although 
large between-study heterogeneity 
in the final analyses may reflect 
measurement errors, these methods 
may still miss sizeable errors and 
their sensitivity and specificity are 
uncertain.

Meta-analyses of genome-
wide association studies

As mentioned above, for many 
diseases several GWAS are 
performed and each may be 
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accompanied by replication efforts 
by several other teams (117,118). 
These studies may have used 
different platforms, but it is still 
possible to combine data for markers 
that are in perfect or almost-perfect 
LD with a correlation coefficient 
r2 approximating 1.00 (119,120). 
Examples of meta-analyses of 
several GWAS are available in the 
early literature (121,122). Meta-
analysis is currently considered 
standard practice for a GWAS 
setting (123–126) (Figure 18.2). 
Apart from using meta-analysis 
in a sequential, multiple-stage 
manner to continuously update, 
refute or replicate association 
signals, it can also be implemented 
early on at the discovery stage 
by combining multiple data sets 
under a consortium umbrella, thus 
augmenting power to detect signals 
for subsequent replication (15,127).

Heterogeneity in the genome-
wide association setting, where 
massive testing of agnostic (rather 
than candidate) markers takes 
place, has some special features. As 
previously mentioned, besides bias 
and errors, the possibility of genuine 
heterogeneity must be seriously 
considered, due to differential LD 
for the culprit gene variant and 
heterogeneity due to association 
with correlated phenotypes across 
the populations enrolled in different 
studies being combined (47).

Other applications 
of meta-analysis

Many fields of molecular 
epidemiology are characterized by 
large data sets that can be generated 
easily, due to the availability of 
sophisticated, low-cost technology. 
These data sets, derived from 
linkage scans, microarray-based 
gene expression profiling, mass 
spectra-based proteomics and many 
other massive testing platforms, 

usually capture information on 
hundreds of thousands of biological 
variables from a sometimes limited 
number of samples. To maximize 
the power to detect genuine signals 
requires combining data sets 
across different studies. However, 
combining data poses a further 
challenge, since the available data 
sets may have been obtained with 
different experimental conditions, 
platforms, analysis techniques or 
even sample types (e.g. different 

tissue, treatment conditions, or 
species). Meta-analysis could 
provide an appropriate framework 
for large data set synthesis. A few of 
these meta-analysis applications are 
mentioned here, but these are only 
indicative and the list is continuously 
expanding. Also discussed briefly 
are some issues that arise in the 
combination of information on other 
non-genetic biomarkers.

Figure 18.2. Typical work flow for conducting a meta-analysis of GWA data sets

Figure compiled from (104).
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Meta-analysis of linkage 
signals in genome scans

Many teams of investigators 
have performed genome scans 
evaluating linkage between specific 
chromosomal loci and specific 
complex diseases (128–130). 
However, low linkage signals 
(131,132) and discrepancies in the 
findings of different teams often 
make the available evidence on a 
quantitative trait extremely difficult 
to summarize. Genome scan meta-
analysis (GSMA) has been used 
as a method for summation of data 
from diverse genome scans through 
meta-analysis (131), and for formally 
testing whether the heterogeneity 
for specific chromosomal loci across 
genome scans (heterogeneity-
based genome search meta-
analysis (HEGESMA)) is large or 
small (133–134).

Microarrays and other 
multidimensional biology 
platforms

For various diseases, microarray 
platforms allow assessing 
differential expression of a large 
subset of genes. Research groups 
have approached the issue of 
synthesis across different platforms 
from different methodological 
perspectives (135–139). Significant 
computational power, multiple 
testing assumptions, and appropriate 
incorporation of heterogeneity 
estimates are only a few of the more 
challenging methodological issues. 
Given the small sample sizes 
of most microarray experiments 
and the complexity of the signals 
from single biological factors, 

meta-analysis may prove to be a 
very useful approach. Some non-
parametric meta-analysis methods 
may allow synthesizing data from 
diverse platforms and different types 
of multidimensional data (140–142).

Meta-analyses of non-genetic 
prognostic markers

Besides the very large literature 
on genetic markers, there is also a 
burgeoning literature on non-genetic 
biomarkers. Single prognostic 
molecular markers, or combinations 
thereof, are still often considered in 
prognostic and predictive analyses 
for various clinical outcomes, 
such as mortality or other disease 
outcomes. Estrogen and other 
hormones, nutritional and related 
biochemical markers, and lipid or 
DNA adduct biomarkers are some 
of the commonly encountered 
examples in the literature (143–146).

Pertinent research synthesis 
methodology includes meta-
analysis models as described above 
for genetic risk factors. Some of 
these predictors may be continuous 
variables, but the meta-analysis 
methods for combining information 
are very similar to the methods for 
combining data from binary markers 
(for details see (44)). Adjustment for 
covariates is more common in this 
literature, and may present problems 
related to the standardization of 
multivariate models and adjustments 
across the studies to be combined. 
Lack of standardization of biomarker 
measurements tends to be a more 
prominent problem than for genetic 
biomarkers, and error rates are 
expected to be larger and more 
variable across studies. Otherwise, 

heterogeneity testing and bias 
detection follow largely the same 
principles as described above for 
genetic markers.

Empirical evidence has shown 
that readily accessible published 
data can be misleading, producing 
a view of the literature that is 
distorted in a positive direction. An 
empirical evaluation has shown 
that almost all published prognostic 
marker studies on cancer report 
statistically significant results (147). 
Another empirical evaluation has 
shown that after standardising 
the definitions for the prognostic 
marker and the outcome under 
study, and, more importantly, after 
retrieving additional information 
that is unpublished or mentioned in 
only a cursory fashion in published 
articles, the statistical significance 
and predictive effect of a postulated 
prognostic/predictive factor may be 
abrogated (148).

In all, readily available information 
on prognostic factors may be the tip 
of the iceberg, and thus superficial 
perusal of the literature can lead to 
erroneous conclusions. This is yet 
another instance where selective 
reporting may spuriously inflate the 
importance of postulated prognostic 
factors unless retrieval of information 
and standardization of definitions in 
the literature are optimized. Meta-
analyses of prognostic factors 
are likely to benefit from efforts to 
improve the conduct and reporting 
of primary studies, as exemplified by 
the REporting recommendations for 
tumour MARKer prognostic studies 
(REMARK) statement for tumour 
prognostic markers (149).
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Summary

Molecular epidemiology was 
introduced in the study of cancer in 
the early 1980s, with the expectation 
that it would help overcome some 
important limitations of epidemiology 
and facilitate cancer prevention. 
The first generation of biomarkers 
has indeed contributed to our 
understanding of mechanisms, risk 
and susceptibility as they relate 
largely to genotoxic carcinogens, 
resulting in interventions and 
policy changes to reduce risk from 
several important environmental 
carcinogens. New and promising 
biomarkers are now becoming 
available for epidemiological 
studies, including alterations in gene 
methylation and gene expression, 
proteomics and metabolomics. 
However, most of these newer 
biomarkers have not been 

adequately validated, and their role 
in the causal paradigm is not clear. 
Systematic validation of these newer 
biomarkers is urgently needed 
and can take advantage of the 
principles and criteria established 
over the past several decades from 
experience with the first generation 
of biomarkers.

Prevention of only 20% of 
cancers in the United States alone 
would result in 300 000 fewer 
new cases annually, avoidance 
of incalculable suffering, and a 
savings in direct financial costs of 
over US$20 billion each year (1). 
Molecular epidemiology can play a 
valuable role in achieving this goal.

Introduction

In 1982, “molecular cancer 
epidemiology” was proposed as a 
new paradigm for cancer research 
that incorporated biomarkers into 
epidemiologic studies to reveal 
mechanisms and events occurring 
along the theoretical continuum 
between exposure and disease. 
Four categories of biomarkers were 
described: internal dose, biologically 
effective dose, early response/effect 
and susceptibility (2). In 1987, the 
United States National Academy 
of Sciences (NAS) convened a 
workshop on the use of biomarkers in 
environmental health research that 
adopted this concept and expanded 
it to include a fifth category: altered 
structure and function. Figure 19.1 
summarizes the general paradigm 
proposed in 1982 and expanded in 
1987 (3). The fundamental concept 
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of a continuum of molecular/genetic 
alterations leading to cancer that 
can be accessed using biomarkers 
remains valid.

Most of the focus thus far has 
been on biomarkers of genotoxicity. 
The field is now expanding rapidly to 
include high-throughput methods to 
detect alterations in the expression 
of genes, rather than structural 
changes. In this chapter, examples 
are provided of the accomplishments 
in molecular cancer epidemiology: 
studies that have provided evidence 
of causality and mechanisms, 
documented environment–
susceptibility interactions and 
identified at-risk populations. The 
promise and challenge of new 
“omic” and epigenetic biomarkers 
(4–9), including their translational 
potential and need for validation, 
are then discussed. A discussion 
follows of the strengths, limitations 
and lessons learned from molecular 
epidemiologic research to date, 
and future directions for this field. 
Rather than an encyclopaedic 
review, presented are several 
paradigmatic examples of each 
area. Among promising biomarkers 
and technologies not included here 
are those related to inflammation 

and obesity (10,11), genome-wide 
scans (11), and tumour markers (12).

Context and public health 
significance

The context of this chapter on 
molecular cancer epidemiology 
is the need to prevent cancer, a 
disease that in the United States 
alone claims over half a million lives 
annually, with more than 1.5 million 
new cases diagnosed each year 
and attendant direct annual costs 
of US$107 billion (1). Many lines 
of evidence indicate, even more 
clearly than in 1982, that the great 
majority of cancers are in principle 
preventable, because the factors 
that determine their incidence are 
largely exogenous or environmental 
(5–8). These include exposures 
related to lifestyle (diet and smoking), 
occupation, and pollutants in the 
air, water and food supply. Genetic 
factors are largely important in 
terms of influencing individual 
susceptibility to carcinogens; only 
in some rare forms of human cancer 
do hereditary genetic factors play 
a decisive role. This awareness 
has lent greater urgency to the 
search for more powerful early-

warning systems to identify causal 
environmental agents and flag risks 
well before the malignant process is 
entrenched.

Contributions of molecular 
epidemiology

The following sections refer to 
studies that have employed various 
study designs, the strengths and 
limitations of which are discussed in 
Chapters 14–18.

Providing evidence on 
causality and mechanisms: 
Examples

Polycyclic aromatic 
hydrocarbons/tobacco 
smoke and lung cancer

Most of the molecular epidemiologic 
research on lung cancer has 
targeted tobacco smoke as a model 
carcinogen. Polycyclic aromatic 
hydrocarbons (PAHs) such as 
benzo[a]pyrene (B[a]P) are one of 
55 known carcinogens in tobacco 
smoke, are among the most studied, 
and often serve as a representative 
tobacco smoke carcinogen (13,14). 
Other tobacco carcinogens include 
4-aminobiphenyl (4-ABP) and 
4-(methylnitrosamino)-1-(3-pyridyl)-
1-butanone (NNK) (14–16). PAHs 
are also found in outdoor air from 
fossil fuel combustion via automobile 
exhaust, emissions from coal-fired 
power plants, and other industrial 
sources; in indoor air from tobacco 
smoking, cooking and heating; 
and in the diet from consumption 
of smoked or grilled food (17,18). 
By several routes of exposure in 
adult animals, PAHs cause tumours 
including lung, liver and skin tumours 
(19) (see also (20) for review). PAHs 
are also transplacental carcinogens 
experimentally (21,22). PAHs such 
as B[a]P form adducts with DNA, 
a mechanism considered to be a 

Figure 19.1. Updated model for molecular epidemiology (figure compiled from 
(2,3,177))
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critical early event in PAH-induced 
tumorigenesis, since adducts can 
lead to mutations and ultimately to 
cancer. As biomarkers, carcinogen-
DNA adducts have the advantage of 
reflecting chemical-specific genetic 
damage that is mechanistically 
relevant to carcinogenesis (23,24).

In 1982, PAH-DNA adducts 
were detected in human subjects in 
vivo, specifically in white blood cells 
(WBCs) and lung tissue from lung 
cancer patients, most of whom were 
smokers (25). Using more sensitive 
laboratory methods to measure 
adducts, subsequent studies in 
healthy exposed populations (i.e. 
active smokers, coke-oven and 
foundry workers, and residents of 
Poland, the Czech Republic and 
China who were exposed to air 
pollution from coal burning) have 
found increased concentrations 
of PAH-DNA adduct levels in 
blood and other tissues compared 
to unexposed individuals, with 
no apparent threshold for DNA 
binding (26–29). These findings 
are consistent with traditional 
epidemiologic data showing 
elevated risk of lung cancer in PAH-
exposed populations (see (20) for a 
review). Substantial interindividual 
variability has been observed in 
adduct levels among persons with 
similar exposure; about 30- to 70-
fold for adducts in WBCs (29,30).

Although not all studies 
have been positive, since 1982 
considerable evidence has mounted 
that PAH-DNA adducts in WBCs or 
lung tissue are risk markers for lung 
cancer (31–33). In one case–control 
study, higher PAH-DNA adduct 
levels were found in WBCs from 119 
case subjects (compared with 98 
control subjects), after adjusting for 
smoking, dietary PAH exposure and 
other potential confounders (32).

Caution is necessary in 
interpreting results from studies 
of DNA adduct levels and cancer 

risk. As discussed in Chapter 14, 
by their retrospective nature, case–
control studies alone are unable to 
definitively establish causality. In 
addition, because the carcinogenic 
impact of adducts depends on the 
tissue and genes affected, one 
cannot assume a priori that adduct 
levels measured in blood are a valid 
surrogate for those in target tissue 
(34). The relationship between 
adduct concentration in blood and 
target tissue must be established for 
individual carcinogens. With respect 
to PAH-DNA, an experimental 
study (35) has shown ubiquitous 
binding of B[a]P metabolites to 
DNA and protein. Two other studies 
have found significant correlations 
between DNA adducts in WBCs 
and lung tissue from the same case 
subjects (35,36).

More recently, in a case–control 
study nested within the prospective 
Physicians' Health Study of over 14 
000 men, it was evaluated whether 
DNA damage in blood samples 
collected at enrolment significantly 
predicted risk, consistent with the 
hypothesis that cases have greater 
biological susceptibility to PAHs and 
other aromatic tobacco carcinogens 
(37). The subjects in this nested 
case–control study were 89 cases 
of primary lung cancer and 173 
controls, matched on smoking, age 
and duration of follow-up. Aromatic 
DNA adducts were measured 
in WBCs by the nuclease P1-
enhanced 32P-postlabelling method 
that primarily detects smoking-
related adducts. Healthy current 
smokers who had elevated levels 
of aromatic DNA adducts in WBCs 
were approximately three times 
more likely to be diagnosed with lung 
cancer 1–13 years later than were 
current smokers with lower adduct 
concentrations (odds ratio (OR) = 
2.98; 95% CI = 1.05–8.42; P = 0.04). 
The same relationship was not seen 
among former smokers and never 

smokers. The findings suggested 
that individuals who become cases 
have greater biological susceptibility 
to tobacco carcinogens, a biological 
difference that seems to manifest 
most clearly while exposure is still 
ongoing.

A second nested case–control 
study on lung cancer (newly 
diagnosed after recruitment) within 
the European Prospective Study 
Into Cancer and Nutrition (EPIC) 
cohort measured aromatic PAH-
DNA adducts as markers of the 
biologically effective dose of PAHs, 
and mutations in the ras and p53 
genes in plasma DNA as markers 
of early preclinical effects. Cases 
included subjects with newly 
diagnosed lung cancer (n = 115) 
accrued after a median follow-up of 
seven years among the EPIC former 
smokers and never smokers. Unlike 
the prior nested case–control study, 
no current smokers were included. 
Adducts were associated with the 
subsequent risk of lung cancer 
among never smokers (OR = 4.04; 
95% CI = 1.06–15.42) and among 
the younger age groups.

A meta-analysis of aromatic 
PAH-DNA adducts and lung cancer 
(38) concluded that current smokers 
with high levels of adducts have 
an increased risk of lung cancer, 
supporting a causal role of aromatic 
compounds in the etiology of 
lung cancer. While unmeasured 
variability in smoking, diet, or indoor/
outdoor PAH concentrations may 
partially explain the finding of higher 
adduct levels in individuals with 
lung cancer, the results are also 
consistent with other evidence that 
some individuals are predisposed 
to genetic damage from PAHs and 
thereby to lung cancer (33,39,40). 
Taken together, the results of many 
studies support the theory that 
cumulative damage resulting from 
genotoxic chemicals that bind to 
DNA is a major cause of cancer (40).
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Supporting molecular evidence 
that PAHs play an important 
role in lung cancer comes from 
observations that the p53 tumour 
suppressor gene is mutated in 40–
50% of lung tumours, and that the 
pattern of mutations in those tumours 
is consistent with the types of DNA 
adducts and mutations induced 
experimentally by B[a]P (41,42). 
Smokers with lung cancer show a 
pattern of mutations in p53 that is 
different (with some exceptions) from 
that of non-smokers (43). Moreover, 
as discussed above, certain single 
nucleotide polymorphisms (SNPs) 
or genes involved in the metabolism 
or detoxification of PAHs or in the 
repair of PAH-DNA adducts have 
been implicated as effect modifiers 
in lung carcinogenesis.

In addition to genetic damage 
and gene mutations, epigenetic 
mechanisms are now emerging as 
important in lung cancer related to 
tobacco smoking (discussed in a 
later section).

In summary, studies using 
biomarkers of biologically 
effective dose, early preclinical 
effect/response, and individual 
susceptibility (SNPs) have been 
valuable in elucidating the steps that 
link tobacco smoke/PAH exposure 
to the onset of lung cancer.

AFB1, HBV and liver cancer

During the past 30 years, research in 
experimental animals and humans 
has confirmed that the foodborne 
mutagen aflatoxin B1 (AFB1) is a 
human hepatocarcinogen acting 
synergistically with the hepatitis 
B virus (HBV). AFB1 is a fungal 
metabolite present in grains and 
cereals due to improper storage 
(44). Research has indicated that 
several biomarkers of the internal 
or biologically effective dose of 
AFB1 (AFB1 metabolites, AFB1-
albumin adducts, and AFB1-N

7-

guanine adducts in urine) and 
HBV surface antigen seropositivity 
are risk markers for liver cancer 
on a population level. In 1992, a 
prospective study in Shanghai, 
China found that among 18 244 
men there were 22 incident cases 
of liver cancer (45). Analysis of urine 
samples banked 1–4 years before 
diagnosis from the case subjects 
and matched control subjects gave 
relative risks (RRs) of 2.4 (95% 
CI = 1.0–5.9) for any of the AFB1 
metabolites, and 4.9 (95% CI = 
1.5–16.3) for detectable AFB1-
N7-guanine adducts. There was 
a strong interaction between the 
serologic marker of HBV infection 
and the AFB1 markers. Among 
individuals with chronic hepatitis 
infection who were also aflatoxin-
positive, the RR was 60 (95% CI = 
6.4–561.8). A subsequent follow-
up study of 55 hepatocellular 
carcinoma (HCC) case subjects and 
267 control subjects from the same 
cohort showed that the presence 
of any urinary AFB1 biomarker 
significantly predicted liver cancer 
(RR = 5.0; 95% CI = 2.1–11.8) with 
an RR of 9.1 (95% CI = 2.9–29.2) 
for the presence of AFB1-N

7-
guanine adducts. A synergistic 
interaction between the presence of 
urinary AFB1 biomarkers and HBV 
seropositivity resulted in a 59-fold 
(95% CI = 16.6–212.0) elevation in 
HCC risk (46). The implication for 
prevention is that both reduction in 
dietary levels of AFB1 and wide-scale 
HBV vaccination are needed, since 
the benefits of the latter will not be 
manifest for many years (45). These 
biomarkers have subsequently 
been used as outcome measures 
in an intervention trial with the 
antischistosomal drug oltipraz (see 
further discussion below).

In Taiwan, China, subsequent 
studies of incident HCC case 
subjects and matched controls 
whose levels of AFB1 metabolites, 

AFB1-albumin and AFB1-DNA 
adducts were measured in stored 
urine samples gave results 
consistent with the prior results from 
the PRC prospective study (47). In 
HBV-infected men with detectable 
AFB1-albumin and AFB1-DNA 
adduct levels, the risk of HCC was 
increased by 10-fold (RR = 10.0; 
95% CI = 1.6–60.9) (48).

Other molecular data on the 
causal and mechanistic role of AFB1 
involve the p53 gene. Early studies 
suggested a characteristic mutation 
spectrum in the human p53 gene 
in HCC in South Africa and China, 
where it was observed that about 
50% of the patients had a relatively 
rare mutation, a G to T transversion 
at codon 249 (49). This mutation 
was not previously observed in 
patients living in areas where 
food contamination by aflatoxins 
is not common; furthermore, the 
same mutation could be induced 
experimentally by AFB1 in vitro. 
More recently, however, cells were 
incubated with AFB1 and the types 
of DNA adducts induced in p53 
were studied (42). It was observed 
that adducts were mainly in sites 
different from codon 249, the one 
that the ‘fingerprint’ theory based 
on human data had implicated. In 
addition, the expected adducts in 
codon 249 were rapidly repaired 
(50% in seven hours). Therefore, 
the argument that aflatoxin exerts 
its carcinogenic activity by leaving 
a signature in a specific codon, 
and via a specific mechanism in 
p53, was considerably weakened. 
The apparent association of p53-
specific mutations with aflatoxin 
now appears to be due to the 
selective advantage of mutated cells 
after exposure to HBV, rather than 
a causal event in the pathogenic 
process.

This example illustrates 
problems encountered in the use of 
human cancer gene fingerprints as 
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definitive links between an exposure 
and a specific cancer. These 
difficulties include:

• the multifactorial nature of 
human cancers that hampers their 
attribution to single carcinogenic 
agents and/or the identification of a 
pathogenetic pathway common to 
several cancers;

• the high genetic instability 
of cancer cells that may increase 
the frequency of mutations in 
certain cancer genes regardless of 
exposure factors;

• the importance of DNA 
repair mechanisms and of the 
corresponding degree of population 
variation;

• tissue selection bias that may 
affect the results, although its extent 
is difficult to establish;

• the simultaneous presence of 
clinical (e.g. treatment) and biological 
factors (e.g. stage, grading) related 
to the exposure and to the frequency 
of mutations that may confound its 
association;

• the need for consideration of 
temporal sequences in the activation/
deactivation of cancer genes;

• the fact that several different 
carcinogens may induce the same 
p53 mutation, and attribution to 
one of those carcinogens requires 
careful consideration of all relevant 
exposures.

For these reasons, the 
original hypothesis, that cancer 
fingerprints could be identified 
and used to recognize exposure-
related tumours, has not been fully 
confirmed.

In summary, with this caveat in 
mind, studies using biomarkers of 
biologically effective dose, early 
preclinical response/effect and 
individual susceptibility (SNPs) 
have been valuable in elucidating 
the steps that link AFB1 and HBV 
exposure to the risk of liver cancer.

Benzene and leukaemia

Benzene exposure occurs in the 
workplace and in the ambient 
environment largely because it 
is a component of gasoline (50). 
Another major source of public 
exposure to benzene is cigarette 
smoking. The example of benzene 
and haematological malignancies 
is paradigmatic, as it involves a 
single type of malignancy and 
combines biomarkers of several 
different classes that belong to the 
carcinogenic pathway shown in 
Figure 19.1. The various exposure 
markers include unmetabolized 
benzene in urine (UBz) and all 
major urinary metabolites (phenol 
(PH), E,E-muconic acid (MA), 
hydroquinone (HQ), and catechol 
(CA)), as well as the minor metabolite, 
S-phenylmercapturic acid (SPMA), 
all of which have been investigated 
among Chinese workers exposed 
to benzene (51). However, the most 
interesting results have come from 
investigations on early response/
effect markers, specifically 
chromosomal aberrations.

Classical studies have 
shown that prospective data on 
chromosome aberrations are able to 
predict the onset of haematological 
malignancies. Combined analyses 
of data from Nordic and Italian 
prospective cohort studies, 
involving 3541 subjects, found that 
chromosomal aberrations were 
significant predictors of cancer 
(52). In the Nordic cohort, among 
subjects with high frequencies 
of chromosomal aberrations, the 
OR for all cancer deaths was 2.35 
(95% CI = 1.31–4.23), compared 
with 2.66 (95% CI = 1.26–5.62) in 
the Italian cohort (53). In the Italian 
cohort, cancer predictivity of high 
chromosomal aberrations was greater 
for haematologic malignancies, with a 
standardized mortality ratio (SMR) of 
5.49 (95% CI = 1.49–140.5) (54).

Specific chromosomal 
aberrations have been observed in 
both preleukemia and leukaemia 
patients exposed to benzene, as well 
as in otherwise healthy benzene-
exposed workers (55). By use of 
fluorescent in situ hybridization 
(FISH) and the polymerase chain 
reaction (PCR), it was found 
that high occupational benzene 
exposure increased the frequencies 
of aberrations in chromosomes 5, 
7, 9, 8 and 11—aberrations that are 
frequently seen in acute myeloid 
leukemias and in preleukemic 
myelodysplastic syndrome.

In the same studies on Chinese 
workers, protein-expression patterns 
were detected by surface-enhanced 
laser desorption/ionization time-of-
flight mass spectrometry (SELDI-
TOF MS). SELDI-TOF analysis of 
exposed and unexposed subjects 
revealed that lowered expression 
of PF4 and CTAP-III proteins is a 
potential biomarker of benzene's 
early biologic effects and may play 
a role in the immunosuppressive 
effects of benzene (56).

Finally, 20 candidate 
susceptibility genes were 
investigated in the same Chinese 
cohort (57). After accounting for 
multiple comparisons, SNPs in 
five genes were associated with a 
statistically significant decrease in 
total WBC counts among exposed 
workers (IL-1A (−889C > T), IL-4 
(−1098T > G), IL-10 (−819T > C), 
IL-12A (8685G > A) and VCAM1 
(−1591T > C)). This finding provides 
evidence that SNPs in genes that 
regulate haematopoiesis modify 
benzene-induced haematotoxicity. 
However, as is clarified later, much 
research on genetic variants and 
gene-environment interactions 
shows inconsistencies, and causal 
assessment is delicate, particularly 
when replication is lacking.

Molecular epidemiologic studies 
have also been conducted on acute 
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lymphocytic leukaemia (ALL) in 
children, a disease that accounts 
for almost 25% of all childhood 
cancers. While more studies are 
needed, several have reported 
associations between parental or 
environmental exposure to benzene, 
or benzene-emitting sources, and 
childhood leukaemia, underscoring 
the potential importance of 
transplacental benzene exposures 
(58,59).

In summary, studies using 
biomarkers of internal dose, 
biologically effective dose, early 
preclinical effect/response and 
individual susceptibility (SNPs) have 
been valuable in elucidating the 
steps that link benzene exposure 
to the onset of leukaemia and other 
haematologic changes.

Nutritional factors and cancer

In the field of nutritional 
epidemiology, the investigation 
of biomarkers has shed some 
light on the role of obesity and 
metabolic syndrome in cancer. A 
high body mass index (BMI) has 
long been known to be associated 
with an increased risk of cancer 
at several sites, as the European 
Prospective Investigation into 
Cancer and Nutrition (EPIC) and 
other investigations have recently 
confirmed (60–63). The metabolic 
syndrome related to obesity is also 
suspected of a causal relationship 
with cancer (64). The metabolic 
syndrome is a constellation of 
central adiposity, impaired fasting 
glucose, elevated blood pressure 
and dyslipidemia (high triglyceride 
and low HDL cholesterol). The 
association of cancer with obesity 
and the metabolic syndrome has 
been unclear on biological grounds. 
Recently, however, several 
investigations have unveiled the 
role played by hormones and 
other intermediate markers related 

to key metabolic pathways. In 
particular, circulating insulin-like 
growth factor binding protein 1 
(IGFBP-1), leptin, C-peptide and 
insulin are factors modified by 
obesity and have been associated 
with cancer. Higher circulating 
insulin levels may modulate cell 
proliferation and apoptosis, either 
directly or indirectly, by increasing 
the bioactivity of IGF-I, and 
decreasing the bioactivity of some 
of its binding proteins. Caloric 
restriction is a powerful way to 
reduce the occurrence of cancers, 
in particular lymphomas, induced 
by carcinogenic chemicals in TP-53 
deficient mice (65).

The evidence overall, however, 
is still incomplete. In a case–control 
study nested within the EPIC cohort 
involving 10 western European 
countries, serum C-peptide 
concentration was positively 
associated with an increased 
colorectal cancer risk for the 
highest versus the lowest quintile 
(OR = 1.56, 95% CI = 1.16–2.09, p 
for trend < 0.01). When stratified by 
anatomical site, the cancer risk was 
stronger in the colon (OR = 1.67, 
95% CI = 1.14–2.46, p for trend < 
0.01) than in the rectum (OR = 1.42, 
95% CI = 0.90–2.25, p for trend = 
0.35). No clear colorectal cancer 
risk associations were observed 
for IGFBP-1 or IGFBP-2. This large 
prospective study confirms that 
hyperinsulinemia, as determined 
by C-peptide levels, is associated 
with an increased colorectal cancer 
risk (66). In a nested case–control 
study in the prospective Prostate, 
Lung, Colorectal and Ovarian 
Cancer Screening Trial, which 
examined associations between 
IGF-1 and IGFBP-3 and risk of 
prostate cancer, a total of 727 
incident prostate cancer cases and 
887 matched controls were selected 
for a similar analysis. There was no 
clear overall association between 

IGF-1, IGFBP-3 and IGF-1:IGFBP-3 
molar ratio (IGFmr) and prostate 
cancer risk; however, IGFmr was 
associated with risk in obese men 
(BMI > 30, p for trend = 0.04), with a 
greater than two-fold increased risk 
in the highest IGFmr quartile (OR = 
2.34, 95% CI = 1.10–5.01). Risk was 
specifically increased for aggressive 
disease in obese men (OR = 2.80, 
95% CI = 1.11–7.08) (67). However, 
in the EPIC study only a weak 
association was found between 
these factors (IGFmr not analysed) 
and prostate cancer (68).

Another associated line of 
research refers to the role of 
inflammation and immunity in 
obesity. The posited mechanism 
would imply immune impairment that 
accompanies obesity, and possibly 
a gene-environment interaction with 
leptin and other genes implicated in 
obesity (69).

While the relationships among 
the different factors involved in 
the relationship between cancer 
and obesity and the metabolic 
syndrome, as well as the precise 
causal pathways, are still far from 
clear (70), this is a promising area 
of research.

Arsenic and urothelial cancer

As in several studies mentioned 
above, tumour markers have 
been used to help identify causal 
environmental exposures in bladder 
cancer. A recent study of the 
differential expression of molecular 
markers in tissues of arsenic-related 
urothelial cancers (AsUC) (n = 33), 
non-AsUC (n = 20), and normal 
bladder urothelia from patients 
with benign diseases (n = 4) were 
examined for multiple selected 
molecular markers responsible for 
various cellular functions, including 
Bcl-2, p53, and c-Fos (71). The 
expression of Bcl-2 and c-Fos in 
AsUC was significantly higher than in 
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non-AsUC (P = 0.004 and P = 0.02, 
respectively), suggesting different 
carcinogenic pathways in the two 
etiologic groups. Such studies of 
the etiological heterogeneity of 
tumours at the molecular level 
may provide great insight into the 
mechanisms and causal pathways 
to carcinogenesis, which may lead 
to appropriate preventive strategies 
to reduce the incidence of cancer 
related to specific exposures (72).

Documenting environment-
susceptibility interactions 
and identifying populations 
at greatest risk

To be effective, prevention 
strategies must target the most 
susceptible populations. This 
requires research to identify genetic 
and other susceptibility factors. 
Such research on exposure-
susceptibility interactions must 
adhere to sound ethical principles, 
both in the conduct of research 
and in the communication of results 
and conclusions, in such a way 
as to discourage their inadvertent 
or intentional misuse (26,73–75). 
Although results from research 
on interactions have often been 
inconclusive and even conflicting, 
molecular epidemiologic studies 
indicate that some subgroups and 
individuals may have heightened 
susceptibility to environmental 
exposures. The categories of 
susceptibility factors that can 
modulate environmental risks, 
such as genetic predisposition, 
ethnicity, age, gender, and health 
and nutritional impairment, have 
been reviewed in detail elsewhere 
(26,73,74). With respect to the 
cancers and exposures discussed in 
this review, molecular epidemiologic 
studies have reported interactions 
between exposures to tobacco 
smoke, PAHs, AFB1 or benzene and 
various susceptibility factors. These 

findings illustrate the complexities of 
interactions between environmental 
carcinogens and both genetic and 
non-genetic susceptibility factors. 
Susceptibility of the young has 
also been clearly demonstrated for 
several carcinogens.

Genetic susceptibility

Genes vary in their penetrance 
(the frequency, under given 
environmental conditions, with which 
a specific genotype is expressed 
by those individuals that possess 
it). Highly penetrant mutations in 
genes that are directly involved 
in carcinogenesis and confer a 
high risk of cancer in carriers 
represent the tail of a distribution 
of individual susceptibility to 
carcinogenesis (76). Less penetrant 
susceptibility may be conferred by 
common variants (SNPs) in genes 
that mediate the metabolism of 
carcinogens or DNA repair (77). For 
example, polymorphisms in certain 
cytochrome P450 (CYP) enzymes 
increase the oxidative metabolism of 
diverse endogenous and exogenous 
chemicals to their carcinogenic 
intermediates, while genetic variants 
in phase II (detoxifying) enzymes, 
such as glutathione S-transferase 
(GST), N-acetyltransferase (NAT), 
and epoxide hydrolase (EH) detoxify 
certain carcinogenic metabolites. 
Polymorphisms in DNA repair 
genes such as XPD or XRCC1 can 
modulate risks from agents that 
directly or indirectly damage the 
DNA.

Rare and highly penetrant 
mutations in cancer genes may 
exert their effects without interacting 
with external exposures (usually 
by directly interfering with basic 
mechanisms of cell replication 
and differentiation), but gene–
environment interactions are 
intrinsic to the mode of action 
of common, low-penetrance 

polymorphisms. The penetrance of 
a mutation is determined by other 
endogenous factors, including the 
importance of the function of the 
protein encoded by the gene (e.g. 
in key regulatory aspects of the cell 
cycle, as in the case of the BRCA1 
gene), the functional importance 
of the mutation (e.g. a total loss of 
function due to a truncating deletion 
versus a mild loss of function due 
to a point mutation), the existence 
of alternative pathways that can 
substitute for the loss of function, 
and interactions with other genes.

Most genes act in a sequence 
or in cascades. This is typical, for 
example, of metabolic and DNA 
repair genes. Genotyping according 
to pathways is likely to be much 
more rewarding then genotyping 
for single SNPs, in terms of both 
biological plausibility and statistical 
power (see discussion on the role of 
DNA repair genes (78)).

A large number of SNPs 
have been studied in molecular 
epidemiological investigations 
in recent decades, thanks to 
the development of quick and 
relatively inexpensive genetic 
techniques. However, only a few 
clear associations with cancer risk 
have been detected with reasonable 
certainty (i.e. consistently across 
different populations). Even with 
these SNPs most closely linked to 
cancer risk, caution is needed in 
extrapolating from one population 
and exposure scenario to another.

An example of a SNP 
consistently implicated in cancer 
is the methylenetetrahydrofolate 
reductase (MTHFR) gene, which 
plays an important role in the folate 
metabolism pathway (40,78). This 
enzyme provides the methyl group 
required for de novo methionine 
synthesis, and indirectly, for DNA 
methylation; therefore, it controls 
DNA stability and mutagenesis 
(79–81). Common MTHFR 
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polymorphisms (C677T and A1298C) 
have been associated with reduced 
enzyme activity in vitro which, in 
the case of C677T, affects the 
metabolism of folate, consequently 
increasing homocysteine levels 
and (theoretically) the risk of 
colon cancer (82). According to a 
systematic review, in most studies 
MTHFR 677TT (10 studies, >4000 
cases) and 1298CC (four studies, 
>1500 cases) were associated with 
moderately reduced colorectal 
cancer risk. In four of five genotype-
diet interaction studies, 677TT 
subjects who had higher folate 
levels (or a high-methyl diet) had the 
lowest cancer risk (82).

An interaction of MTHFR 
SNPs with alcohol intake has also 
been reported, with high alcohol 
consumption levels decreasing DNA 
methylation, probably by hindering 
folate absorption, metabolism and 
excretion (83). Alcohol is thought 
to increase risk of cancer through 
its antagonist effects on folate. 
A study of health professionals 
examined folate, alcohol, MTHFR 
and alcohol dehydrogenase 3 
(ADH3) polymorphisms in relation 
to risk of colorectal adenomas in 
379 cases and 726 controls (84). 
MTHFR genotypes were not found 
to be appreciably related to risk of 
adenoma, but men who were TT 
homozygotes and who consumed 
30+ g/day of alcohol had an OR of 
3.52 (95% CI = 1.41–8.78) relative to 
drinkers of ≤ 5 g/day with the CC/CT 
genotypes (84).

Studies investigating the folate-
MTHFR-cancer risk relationship 
have largely shown inverse 
associations of breast cancer risk 
with folate intake in all genotype 
groups, particularly among subjects 
with the 677TT genotype (85,86). 
Although the evidence is not 
conclusive, MTHFR provides a 
good example of how inherited gene 
variants can modify the cancer risk 

associated with dietary and other 
exposures.

With respect to lung cancer, 
various studies have implicated 
genetic polymorphisms involved in 
PAH metabolism (e.g. CYP1A1 or 
GST) and DNA repair (e.g. XRCC1) 
as effect modifiers capable of 
increasing risk from PAHs (87–91). 
Increased risk of hepatocellular 
carcinoma has been associated 
with the GSTM1 null/GSTT1 null 
genotype in conjunction with 
smoking and drinking (92). The 
GSTM1 null genotype, the low-
activity epoxide hydrolase genotype, 
and a genetic polymorphism in 
CYP2E1 also appear to confer 
greater risk of liver cancer (93,94).

Regarding leukaemia, the 
hepatic cytochrome P450 2E1 
enzyme plays a key role in the 
activation of benzene to its ultimate 
haematotoxic and genotoxic 
benzoquinone metabolites (95). The 
NAD(P)H:quinone oxidoreductase 
(NQO1) and two subclasses of 
GSTs (M1 and T1) are involved in 
the detoxification of the ultimate 
benzoquinones and their reactive 
benzene oxide intermediates, 
respectively (50,95). A case–control 
study of occupational benzene 
poisoning in Shanghai showed 
that individuals homozygous for 
the NQO1609 C→A mutation were 
at a 7.6-fold (95% CI = 1.8–31.2) 
greater risk of poisoning (96). 
Benzene poisoning was linked to 
risk of preleukemia and leukaemia. 
Theoretically, individuals with high 
activities of cytochrome P450 
2E1 and homozygous mutations 
in the NQO1, GSTT1 and GSTM1 
genes would be at highest risk 
of benzene haematotoxicity (50), 
but this inference has not been 
demonstrated conclusively. As 
noted earlier, polymorphisms 
in several IL and VCAM genes 
have been implicated in benzene 
haematoxicity (57).

DNA repair capacity is a 
particularly important source of 
variability in susceptibility to cancer. 
In addition to rare syndromes 
that involve faulty repair and 
genetic instability (e.g. ataxia-
teleangectasia, Fanconi anaemia, 
Bloom syndrome, and xeroderma 
pigmentosum) (97), individuals 
commonly vary in their capability 
to repair DNA damage, at least in 
part due to genetics. The role of 
SNPs in three DNA repair genes 
(XRCC1-Arg399Gln, exon 10; 
XRCC3-Thr241Met, exon 7; and 
XPD-Lys751Gln, exon 23), and 
their combination in modulating 
the levels of DNA adducts in a 
population sample of healthy 
individuals has been investigated 
(98). The 32P-postlabelling assay 
was used to measure aromatic 
DNA-adduct levels in WBCs from 
peripheral blood. A dose–response 
relationship between the number 
of at-risk alleles and the levels of 
adducts (P = 0.004) was observed, 
suggesting that the combination 
of multiple variant alleles may be 
more important than single SNPs 
in modulating cancer risk; hence 
the importance of focusing on gene 
pathways in the study of gene-
environment interactions.

In addition to SNPs or 
polymorphisms in DNA repair genes, 
phenotypic tests have been widely 
used in recent years to measure 
DNA repair. The mutagen sensitivity 
assay, based on DNA damage 
(usually chromosome breaks) 
induced with chemical (bleomycin) 
or physical mutagens (radiation), 
unscheduled DNA synthesis, 
3H-thymidine incorporation, or 
count of pyrimidine dimers are 
examples of tests by which DNA 
repair is inferred from the different 
frequency of DNA damage induced 
in cancer cases and controls, 
without direct evidence of repair. 
Other phenotypic tests (e.g. the 
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plasmid cat gene test, the ADPRT 
modulation test, or immunoassays 
based on antigenicity of thymidine) 
are based on some direct evidence 
of repair (77).

In contrast to genotype-based 
studies of DNA repair, for which the 
evidence is still largely inconsistent 
(78,99), most studies using 
phenotypic tests from which DNA 
repair is inferred have shown highly 
statistically significant results (100). 
When odds ratios were available, 
they were between 2.8 and 10.3, 
suggesting a strong association. 
However, the results are limited 
by potential confounding (i.e. the 
possibility that some exposure 
or characteristic of the patient is 
associated with DNA repair and 
is a risk factor for cancer, thus 
creating a spurious relationship 
between DNA repair and the 
disease). Repair enzymes can 
be induced in several ways, such 
as by stresses that damage DNA 
(e.g. pro-oxidative stress that could 
result from several endogenous 
and exogenous exposures). For 
example, in human studies, several 
tests of DNA repair were affected 
by characteristics such as age, 
sunlight, dietary habits, exposure to 
pro-oxidants, and cancer therapies 
(100). While age and therapies 
were usually controlled for in most 
studies, dietary habits might have 
acted as confounders, since both 
the intake and the plasma level of 
carotenoids and other antioxidants 
have been shown to be lower 
in cancer patients compared to 
healthy controls. The extent of such 
potential confounding is unknown, 
but could be substantial.

Another major limitation of 
many tests is that DNA repair is 
only indirectly inferred from DNA 
damage. To draw firm conclusions 
about a cause-effect relationship, 
more information about the 
biological meaning of tests is 

needed—for instance, whether 
they actually reflect DNA repair or 
a general or specific impairment of 
the DNA repair machinery.

Many investigations of gene–
environment interactions (GEI) 
are underway in different parts of 
the world. Some ongoing studies 
are extremely large (e.g. EPIC, 
United Kingdom Biobank); all of 
them employ similar methods for 
genotyping (Taqman and high-
throughput methods, such as 
Illumina). However, the quality of 
exposure assessment (e.g. diet, 
air pollution) is extremely variable. 
Ideally, understanding GEI requires 
determining, with equal resolution, 
both environmental exposures 
(e.g. to pesticides, air pollutants, 
ETS or dietary constituents) and 
genetic variants that are postulated 
to modulate the effects of the 
environmental exposures. However, 
there is an asymmetry between the 
two in that genotyping is much more 
accurate than most of methods 
used to measure environmental 
exposures. This implies a lower 
degree of genetic classification 
error, which in turn means an 
easier identification of associations 
between genes and disease than 
with environmental exposures and 
disease.

Suppose that classification error 
is expressed by the correlation 
coefficient between each exposure 
“assessor” and a reference standard 
(r = 1 means no error, r = 0.9 means 
a 10% classification error). For 
different expected relative risks that 
associate exposure with disease, 
one can compute the relative 
risks under different conditions of 
classification error. For example, a 
classification error of 10% implies 
the drop of a relative risk of 2.5 to 2.3 
(i.e. little change). With an extreme 
classification error of 90%, however, 
even a relative risk of 2.5 becomes 
1.1 (i.e. undetectable with common 

epidemiological methods). The 
lesson is that false-negative results 
are much more likely when analysing 
the role of environmental exposures 
than genetic variables (while in 
the latter case false-positives may 
be the main problem). In addition, 
very large numbers of subjects 
are needed if one wants to study 
interaction, for example, between 
a frequent exposure (prevalence 
25%) and a frequent genotype 
(prevalence 50%). Presume that 
classification error is 20% for the 
environmental exposure (sensitivity 
= 80%) (in actuality, classification 
error for most exposures is likely to 
be much larger). Classification error 
could be around 7% for genotyping 
(sensitivity 93%). This is realistic, 
since genotyping techniques are 
currently validated and extremely 
accurate. The consequence of 
this situation is that approximately 
1800 cases would be needed to 
observe main effects of genes if no 
classification error occurs, 2700 if 
exposure is incorrectly classified 
20% of the time, and 3200 if the 
genotype is also mistaken 7% 
of the time. To study the effect 
of interactions, four times more 
subjects than those estimated 
above would be needed.

False-positives seem to be 
a common problem in genetic 
research, often due to small 
numbers and statistical instability. 
As pointed out by Ioannidis (the 
“Proteus phenomenon”), gene–
disease associations that seem 
to be strong at first appear to be 
much weaker when larger studies 
are conducted (101). Publication 
bias contributes to this problem. 
For this reason, initiatives like the 
Venice criteria have been launched 
to provide sound systematic reviews 
of the genetic evidence (102).

In conclusion, the evidence 
concerning the role of low-penetrant 
genes in cancer is contradictory and 
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difficult to interpret. Most observed 
associations between cancer and 
low-penetrant gene variants have 
been weak or very weak (with 20–
50% increases in cancer risk). This, 
in fact, is inherent in the concept 
of low penetrance. However, the 
penetrance of a gene variant 
depends on interaction with external 
exposures, the internal environment, 
or other genes. Thus, the strength 
of association is a relative, not 
absolute, concept and requires the 
study of interactions. Nonetheless, 
interactions themselves are 
obviously difficult to investigate, as 
the study of a two-way interaction 
requires a sample size four times 
larger than the study of a main 
effect; therefore, little is known 
about the nature and strength of 
gene–environment interactions.

Genome-wide association 
studies (GWAS) and new 
methodological issues

Technical developments, with 
platforms such as Illumina or the 
Affymetrix microchips, offer the 
possibility of analysing up to 550 000 
or even 1 million gene variants in 
one run. This revolution is giving rise 
to an unprecedented wave of new 
potential discoveries, as is testified 
by several papers in Nature, Science, 
and Nature Genetics in 2007, such 
as the Wellcome Trust Case-Control 
Study Consortium (103). Regarding 
cancer, a successful story is 
represented by the identification of 
chromosome 8q24 as the probable 
locus of a genetic risk factor for 
prostate cancer. Family-based 
linkage studies, association studies, 
and studies of tumours had already 
highlighted human chromosome 
8q as a genomic region of interest 
for prostate cancer susceptibility 
loci. Recently, a locus at 8q24, 
characterized by both a SNP and a 
microsatellite marker, was shown to 

be associated with prostate cancer 
risk in Icelandic, Swedish and US 
samples (104). These data suggest 
that the locus on chromosome 
8q24 harbours a genetic variant 
associated with prostate cancer, 
and that the microsatellite marker is 
a stronger risk factor for aggressive 
prostate cancers defined by poorly 
differentiated tumour morphology. 
Evidence has now been provided 
that colon cancer might also 
be associated with the same 
region. Using a multistage genetic 
association approach comprising 
7480 affected individuals and 7779 
controls, researchers have also 
identified markers in chromosomal 
region 8q24 associated with 
colorectal cancer (105). This 
example is interesting for two 
reasons: reverse genetics (the 
possibility that etiologic pathways for 
cancers that elude epidemiological 
research can be discovered starting 
from genetic susceptibility) and 
pleiotropy (the ability of certain gene 
variants to increase/modulate the 
risk for quite different diseases). 
(See Chapter 6 and (106,107) for a 
summary of recent GWAS findings.)

Apart from the 8q24 success 
story, many other contributions to the 
potential understanding of cancer 
and other diseases have come from 
GWAS. Exfoliation glaucoma is a 
striking example for which a potent 
signal has been identified, but this 
is an exception (in addition to being 
a non-cancer example). A cancer 
example is the KITLG gene and 
testicular carcinoma (see (108)). A 
summary of the locuses associated 
with cancer and other diseases 
after GWAS is available in the so-
called GWAS catalogue of the 
National Human Genome Research 
Institute (http://www.genome.gov/
GWAStudies).

However, genome-wide scans 
are clearly open to an even greater 
risk of false-positive findings related 

to multiple comparisons. Also, the 
interaction with external exposures 
is usually ignored. Design issues, 
including the investigation of 
traits that show strong familial 
aggregation, the selection of 
clinically homogeneous populations, 
and selection of cases that have 
a family history, are emerging as 
very influential on the success of 
genome-wide studies (109). (See 
also Chapter 6 for discussion of 
methodologic issues.)

Ethnicity, gender and 
nutritional factors

Ethnicity also appears to affect 
cancer risk. For example, higher 
rates of various smoking-related 
cancers in blacks may be partially 
explained by the finding that, in black 
smokers, urinary concentrations 
of NNK metabolites and serum 
concentrations of cotinine, a 
nicotine metabolite, exceeded those 
in white smokers (110). However, the 
effect of unmeasured differences in 
the exposure levels of the subjects 
cannot be ruled out.

Although studies have been 
inconsistent, there is evidence that 
women may be inherently more 
susceptible than men, on a dose-
for-dose basis, to certain lung 
carcinogens. Several epidemiologic 
studies indicate that women smokers 
are 1.7- to 3-fold more likely to 
develop lung cancer than are male 
smokers with the same exposure 
(111,112). The level of PAH-DNA 
adducts and the frequency of 
G:C→T:A transversions in p53 were 
elevated in lung tumours from female 
smokers compared with those from 
male smokers (112–114). Adduct 
levels in non-tumour lung tissue 
were also higher in women than in 
men, with a higher ratio of adduct 
levels to pack-years in women 
(115). The greater expression of the 
CYP1A1 gene found in lung tissue 
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of female smokers suggests a 
possible mechanism for this gender 
difference. In addition, a case–
control study of lung cancer found 
that the effect of the GSTM1 null 
genotype on lung cancer risk was 
significant among women, but not 
among men (116).

Nutritional deficits resulting in 
low levels of antioxidants can also 
heighten susceptibility to lung and 
other carcinogens by increasing 
DNA damage and subsequent 
mutation and carcinogenesis by 
oxygen radicals, PAHs and other 
chemical carcinogens (117). Heavy 
smokers with low plasma levels of 
micronutrients, such as retinol and 
the antioxidant α-tocopherol, appear 
to have reduced protection against 
carcinogen-induced DNA damage 
(118). In several studies, these effects 
were seen only in smokers with the 
GSTM1 null genotype, illustrating the 
importance of interactions between 
multiple susceptibility factors 
(119,120). Sensitivity to mutagens, 
as measured by bleomycin-
induced chromatid breaks, was also 
increased in cultured lymphocytes of 
healthy individuals with low plasma 
levels of antioxidants (121).

A special case of 
susceptibility: The fetus and 
young child

Compared with exposures 
occurring in adult life, exposures 
in utero and in the early years 
can disproportionately increase 
the risks of childhood cancer and 
many types of cancer later in 
life (122–124). Experimental and 
epidemiologic data indicate that 
because of differential exposure 
or physiologic immaturity, fetuses, 
infants and children experience 
greater risks than adults from a 
variety of environmental toxicants, 
including PAHs, nitrosamines, 
pesticides, tobacco smoke, air 

pollution and radiation. The 
underlying mechanisms may include 
increased exposure to toxicants, 
greater absorption or retention of 
toxicants, reduced detoxification 
and DNA repair, the higher rate of 
cell proliferation during early stages 
of development, and the fact that 
cancers initiated in the womb and in 
the early years have the opportunity 
to develop over many decades (for a 
review, see (125)) (126–129).

New evidence has emerged in 
recent years on the role played by 
in utero exposures in relation to the 
development of cancer in childhood 
and adult life. Fetuses and newborns 
seem to be particularly susceptible 
to diverse carcinogens (126–129). 
In a series of studies, PAH-DNA 
adducts were evaluated in mother-
newborn pairs in central Europe, 
the USA and China (130,131). 
Consistently, levels of adducts in 
newborn cord blood were the same 
or higher than in the mothers’ blood, 
although estimated transplacental 
exposure based on experimental 
studies was on the order of one 
tenth of maternal exposures. These 
observations across a gradient of 
exposure and in four different ethnic 
groups suggested that the fetus 
may be 10-fold more susceptible 
to DNA damage than the mother, 
and that in utero exposure to PAHs 
may disproportionately increase 
carcinogenic risk. Underscoring 
the potential risk of transplacental 
exposure to carcinogens, PAH/
aromatic DNA adducts in cord 
blood were positively associated 
with hypoxanthine-guanine 
phosphoribosyltransferase (HPRT) 
mutant frequency in newborns 
(25). These studies provided 
molecular evidence of links between 
transplacental exposure to common 
air pollutants and somatic mutations 
indicative of increased cancer 
risk. In another study, airborne 
PAHs, measured by personal air 

monitoring during pregnancy, were 
significantly associated with stable 
aberration frequencies in cord blood 
(132). However, the epidemiologic 
evidence is still inconclusive on the 
role of transplacental exposure to 
PAHs and air pollution and childhood 
cancer (133).

Other investigators have 
reported that prenatal or postnatal 
exposure to tobacco smoke or its 
constituents were associated with 
increased frequencies of DNA 
and haemoglobin adducts, as well 
as chromosomal aberrations in 
newborns or children (134,135). 
A significant association between 
paternal smoking (without maternal 
smoking) and death from childhood 
cancer was found (136). A significant 
difference in the HPRT mutational 
spectrum was reported between 
newborns of mothers exposed 
to environmental tobacco smoke 
(ETS) and newborns of unexposed 
mothers. Their results suggested 
that V(D)J recombinase mutations, 
which are associated with leukaemia 
and lymphomas, are induced by 
ETS exposure (137). A meta-
analysis of 11 studies of childhood 
exposure to maternal and paternal 
ETS found a very small excess risk 
for childhood cancer (RR = 1.10; CI 
= 1.03–1.19) (138). In addition, early-
life exposure to ETS is suspected of 
playing a causal role in adult cancer. 
Three studies found that childhood 
exposure to ETS increased the risk 
of lung cancer in adults (139–141).

There is direct chromosomal 
evidence of a link between in utero 
exposures and cancer in infancy 
and childhood. Approximately 75% 
of infant acute leukemias have a 
reciprocal translocation between 
chromosome 11q23 and one of 
several partner chromosomes, 
including chromosome 4, which 
creates a fusion of the MLL gene 
at 11q23 and the AF4 gene at 4q21. 
Providing direct evidence of prenatal 



348

initiation of infant leukemias, the 
MLL-AF4 gene fusion sequence 
has been detected in neonatal 
blood spots of leukaemia patients 
subsequently diagnosed at ages 
five months to two years (141). 
Similarly, a signal mutation (TEL-
AML1) observed in 25% of childhood 
acute lymphocytic leukaemia (ALL) 
cases was found to be present in 
neonatal bloodspots of children who 
subsequently developed ALL (142). 
The interpretation is that the TEL-
AML1 fusion is acquired prenatally 
and constitutes the “first hit” in 
childhood leukaemia.

Adolescence and young 
adulthood are also viewed as 
sensitive stages of life because 
of greater proliferative activity in 
epithelial cells of certain tissues, 
as seen in radiation-induced breast 
cancer (143). Initiation of smoking 
at an early age confers a higher 
risk of lung, bladder and possibly 
breast cancer (144). Breast cancer 
risk associated with the NAT2 slow 
acetylator genotype was higher 
in women who began smoking 
under the age of 16 years (145). 
In addition, aromatic DNA adduct 
levels were highest in lung tissue of 
former smokers who had smoked 
during adolescence, suggesting 
either that smoking at a young age 
induces more persistent adducts 
or that young smokers are more 
susceptible to DNA adduct formation 
(146).

In conclusion, molecular 
epidemiology has provided valuable 
data on the existence of complex 
interactions between environmental 
exposures and susceptibility factors, 
and has spurred researchers to 
investigate further differences in 
susceptibility among subsets of the 
population. Neither experimental 
nor conventional epidemiologic 
research alone could have done this. 
Although more research is needed 
before risk assessors can routinely 

develop quantitative estimates of 
the risks to sensitive subsets posed 
by specific environmental agents, 
the information obtained thus far 
has relevance to risk assessment 
and prevention. For example, 
government agencies are already 
beginning to require that regulatory 
policies explicitly protect children as 
a susceptible group.

The promise and challenge 
of new “omic” and epigenetic 
biomarkers

Types of new biomarkers

Several new and exciting 
biomarkers are becoming available 
for epidemiological studies thanks to 
the development of high-throughput 
technologies and theoretical 
advancements in biology. However, 
most of these markers have not 
yet been adequately validated, and 
their role in the causal paradigm is 
not clear. An exhaustive review is 
not possible here, and the reader 
is referred to Chapter 5 and other 
critical reviews, in particular for gene 
expression and toxicogenomics 
(147–149).

Toxicogenomics

Toxicogenomics refers to the study of 
the complex interaction between the 
cells’ genome and chemicals in the 
environment or drugs, as they relate 
to disease. One method for genome-
wide analysis, comparative genomic 
hybridization (CGH), provides a 
molecular cytogenetic approach 
for genome-wide scanning of 
differences in DNA sequence copy 
number (150). This technique has 
been attracting widespread interest 
among cancer researchers, as 
evidenced by the rapidly expanding 
database of CGH publications 
that already covers about 1500 
tumours, and is beginning to reveal 

genetic abnormalities characteristic 
of certain tumour types or stages 
of tumour progression. In theory, 
such genomic differences could be 
exploited to gain insights into the 
risk factors involved (150).

Epigenetics and promoter 
methylation

Epigenetic mechanisms of 
carcinogenesis (i.e. mechanisms 
that do not depend on structural 
changes in DNA but on functional 
regulation, such as DNA methylation) 
are increasingly identified as key 
steps in the pathway from exposure 
to cancer. DNA methylation is an 
important epigenetic determinant 
of gene expression, since it 
determines the process by which the 
instructions in genes are converted 
to mRNA, directing protein 
synthesis (81). DNA methylation, 
that is, the covalent addition of 
methyl groups (CH3) to cytosine 
that precedes a guanine in the DNA 
sequence (the CpG dinucleotide), 
occurs naturally and plays a role 
in suppressing gene expression. 
CpG dinucleotides are enriched 
in the promoting regions of genes 
(CpG islands). Hypermethylation of 
promoter regions is associated with 
gene transcriptional silencing, and 
is a common mechanism for the 
inactivation of tumour suppressor 
genes in human cancer (151). DNA 
methylation is heritable; it passes 
from one generation of cells to the 
next.

Promoter methylation is a 
mechanism that regulates gene 
expression and is believed to play a 
crucial role in lung carcinogenesis. 
Several genes are commonly the 
target of promoter hypermethylation 
in lung cancer, including the p16 
gene (p16INK4a/CDKN2A), DAPK, 
RAR-β, RASSF1 and O6MGMT 
(a DNA-repair gene) (152). Global 
hypomethylation has also been 



  Unit 5 • Chapter 19. Cancer 349

U
n

it
 5

C
h

a
p

te
r

  1
9

observed (153). Both current 
and former smoking have been 
associated with aberrant p16, DAPK, 
RASSF1A and RAR-β methylation 
(152). Recently, investigators have 
found that two alternative pathways 
can be detected in the biopsies of 
smoking and non-smoking lung 
cancer patients: one involving 
methylation and K-ras mutations, 
and the other EGRF mutations in the 
absence of gene methylation (154). 
In a prospective study, promoter 
hypermethylation of multiple genes 
(including those mentioned above) in 
the sputum was able to predict lung 
cancer onset with sensitivity and 
specificity of 64% (155). Notably, 
aberrant promoter methylation 
can be detected in the plasma of 
lung cancer patients (156); high 
frequencies of ECAD and DAPK 
methylation have been reported in 
lymphocytes of smokers versus non-
smokers (157). The capacity of some 
airborne particulate carcinogens 
to induce hypermethylation in 
the regulatory regions of tumour 
suppressor genes has also been 
demonstrated in animal studies 
(158). Overall, the animal models 
support involvement of promoter 
methylation and other epigenetic 
mechanisms in carcinogen-induced 
lung carcinogenesis (159,160).

Acetylation is another key 
mechanism in epigenetic pathways, 
although it has been studied less 
extensively than methylation in 
cancer epidemiology (161).

Metabolomics

The study of the complete set of 
low-molecular weight metabolites 
present in a cell or organism at any 
time is metabolomics, sometimes 
referred to as metabolomics. With 
high-throughput techniques (NMR 
spectroscopy and LC-MS) it is 
possible to measure a large number 
of metabolites simultaneously, 

and to define individual metabolic 
profiles that can be used to predict 
the onset of common diseases 
(162). Use of data processing and 
chemometric models has already 
allowed the characterization of 
disease states and metabolic 
disorders (163). While several cross-
sectional metabonomic studies 
investigating various cancers have 
been undertaken (164,165), no 
longitudinal study has yet been 
carried out, and few validation 
studies have been published. In one 
investigation of repeat samples from 
dietary studies (166), high-resolution 
1H NMR spectroscopy was used 
to characterize 24-hour urine 
specimens obtained from population 
samples in Japan (n = 259), Chicago, 
USA (n = 315), and China (n = 278). 
The authors investigated analytical 
reproducibility, urine specimen 
storage procedures, interinstrument 
variability, and split specimen 
detection. The multivariate 
analytical reproducibility of the NMR 
screening platform was > 98%, 
and most classification errors were 
due to heterogeneity in handling of 
urine specimens. In addition, cross-
population differences in urinary 
metabolites could be related to 
genetic, dietary, and gut microbial 
factors.

Proteomics

The study of an organism’s entire 
complement of proteins is known 
as proteomics. Proteomics has 
been used for the investigation of 
several types of cancer (167–170) 
and of physiological or pathological 
changes associated with external 
exposures. Proteomic studies 
have identified, for example, 
changes in proteins associated 
with oxidative stress (171). The 
investigation of proteomic patterns 
could be a powerful tool both for 
the identification of intermediate 

changes that relate environmental 
exposures to disease onset, and as 
an early marker of cancer. However, 
methodological issues need to 
be resolved before application in 
prospective studies. In a critique 
of early papers, Diamandis (2004) 
identified several methodologic 
problems: the lack of reproducibility 
in analytical methods; the lack of 
reproducibility of proteomic patterns 
in different series of patients and by 
different laboratories; unresolved 
effects of different protocols for 
sample collection and processing, 
freeze–thaw, and duration of storage; 
possible selection effects in cases 
and controls (bias, confounding), 
partly because of the opportunistic 
sampling that characterized the 
early studies; the possible effect 
of drugs/other treatments; and 
inappropriate or non-reproducible 
data analysis. Many of these 
concerns apply to other epigenetic 
and “omic” biomarkers and have 
been addressed in subsequent 
proteomic studies. In conclusion, for 
all the “omic” technologies, validation 
studies are urgently needed.

Incorporating new 
intermediate epigenetic 
or “omic” biomarkers into 
etiologic studies

Epigenetic and “omic” technologies 
can provide intermediate markers 
(either reflecting exposure/effective 
dose, early effects, or preclinical 
disease) for etiologic purposes 
(to investigate the causes and 
mechanisms of disease onset) or for 
clinical purposes (early diagnosis, 
prognosis, follow-up). This chapter 
refers to etiologic purposes, but 
many of the considerations apply to 
clinical purposes as well (see (172) 
and (173) for a review of biomarker-
based tools for cancer screening, 
diagnosis and treatment). While past 
experience with earlier biomarkers 
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is relevant, the current era is 
different and poses new challenges 
for the following reasons: “omic” 
and new epigenetic methods tend 
to be discovery-oriented, rather 
than oriented to testing specific 
hypotheses; the main feature of 
current technologies is the ability to 
perform massive testing of markers 
(i.e. thousands of markers at a time), 
potentially in thousands of subjects; 
and such new intermediate markers 
introduce increased potential for 
confounding. So, although our 
ability to measure new intermediate 
markers has considerably 
increased, making the current 
phase potentially very exciting, 
methodological challenges have 
expanded more than proportionally. 
In fact, much uncertainty surrounds 
the validity and applicability of new 
technologies (see (174, 175)).

Feasibility is also an issue. For 
example, it is currently prohibitively 
expensive and labour-intensive to 
perform expression array analysis 
for every subject in large studies. 
An alternative is to select a small 
subset of matched pairs of exposed 
and unexposed subjects (or subjects 
with and without preneoplastic 
lesions) and discover differentially 
exposed genes. Once several target 
genes are identified, real-time PCR 
analysis can be used to quantify 
expression of selected genes in all 
subjects (176).

Another important difference 
between the earlier and newer 
biomarkers is that the traditional 
cancer paradigm was very much 
centred around DNA damage and 
mutations, while recent research 
has uncovered several additional 
intermediate steps between 
genotype and phenotype, and 
has highlighted the importance 
of gene expression/modulation 
in carcinogenesis. Therefore, 
combinations of both types of 
biomarkers are expected to be 

informative, since pathways are not 
mutually exclusive.

Several critical steps in the 
putative causal pathway linking 
exposure to the onset of cancer 
can be explored with intermediate 
markers. Referring to the classical 
scheme (Cf. Figure 19.1), 
intermediate markers can play a 
role in each of the following steps: 
they can be related to exposure 
(e.g. metabolomics); related to 
early effects or changes in the 
causal pathways leading to disease 
(like promoter methylation, gene 
mutations, or changes in telomere 
length); or they can express 
epiphenomena of pre-clinical 
disease (e.g. mutations present in 
plasma DNA as a consequence 
of tumour cell apoptosis). It is 
very important that the biological 
significance of a marker be made 
explicit beforehand, because 
false expectations can arise as 
a consequence of an erroneous 
interpretation of a biomarker’s role. 
For example, some markers (those 
on the right side of the scheme) 
have clinical relevance or can be 
useful for screening, others cannot.

Validating promising 
intermediate markers

A concept that is often unclear is 
the difference between technical 
and field validation. Technical 
validation has to do with intrinsic 
measurement error and analytical 
sensitivity. Field (or epidemiological) 
validation is related to how a certain 
marker behaves in the population, 
depending on biological variability 
within the population (177).

Biomarker validation requires 
several steps. A marker may be 
extremely powerful in increasing our 
understanding of the natural history 
and pathogenesis of a disease, but 
may still perform very poorly as a 
predictor for preventive or clinical 

purposes. One of the most important 
goals of validation is to characterize 
the ability of the marker to predict 
disease and, in intervention studies, 
reflect the modification of the natural 
course of disease.

One of the main summary 
measures of the contribution of 
a biomarker to the prediction 
of disease onset is the receiver 
operating characteristic (ROC) 
curve. The ROC curve is a measure 
of the overall capability of the marker 
to predict the disease, which is a 
function of sensitivity and specificity. 
An area under the curve (AUC) 
of 1 or close to 1 indicates perfect 
prediction, while an area close to 
0.5 indicates random association 
between the marker measurement 
and the probability of disease 
onset. The maximum AUC for the 
prostate serum antigen (PSA) test 
(a serum tumour marker to predict 
the presence of prostate cancer) is 
only 0.77 (178). It is possible that 
gene expression microarrays or 
proteomics could perform better 
than the PSA test, but no candidate 
biomarker has yet been identified.

A major aim of biomarker 
validation is to characterize biomarker 
variability. The main components 
of biomarker variability that affect 
the design and interpretation of 
epidemiologic studies are: biologic 
variability related to the subject 
(i.e. variability between subjects 
(intersubject) and within subjects 
(intrasubject)); variability due to 
measurement error, including 
intralaboratory and interlaboratory 
variability; and random error. 
Methodological issues should be 
discussed within the context of 
specific biomarker categories. When 
epidemiologic studies employing 
biomarkers are designed and 
analysed, the goal is to minimize 
total intragroup variability to identify 
intergroup differences (e.g. between 
exposed and unexposed or between 
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diseased and healthy subjects), 
if they exist. Total intragroup 
variation is the weighted sum of 
intersubject, intrasubject, sampling 
and laboratory variation, with 
weights that are inversely correlated 
to the numbers of subjects, number 
of measurements per subject, 
and analytical replicates used in 
the study design, respectively. 
Obviously, if detailed information is 
not available, intragroup variation 
cannot be adjusted for. Therefore, 
in epidemiologic studies employing 
biomarkers it is important to 
collect, whenever possible: repeat 
samples (day-to-day, month-to-
month, or year-to-year variation 
may be relevant depending 
on the marker); information on 
subject characteristics that may 
influence intersubject variation; and 
information on conditions under 
which samples have been collected 
and laboratory analyses have been 
conducted (batch, assay, specific 
procedures). (For more about 
how the variability in laboratory 
measurements influences study 
design decisions, see (179).)

To increase power and improve 
the quality of studies, consortia 
like the NCI Cohort Consortium 
have recently been created. While 
these have been set up mainly to 
share questionnaire or GWAS data, 
consortia can also be extremely 
helpful for biomarker research 
including omics and biomarker 
validation. One recent example is 
the series of papers that examined 
the association between Vitamin D 
and several cancer sites (180).

Design issues

Study design issues identified with 
earlier biomarkers, such as mutation, 
oxidative damage, and adducts 
are particularly relevant for the use 
of newer intermediate markers, 
such as proteomic changes. Only 

prospective studies allow for a 
proper temporal evaluation of the 
role of intermediate biomarkers. The 
use of the cross-sectional design 
in the analysis of p53 mutations 
has been an invaluable tool in the 
investigation of liver carcinogenesis. 
However, the cross-sectional design 
of the early studies did not allow 
researchers to exclude the possibility 
that mutations were a consequence 
of cell selection rather than of the 
original causal agent, such as 
aflatoxins (181). In other words, what 
was observed was the spectrum of 
mutations in liver cancers as the 
consequence of a long and complex 
process involving the effect of 
carcinogens, DNA repair, and the 
selection of cells carrying specific 
mutations conferring a selective 
advantage to cells. Therefore, in 
principle, prospective studies are 
better for the understanding of time 
relationships between exposure, 
intermediate biomarkers, and 
disease although they have the 
limitation of usually being based on a 
single spot biological sample, which 
does not allow the measurement of 
intraindividual variation.

Randomized clinical trials 
(RCTs) with biological samples have 
been repeatedly performed. For 
example, trials have used dietary 
changes as the intervention and 
oxidative damage or DNA adducts 
as the outcome. Though RCTs are 
probably the best design to conclude 
causality in epidemiology, they also 
have limitations, particularly the 
short half-life of most biomarkers 
and most interventions, compared 
to the long-term exposures that are 
needed to cause chronic diseases 
like cancer.

Another issue with respect to 
some biomarkers is that it is often 
difficult to understand whether 
the marker is intermediate in the 
pathway leading from exposure to 
disease, or it is just a consequence 

of exposure with no role in disease 
onset, or even an epiphenomenon 
of disease with no relationship to 
exposure. For example, micronuclei 
seem to originate from exposure 
to clastogens, but can lead to cell 
death and therefore are likely not 
to be intermediate in the causal 
pathway.

Types of bias that are common 
in other epidemiological studies 
may become dramatic when 
biological samples are collected 
and biomarkers are measured. For 
example, in a study on pancreas 
cancer, out of more than 1000 
eligible patients, the investigators 
were only able to extract DNA from 
46 biopsies (182). The patients 
with a biopsy available were more 
frequently white and the tumour size 
was on average 179 mm, versus 
570 mm among the patients whose 
biopsy was not made available. This 
discrepancy is likely to introduce 
bias if one tries to correlate the 
prevalence of somatic mutations 
with exposure characteristics, 
such as occupation. As further 
example, in a case–case study, 
patients with pancreatic cancer 
seen at two general hospitals were 
retrospectively identified (183). Their 
clinical records were abstracted 
and paraffin-embedded samples 
retrieved from pathology records. 
DNA was amplified and mutations 
in codon 12 of the K-ras gene were 
detected. Results on the mutations 
were obtained for 51 of the 149 
cases (34.2%). Mutation data were 
over five times more likely to be 
available from one of the hospitals. 
In particular, subjects with mutations 
were more likely to have received a 
treatment with curative intent (OR = 
11.56; 95% CI = 2.88–46.36).

In addition, special forms of 
confounding may affect molecular 
epidemiology. An example is the 
levels of plasma DNA in cancer 
patients and controls, in the context 
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of a multicentre cohort study. 
Researchers found that, although 
the level of plasma DNA seemed to 
predict the onset of cancer, it was 
also strongly associated with the 
recruitment centre. This was due to 
modalities of blood collection and 
storage, since a longer time elapsing 
between blood drawing and storage 
in liquid nitrogen was associated 
with higher DNA levels due to 
greater white blood cell death. Thus, 
the association between cancer 
and plasma DNA levels could be 
confounded by centre, since cancer 
rates also differed by centre in this 
multicentre study (184).

Translation of research 
into preventive programmes

Assessing risk

Risk assessment for low-level 
exposures

One of the main challenges for 
epidemiology in recent decades 
has been the need to characterize 
and quantify the effects of low-level 
exposures to carcinogens. Such 
exposures are widespread (e.g. 
traffic-related air pollution and ETS) 
but extremely difficult to study with 
conventional epidemiological tools. 
There has been a heated debate 
on the shape of dose–response 
relationships in carcinogenesis 
(i.e. on the extrapolation from 
high- to low-levels of dose), 
an issue of great public health 
significance. Epidemiological 
studies are often underpowered to 
study the carcinogenic effects of 
very low levels of exposure. Using 
biomarkers, molecular epidemiology 
can mitigate the problem that very 
large numbers of subjects are 
needed to detect small effects on 
cancer risk, by providing individual 
estimates of dose and intermediate 
markers of procarcinogenic damage 

that can be used in lieu of cancer as 
an outcome.

To illustrate these points, results 
are described from a series of 
analyses that have been carried out 
by investigators in the EPIC study on 
the effects of low-level exposure to 
ETS and air pollution on lung cancer. 
ETS and air pollution share several 
characteristics: they are widespread 
exposures in both developed and 
developing countries, they have 
chemical components in common, 
and they are associated with 
increased risks of lung cancer and 
other diseases (185,186). The lung 
cancer relative increase is around 
20–30%, approximately of the 
same magnitude for both ETS and 
air pollution at the typical exposure 
levels in Western countries 
(158,187). In EPIC, relative risks 
were found in the order of 1.4–1.5 for 
exposure to ETS in adulthood and 
the risk of lung cancer, based on the 
prospective investigation of about 
120 000 subjects with information 
on ETS and 117 newly diagnosed 
lung cancers in non-smokers (140). 
Biomarkers were used in several 
different ways. First, cotinine was 
used to validate the questionnaire 
information on ETS exposure, 
demonstrating a strong association 
with self-reported exposure (P 
< 0.001). Second, biomarkers of 
genetic susceptibility strengthened 
the epidemiological association 
between low-level exposures to 
carcinogens and cancer. The risk 
associated with ETS was higher 
in subjects with three or more at-
risk alleles for genes involved in 
carcinogen metabolism (GSTM1, 
GSTM3, GSTP1, GSTT1, CYP1A1, 
CYP1B1, NAT2, MnSOD, MPO, 
and NQO1), with an odds ratio of 
2.86 compared to 1.33 in those 
with less than three alleles (140). 
These results have implications for 
risk assessment in that they show a 
modest, but significant, increase in 

cancer risk at low levels of exposure 
to environmental carcinogens, and 
demonstrate that genetic factors 
can substantially increase risk to 
certain subsets of the population.

Developing dose–response 
models for assessing the risk of 
carcinogens

A major issue relevant to risk 
assessment is whether to view 
carcinogenesis as a linear process, 
involving the accumulation of 
several additive events, or as a 
nonlinear process. Molecular data 
on carcinogenic mechanisms have 
been instrumental in developing and 
validating different statistical models 
for carcinogen risk assessment. At 
the time of the initial development 
of the molecular epidemiology 
paradigm (2,3), the dominant 
model of carcinogenesis was the 
“multistage” model proposed by 
Armitage and Doll that postulated 
the existence of about six stages in 
cancer development (188). Armitage 
and Doll’s model was consistent 
with the paradigm, implying 
several steps between exposure 
and cancer, and an important 
role for duration of exposure to 
carcinogenic stimuli. Steps were 
postulated to be heritable from 
one cell to the progeny, and critical 
genetic changes were hypothesized 
to be irreversible. In fact, after the 
multistage model was originally 
proposed, Vogelstein demonstrated, 
on the basis of molecular pathology, 
that the development of colon cancer 
was likely to require six mutations or 
chromosome aberrations (189).

In addition, Knudson had 
suggested, based on its age 
distribution, that retinoblastoma (Rb) 
in children was likely to be due to two 
mutations, one inherited and one 
acquired (190). The Knudson “two-
hit” model for retinoblastoma was 
supported by the discovery of the 
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first tumour suppressor gene (Rb) 
that in fact requires two mutations, 
one inherited and one acquired, 
to give rise to the tumour (191). 
Thus, both models were examples 
of the success of combining 
epidemiological observations, 
mathematical models, and 
molecular or biomarker evidence.

Yet another statistical model, 
based directly on molecular 
evidence, derives from the 
identification of hereditary 
syndromes that predispose to colon 
cancer (hereditary non-polyposis 
colon cancer) through mutations in 
the mismatch repair genes (77). The 
corresponding model postulates 
that the rate of mutations is too low 
to explain the incidence of cancer 
in human populations; therefore, a 
“mutator phenotype” (the inherited or 
acquired ability to develop frequent 
mutations, such as through a defect 
in DNA repair machinery) would be 
necessary (192,193). A cascade of 
mutations, originated by the inability 
to repair DNA damage, would better 
explain the high frequency of colon 
cancers in some families, than the 
simple accumulation of spontaneous 
or acquired mutations. The same 
could be true for “sporadic” cancers.

Several other models have 
been proposed in recent years 
that accommodate and reflect 
new molecular information on 
carcinogenic mechanisms. One 
recent model (194) is based on 
the concept that carcinogenesis 
is a Darwinian process in which 
transformed cells acquire a selective 
advantage over normal cells. 
The term “selectogen” has been 
proposed for carcinogens that act 
by increasing the ability of mutated 
cells to acquire selective advantage 
(in given environments) over normal 
cells. A biomarker that has been 
used to explore such a Darwinian 
concept of carcinogenesis is 
mutation in the HPRT reporter 

gene. The X-chromosomal gene for 
HPRT serves as a simple reporter 
gene (i.e. it indicates the induction 
of mutations) and is now finding use 
in studies of in vivo selection for 
mutations arising in either somatic 
or germinal cells (195). This line 
of research, however, is still in its 
infancy.

All these apparently diverse 
models are in fact generally 
compatible and consistent with 
molecular data. The picture that 
is emerging is that environmental 
stimuli can increase genomic 
instability (in addition to inherited 
variants of instability), which 
in turn leads to chromosome 
aberrations or mutations that 
increase the selective advantage 
of cells in stressful environments, 
and induces the carcinogenic 
process. However, the problem with 
mathematical models is that often 
they are compatible with different 
biological interpretations and do 
not easily accommodate certain 
aspects of carcinogenesis, such 
as epigenetics. The incorporation 
of non-genetic biomarkers into risk 
assessment models is still in a very 
early stage.

Developing new intervention 
strategies

Primary prevention encompasses 
a spectrum of measures that 
includes elimination or avoidance of 
exposure, prevention of carcinogen 
activation after it has entered the 
body, blocking interactions with 
the genome, and suppressing 
the propagation of premalignant 
changes. Several studies have used 
DNA damage as an intermediate 
biomarker or endpoint. An example 
is a study of smokers enrolled in 
a smoking cessation programme. 
Levels of biomarkers, PAH–
DNA and 4-ABP–haemoglobin 
adducts, reflecting cessation were 

significantly reduced by eight 
weeks after quitting smoking (196). 
Similarly, following a reduction in air 
concentrations of PAHs in a Finnish 
iron foundry, both PAH–DNA and 
aromatic DNA adduct levels in 
workers' blood samples declined 
significantly (197).

Other prevention research has 
used biomarkers as intermediate 
endpoints in chemoprevention 
trials. Research studies have shown 
that isothiocyanates, which occur 
as conjugates in a wide variety of 
cruciferous vegetables, are involved 
in the inhibition of carcinogenesis 
(14). Isothiocyanates appear to 
selectively inhibit cytochrome P450 
enzymes involved in carcinogen 
metabolic inactivation; they also 
induce Phase II enzymes and 
enhance apoptosis. Phenethyl 
isothiocyanate is a particularly 
effective inhibitor of lung tumour 
induction by the tobacco-specific 
nitrosamine 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone and is 
currently being developed as a 
chemopreventive agent against lung 
cancer (110).

Several dietary or vitamin 
supplementation randomized 
studies have used DNA adducts 
or oxidative damage markers 
as intermediate outcomes. Free 
radicals, which are produced 
naturally in the body, can cause 
oxidative damage of DNA, lipids, 
proteins and other cell constituents, 
contributing to the onset of cancers 
and other chronic diseases (198). 
Oxidative damage to DNA plays 
a major role in carcinogenesis, 
and all living cells have defence 
mechanisms in place to counter this 
damage. The simplest mechanism 
involves foods and nutrients with 
antioxidant properties, which 
work by intercepting free radicals 
and preventing cellular damage 
(198,199). To establish the potential 
chemopreventive properties of 
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antioxidants, investigators have 
used markers such as 8-hydroxy-
2’-deoxyguanosine (8-OHdG) and 
the comet assay as intermediate 
markers in interventions (198). 
A review of these intervention 
studies has concluded that most 
had extremely low statistical power 
(sample size usually ≤ 20) and 
that they led to modest changes in 
8-OHdG (around 10%) (199,200). In 
conclusion, promising markers are 
available for intervention studies, 
but they await application in large-
scale and well designed trials.

A randomized clinical trial of 
vitamins E and C in smokers found 
that among women, but not men, 
there was a significant decline in 
PAH-DNA adducts in the treatment 
group (201).

New biomarkers for clinical 
purposes

The field of biomarkers is rapidly 
expanding, particularly as far as 
biomarkers for clinical purposes 
are concerned. For example, 
microRNAs, which are very short 
stretches of RNA with regulatory 
functions, seem to be extremely 
promising for the understanding 
of cancer mechanisms, as well 
as for developing new therapies 
(202). In addition, microRNAs are 
also relevant to chemically-induced 
cancer (203). More about such new 
developments can be found in (204). 

Policy changes

With regard to public health and 
environmental policy, molecular 
epidemiology has not yet led to 
broad policy changes to prevent or 
to reduce exposure to carcinogens. 
However, it has provided impetus for 
prevention of prolonged exposures 
to carcinogens, even at low levels, 
since they can result in DNA damage 
or epigenetic alterations that begin 

at a very early age, even in utero, 
and accumulate over a lifetime 
(41,205,206). In addition, molecular 
epidemiologic data on interindividual 
variation in susceptibility refute 
the default assumption in risk 
assessment that the population 
is biologically homogeneous in 
response to carcinogens. This 
default assumption can lead to 
substantial underestimates of risk 
to the population and to sensitive 
subgroups, leading to standards 
and policies that are not adequately 
health-protective or equitable 
(129,207).

The theoretical importance of 
focusing intervention strategies 
(regulations, public education 
programmes, health surveillance, 
behaviour modification, and 
chemoprevention programmes) 
on the subgroups at greatest risk 
as a result of genetic or acquired 
susceptibility (208,209) is illustrated 

in Figure 19.2 (210). The figure 
illustrates that while the distribution 
of susceptibility/risk is symmetrical 
on a log scale, it is right-skewed 
on the linear scale. Thus, for a 
hypothetical carcinogen with a 
linear low dose–response curve, 
the estimated risk would be 38-fold 
greater for a population of individuals 
with 99th-percentile sensitivity than 
for a population of median-sensitive 
individuals. (This number is the 
upper 95% confidence limit of risk 
with respect to uncertainty; the 
estimated increase in risk is similar 
if the arithmetic mean estimate of 
risk with respect to uncertainty is 
used.) Sensitivity due to genetic 
and nutritional factors can be 
compounded in the case of certain 
groups (e.g. children) who would 
be expected to have both more 
exposure and greater age-related 
susceptibility to certain carcinogens.

Figure 19.2. The theoretical distribution of cancer susceptibility and risk across a 
population that is heterogeneous with respect to sensitivity to a hypothetical non-
threshold carcinogen [based on (200)]. The x-axis represents the percentile of 
sensitivity; the y-axis, the number of individuals. The numbers in parentheses are 
the estimated cancer risk for a population of individuals at the indicated percentile 
of sensitivity. They are derived by use of a Monte Carlo simulation using data on 
observed human variability in metabolic activation, detoxification and DNA repair, as 
well as uncertainty in cancer potencies for a set of genetically acting carcinogens. The 
numbers shown are the upper 95% confidence limit of risk with respect to uncertainty 
estimates and are similar if the arithmetic mean estimates are used. Panel [a] shows 
the distribution on a log scale; panel [b] shows the same distribution on a linear scale.
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Table 19.1. Discoveries that support the original model of molecular epidemiology*

Marker linked to exposure or disease Exposure Reference

Metabolites in body fluids
Urinary metabolites (NNK, NNN)

Nitroso compounds in tobacco (211,212)

Exposure/biologically effective dose
DNA adducts
Albumin adducts

Haemoglobin adducts

PAHs, aromatic compounds
AFB1

Acrylamide
Styrene
1,3-butadiene

(37)
(213,214)

(215)
(216)
(217)

Preclinical effect
Chromosome aberrations

HRPT

Glycophorin A
Gene expression

Exposure and/or Cancer
Lung
Leukemia
Benzene

PAHs
1,3-butadiene

PAHs
Cisplatin

(52)
(218)
(219)

(220)
(221)

(222)
(223)

Genetic susceptibility
Phenotypic markers

e.g. DNA repair capacity in head and neck 
cancer

(77,224)

SNPs:
NAT2, GSTM
CYP1A1

Bladder
Lung

(225)
(226)

*See (2) and (227).

Conclusions 
and future directions

The examples presented in this 
chapter show that molecular 
epidemiology has made extensive 
progress since the 1980s. It 
has contributed to prevention 
by providing new evidence that 
specific environmental agents 
pose human carcinogenic hazards, 
helping to establish their causal 
role, identifying subsets of the 
population at special risk, and using 
this information to develop new and 
more effective strategies to reduce 
risk. As a result, some interventions 
and policy changes have been 
mounted to reduce risk from 
several important environmental 
carcinogens.

As has been seen, recently 
developed epigenetic and “omic” 
biomarkers have considerable 
potential in molecular epidemiology, 
along with genotoxic markers, 
because they reflect another 
equally important mechanism 
of carcinogenicity: epigenetic 
alterations that affect the expression 
of genes and proteins. These can 
be measured by high-throughput 
methods, allowing large-scale 
studies that are discovery-oriented. 
However, a major challenge is the 
need for validation of these newer 
biomarkers so they may be applied in 
large-scale etiologic and intervention 
studies. An important development 
in molecular epidemiology has 
been the emergence of networks 
and consortia involving hundreds 

of researchers and multiple 
large studies. Examples include 
the Wellcome Trust Case-
Control Consortium, CGEMS 
(Cancer Genetic Markers of 
Susceptibility), HuGE (Human 
Genome Epidemiology Network), 
ECNIS (Environmental Cancer 
Risk, Nutrition and Individual 
Susceptibility), NuGO (The European 
Nutrigenomics Organization linking 
genomics, nutrition and health 
research), and Interlymph in the 
field of lymphomas. Such initiatives 
allow coordinated efforts, avoid 
false-positives and publication bias 
from several small studies, and 
contribute to rapid dissemination 
and replication of new knowledge.

Another challenge and future 
direction is the timely translation of 
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data from etiologic and intervention 
studies into risk assessment and 
public health policy, as well as 
focused research to fill gaps in 
scientific knowledge. Meeting these 
goals requires an infrastructure 
to promote a dialogue among 
scientists, policy-makers and 
other stakeholders, and a major 
investment in the second generation 
of molecular epidemiologic 
research, including large-scale 

collaborative studies incorporating 
validated biomarkers and automated 
technologies.
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Summary

Until recently, the potential 
relevance of genetic, biochemical 
and lifestyle factors to coronary 
heart disease have been studied 
in relative isolation from one 
another. Although this approach 
has yielded some major insights, it 
has resulted in a fragmented and 
incomplete understanding of the 
relative importance and interplay 
of nature and nurture in the 
development of coronary risk. New 
opportunities for more integrated, 
powerful and comprehensive 
approaches have been opened 
by major developments, including: 
establishment, collation and 
maturation of relevant population 
bioresources; emergence of 
technologies that enable rapid 
and accurate assessment of many 
genetic and biochemical factors, 

without necessitating assumptions 
about biological mechanisms; and 
advances in statistical analytical 
methods. This chapter provides 
a critical review of the strengths 
and limitations of established 
and emerging epidemiological 
approaches to the study of the 
separate and combined effects of 
genetic, biochemical and lifestyle 
factors in coronary heart disease.

Introduction

Coronary heart disease (CHD) 
remains a pre-eminent global public 
health concern. With over seven 
million deaths per year attributed 
to CHD, it is the leading cause of 
death worldwide, a major source 
of disability, and a considerable 
economic burden (1–3). Over the 

past half-century, several major 
modifiable coronary risk factors 
have been identified, such as 
smoking, diabetes, and elevated 
levels of blood pressure and low-
density lipoprotein cholesterol 
(LDL-C) (4–7). These insights have 
led to improvements in primary and 
secondary prevention, prognosis 
and treatment strategies, and, 
ultimately, contributed to reductions 
in cardiovascular morbidity and 
mortality in many high-income 
countries (8–12). CHD remains, 
however, the leading killer in most 
high-income countries, and its 
incidence is increasing rapidly 
in many low- and middle-income 
countries, such as those in South 
Asia (13–15).

In parallel with greater efforts 
to control established risk factors, 
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there is considerable interest in the 
discovery and evaluation of novel 
and emerging risk markers in CHD. 
By analogy with measurement and 
modification of LDL-C levels, it has 
been suggested that identification 
of usefully predictive and/or 
causal biomarkers in CHD should 
contribute to insights into disease 
pathophysiology that may translate 
into clinical benefits through 
identification of novel therapeutics, 
improved stratification of disease 
risk in vulnerable populations, more 
cost-effective targeting of existing 
interventions, and identification 
and understanding of joint gene–
environment effects. The purpose 
of this chapter is to provide a 
critical survey of epidemiological 
approaches being used in the 
discovery and evaluation of genetic 
and molecular risk markers in CHD.

Studies of genetic sequence 
variation in coronary heart 
disease

Candidate gene approaches

The tendency for coronary heart 
disease (CHD) to cluster in families 
(coefficient of familial clustering 
[λs] estimated to be between 2 and 
7) (16–18) suggests that genetic 
variation, through modulation of 
known or as-yet unidentified risk 
factors, importantly influences 
CHD risk (16). Until recently, 

genetic epidemiological studies in 
CHD tended to involve candidate 
variant or candidate gene studies 
involving focused investigation 
of relatively few genetic variants 
based on plausible biological 
hypotheses. Many of these studies 
had anticipated identification of 
common variants with large effects 
on CHD risk (e.g. odds ratios >2), 
and few were compatible with the 
reliable identification of variants with 
moderate effects or smaller (e.g. 
odds ratio <1.5). In retrospect, such 
expectations appear unrealistic 
because it now seems unlikely 
that the genetic architecture of 
CHD includes common variants of 
large effect, equivalent to HLA in 
type 1 diabetes (19,20) or CFH in 
age-related macular degeneration 
(21,22).

The combination of the low 
prior odds of the variants selected 
for study, inadequate power (i.e. 
small sample size) and over-liberal 
declarations of significance has 
resulted in the reporting of many 
“positive” findings that remain 
unreplicated or directly refuted, 
exemplified by studies of the 
insertion/deletion polymorphism 
of the angiotensin-converting 
enzyme gene (23,24) and of 
variants in the paraoxonase (25) 
and lymphotoxin-α genes (26,27). 
Indeed, a review of meta-analyses 
of about 50 candidate gene variants 
in CHD has indicated that available 

genetic association studies have 
typically been inconclusive (Figure 
20.1) (28), with the notable exception 
of the apolipoprotein E gene, for 
which evidence of association is 
persuasive (Figure 20.2) (29). It is 
possible that some such candidate 
variants really are associated with 
CHD, but the available evidence 
is generally inadequate to reliably 
confirm or refute odds ratios of 0.8–
1.2 per allele (which is the observed 
range for point estimates of odds 
ratios for the large majority of the 
variants listed in Figure 20.2).

Attempts to enhance statistical 
power by meta-analyses of the 
published literature can be helpful, 
but they are inherently limited by the 
scale of evidence available for review 
(e.g. only 15 variants listed in Figure 
20.2 have been studied in a total of 
at least 10 000 CHD cases), and 
by potential reporting biases (e.g. 
preferential publication of striking 
findings) (30,31). As suggested by 
the power calculations in Table 20.1, 
analyses of about 20 000 myocardial 
infarction (MI) cases and a similar 
number of controls are generally 
required to provide excellent power 
to evaluate reliably common variants 
which may have odds ratios as low 
as 1.1, particularly when involving 
comparisons of many genotypes. 
So far, only a few studies have 
been established on this scale. The 
case–control study component of 
the International Study of Infarct 

Table 20.1. Power to detect odds ratios of moderate size for the effect of common genetic variants on coronary disease outcomes 
in case–control studies with 2500 to 20 000 cases

Odds ratio 1.1 Odds ratio 1.15 Odds ratio 1.2

MAF 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

N
o.

 o
f  

ca
se

s 2500 0 0 0 0 1 2 1 5 14

5000 0 0 1 1 9 23 9 47 74

10 000 1 7 18 15 64 87 62 98 100

20 000 11 55 81 77 100 100 100 100 100

Assumptions include: α = 10−7, r2 = 0.8, prevalence of coronary heart disease = 10%, multiplicative model, one control per case. Power is the ability to detect against type 2 error 
= 100*(1-β). MAF, minor allele frequency.



Unit 5 • Chapter 20. Coronary heart disease 365

U
n

it
 5

C
h

a
p

te
r

  2
0

Figure 20.1. Summary estimates from meta-analyses of association studies of SNPs in various candidate genes and coronary 
disease (28)

Survival (ISIS), for example, involves 
about 14 000 acute MI cases (about 
half of whom had a history of 
cardiovascular disease) and about 
16 000 controls, all of whom were 
resident in the United Kingdom and > 
90% of whom were of white ethnicity 
(4,32). The INTERHEART study 
involves about 15 000 first-ever MI 
cases and 15 000 controls from 52 

countries (33). These studies have 
encouraged the initiation of similar 
research, such as the Pakistan 
Risk of Myocardial Infarction Study 
(PROMIS), which is recruiting about 
20 000 patients with first-ever 
confirmed MI and 20 000 controls 
in urban Pakistan (http://www.phpc.
cam.ac.uk/ MEU/PROMIS/).

Genomic approaches

While progress in identifying 
individual genetic variants 
associated with CHD risk has been 
relatively limited, recent successes 
in identifying susceptibility genes 
for CHD (e.g. chr9/CDKN2A: Figure 
20.3 (29)) (34–37) and for lipid 
fractions (e.g. chr 1p13.3 in relation to 

Figure not available
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than can individual studies involving 
just a few hundred cases. This is 
because meta-analyses are less 
likely to be subject to random error 
than single studies, which due to 
their inherent statistical uncertainties 
may produce false-positive and 
false-negative results. The impact 
of random error in single studies can 
be compounded by unduly data-
dependent analyses and selective 

reporting. Such situations arise 
when analytical cut-off values are 
chosen only after an exploration of 
the data has shown which values 
seemed to be most strongly related 
to CHD, prominence is given 
to extreme findings in selected 
subgroups based on sparse data, 
results are preferentially reported 
just for those few factors which 
show extreme associations (out of 

the many measured), and journals 
preferentially publish striking 
findings (55–60).

Consequently, to enhance 
appropriate interpretation and to 
prioritize hypotheses for further 
investigation, there is an increasing 
need for systematic reviews of 
publications on biomarkers in CHD 
(Table 20.3). Figure 20.4 suggests 
a schema for a staged approach 

Figure 20.3. Meta-analysis summarising associations of chromosome 9 with coronary disease in 12 studies from populations of 
different ethnicity (28)

Figure not available
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in PROMIS. The establishment 
of large international consortia, 
such as the EU-funded European 
Network of Genomic and Genetic 
Epidemiology (ENGAGE; http://
www.euengage.org), which have 
pooled GWAS data in about 100 
000 individuals, should also propel 
discovery and validation of novel 
loci in cardiovascular diseases and 
quantitative traits (49). The use 
of custom-designed microarrays, 
such as the Illumina MetaboChip of 
> 200 000 SNPs related to cardio-
metabolic traits, should provide 
some of the advantages of GWAS at 
a considerably lower cost.

Studies of candidate plasma 
biomarkers in CHD

Approaches to prioritize 
hypotheses and enhance 
interpretation

Although technologies are 
emerging that enable rapid 
measurement of large numbers 
of many different blood-based 
molecules (biomarkers) (50–54), 
unlike GWAS for genetic markers, 
there are not as yet hypothesis-free 
global-testing methods that enable 
reliable quantitative assessment of 
concentrations of a large number 
of biomarkers in human blood 
samples. In the absence of such 
comprehensive tests, studies 
are needed to help prioritize the 
measurement of specific candidate 
biomarkers, assays for which 
may be costly and consume non-
trivial quantities of limited blood 
samples that have been stored 
as part of long-term population 
studies. Moreover, in the absence 
of individual studies of very large 
size, appropriate synthesis of the 
available reports of such factors 
in CHD by meta-analysis should 
provide a better preliminary 
indication of their relevance to CHD 



368

than can individual studies involving 
just a few hundred cases. This is 
because meta-analyses are less 
likely to be subject to random error 
than single studies, which due to 
their inherent statistical uncertainties 
may produce false-positive and 
false-negative results. The impact 
of random error in single studies can 
be compounded by unduly data-
dependent analyses and selective 

reporting. Such situations arise 
when analytical cut-off values are 
chosen only after an exploration of 
the data has shown which values 
seemed to be most strongly related 
to CHD, prominence is given 
to extreme findings in selected 
subgroups based on sparse data, 
results are preferentially reported 
just for those few factors which 
show extreme associations (out of 

the many measured), and journals 
preferentially publish striking 
findings (55–60).

Consequently, to enhance 
appropriate interpretation and to 
prioritize hypotheses for further 
investigation, there is an increasing 
need for systematic reviews of 
publications on biomarkers in CHD 
(Table 20.3). Figure 20.4 suggests 
a schema for a staged approach 

Figure 20.3. Meta-analysis summarising associations of chromosome 9 with coronary disease in 12 studies from populations of 
different ethnicity (28)
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to the evaluation of candidate 
biomarkers in CHD. This approach 
includes systematic reviews 
of published and unpublished 
data, measurement of emerging 
biomarkers in stored samples from 
existing large prospective studies, 
and the collaborative pooling of 
individual participant data from 
multiple studies.

Preliminary quantitative reviews 
(literature-based meta-analyses) 
have helped to prioritize research in 
CHD by

• identifying risk markers for 
which the available evidence 
is, in aggregate, comparatively 
unpromising, encouraging the study 
of other, potentially more fruitful 
hypotheses. For example, meta-
analyses of Chlamydia pneumoniae 
infection (61), markers of iron status 
(62), or soluble adhesion molecules 
(63), have refuted inappropriate 
earlier claims of strongly positive 
associations;

• suggesting the need for new 
measurements in much larger 
studies than hitherto to achieve 
reliable results, exemplified by 
reviews of leptin and adiponectin 
(64), insulin and proinsulin (65), and 
lipoprotein(a) (66);

• indicating that existing data 
would, if properly brought together 
into a detailed synthesis, be sufficient 
to yield reliable results, encouraging 
the formation of collaborative 
groups to conduct individual 
participant meta-analyses based 
on the collation, harmonization and 
re-analysis of available worldwide 
data, as discussed below.

Collaborative analyses 
of primary data from 
prospective studies

Many long-term prospective studies 
of cardiovascular outcomes have 
reported on associations with 
established and emerging risk 

Table 20.3. Examples of systematic reviews of studies of blood-based biomarkers 
and coronary disease outcomes

Type of factor Examples (Ref)
No. of 
CHD 
cases

Risk ratio (top 
third vs. bottom 
third)*

Acute-phase 
reactants

Fibrinogen (146)
Albumin (146)
Leukocyte count (146)
Granulocyte count (153)
Neutrophil count (153)
Lymphocyte count (153)
Monocyte count (153)
Serum amyloid A protein (147)
C-reactive protein (148)
Interleukin-6 (176)

3000
3800
6000
1500
1600
1700
1700
600
7000
5700

1.8 (1.6-2.0)
1.5 (1.3-1.7)
1.4 (1.3-1.5)
1.3 (1.2-1.5)
1.3 (1.2-1.5)
1.1 (1.0-1.3)
1.1 (1.0-1.2)
1.6 (1.1-2.2)
1.5 (1.4-1.6)
1.6 (1.4-1.8)

Haemostatic von Willebrand factor (242)
tPA antigen (243)
Fibrin D-dimer (244)
PAI-I (243)

1000
2100
1500
800

1.5 (1.1-2.0)
2.2 (1.8-2.7)
1.7 (1.3-2.2)
1.0 (0.5-1.8)

Lipids Lipoprotein(a) (175)
Triglycerides (151)
Apolipoprotein AI (152)
Apolipoprotein B (152)
Apolipoprotein B/AI ratio (152)

9800
10 000
6300
6300
3700

1.5 (1.3-1.6)
1.7 (1.6-1.9)
1.6 (1.4-1.8)
2.0 (1.7-2.4)
1.9 (1.6-2.2)

Metabolic Adiponectin (64)
Leptin (245)
Fasting insulin (65)
Random insulin (65)
Pro-insulin (65)

1300
1300
2600
2000
400

0.8 (0.7-1.0)
1.3 (0.8-2.0)
1.1 (1.0-1.3)
1.4 (1.1-1.6)
2.2 (1.7-3.0)

Renal function eGFR (246)
Uric acid (247)

4700
9400

1.4 (1.2-1.7)
1.1 (1.0-1.2)

Chronic infections Cytomegalovirus (248)
Mixed strains of H. pylori (249)
Cytotoxic strains of H. pylori (250)
C pneumoniae IgG titres (154)
C pneumoniae IgA titres (61)

700
2300
600
3000
2300

0.9 (0.7-1.2)
1.2 (0.9-1.4)
1.3 (0.9-1.9)
1.2 (1.0-1.4)
1.2 (1.0-1.5)

Cell adhesion 
molecules

E-selectin (63)
P-selectin (63)
ICAM-1 (63)
VCAM-1 (63)

800
600
1400
1300

1.2 (0.9-1.6)
1.2 (0.6-2.2)
1.4 (1.1-1.7)
1.0 (0.8-1.3)

Rheology Viscosity (251)
Haematocrit (251)
ESR (250)

1300
8000
1700

1.6 (1.3-1.9)
1.2 (1.1-1.3)
1.3 (1.2-1.5)

Metalloproteins Ferritin (62)
Transferrin (62)

600
6000

1.0 (0.8-1.3)
0.9 (0.7-1.1)

Vitamin-related Homocysteine (252) 1000 1.3 (1.1-1.5)

*Risk ratios presented are for a 1-sd increase for PAI-I, for a 1 mmol/L increase for fasting blood glucose and post 
load glucose, and for a comparison of <60 vs. ≥60 ml/min per 1.73 m2 for eGFR. Albumin comparisons involve bottom 
third vs. top third.
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markers (67–144), but individually 
they have not generally been 
sufficiently powered to assess 
associations under different 
circumstances, or to correct for 
within-person variability and 
measurement error in the marker 
of interest. Although previous 
meta-analyses have attempted 
to summarize the evidence on 
such markers in CHD, they have 
typically been based on only 
published data (62–66,145–154). 
While such literature-based reviews 
can help to provide preliminary 
assessments, they cannot provide 
precise estimates of risk marker–
disease associations under a range 
of different circumstances (including 
assessment of effect-modification), 
such as at different ages, in women 
and men, at different levels of 
established risk factors, nor reliable 
characterization of the shape of 
any dose–response relationships, 
nor consistent approaches to 
adjustment for possible confounding 
factors, or detailed investigation of 
potential sources of heterogeneity.

Moreover, most available 
assessments of emerging risk 
markers have related CHD risk 
solely to baseline measurements 
(which can lead to substantial 
underestimation of any associations 
due to regression dilution bias 
(155,156)), and have based statistical 
adjustment for possible confounding 
factors only on baseline values 
(which can lead to residual biases). 
But if a risk marker is of potential 
etiological relevance, it may also 
be important to characterize in 
detail its degree of within-person 
variability, both to understand the 
sources of this variability and to 
enable appropriate correction for 
regression dilution (156). It may 
also be informative to characterize 
in detail any lifestyle and biological 
correlates, thereby helping to 
identify possible determinants of the 
marker of interest (157).

Such uncertainties can be 
addressed by analyses of individual 
data from a comprehensive set 
of relevant prospective studies 
of cardiovascular outcomes (i.e. 

individual participant data meta-
analysis). The value of this approach 
has been demonstrated by the 
Prospective Studies Collaboration 
(PSC) (158), an analysis of individual 
data on one million participants in 
61 cohorts, including about 20 000 
incident CHD deaths. The PSC 
has, for example, demonstrated 
approximately log-linear associations 
for each of blood pressure and total 
cholesterol with CHD mortality 
(Figures 20.5 & 20.6) (5,6). These 
findings are of considerable public 
health importance, refuting earlier 
suggestions of threshold levels at 
which these established risk factors 
cease to be relevant. They also 
demonstrated the importance of 
blood pressure and cholesterol to 
vascular outcomes under a wide 
range of circumstances, notably 
in the elderly for whom these risk 
factors were previously regarded 
by some authorities as unimportant. 
Individual participant meta-analysis 
is also being used in the 600 000 
participant, 44-cohort Asia Pacific 
Cohort Studies Collaboration 

Figure 20.4. Outline of a staged approach to prioritize and evaluate novel and emerging markers in cardiovascular diseases
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(APCSC), which has recorded some 
lipid and other markers in relation 
to both cardiovascular morbidity 
and mortality (159). But, as the 
APCSC involves mostly East Asian 
participants, who tend to have a 
much lower incidence of CHD than 
Westerners, it has recorded less 
than one tenth of the numbers of 
incident CHD outcomes available in 
the PSC.

The Emerging Risk Factors 
Collaboration (ERFC) (160) and 
its related initiatives, such as the 
Fibrinogen Studies Collaboration 
(161,162) and the Lp-PLA2 Studies 
Collaboration (163), are extending 
this approach to the study of several 
emerging risk markers (Table 20.4). 

The ERFC, for example, has collated 
and harmonized individual data on 
up to 500 characteristics in over 1.2 
million participants in 110 long-term 
prospective studies in populations 
that are representative of the general 
population. During approximately 12 
million person-years at risk, about 
75 000 incident major cardiovascular 
outcomes have been recorded in 
the ERFC database. Over 300 000 
of the participants in the ERFC 
have provided serial measurements 
of established or emerging 
risk markers (160). The ERFC 
complements and contrasts with the 
PSC and the APCSC by having a 
broader scope (investigating several 
lipid, inflammatory, and metabolic 

markers) (Table 20.5), recording a 
large panel of potentially relevant 
covariates (e.g. biochemical and 
lifestyle characteristics), and 
including both major cardiovascular 
morbidity and cause-specific 
mortality (whereas the PSC 
involves only cause-specific 
mortality). The establishment of the 
ERFC and related initiatives has 
also stimulated advancement of 
biostatistical methods to maximize 
the value of observational data from 
multiple studies (156,157,164-166). 
The emergence of findings from the 
ERFC over the next few years is 
likely to transform understanding of 
the relevance of several promising 
risk markers to CHD. A further 

Figure 20.5. Age-specific associations of usual systolic blood 
pressure and coronary heart disease mortality in 34 283 cases 
among about 1 million participants from the Prospective Studies 
Collaboration (5). Reprinted from The Lancet, Copyright (2002), 
with permission from Elsevier.

Figure 20.6. Age-specific associations of usual total cholesterol 
levels and coronary heart disease mortality in 33 744 cases 
among about 1 million participants from the Prospective Studies 
Collaboration (6). Reprinted from The Lancet, Copyright (2007), 
with permission from Elsevier.

IHD, ischaemic heart disease
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Table 20.4. Examples of collaborative groups conducting pooled analyses of individual participant data on established 
and emerging markers and major cardiovascular disease outcomes

FSC, Fibrinogen Studies Collaboration; APCSC, Asia Pacific Cohort Studies Collaboration; CVD, cardiovascular disease; ERFC, Emerging Risk Factors Collaboration; LSC, 
Lp-PLA2 (Lipoprotein-associated phospholipase A2) Studies Collaboration; PSC, Prospective Studies Collaboration

 LSC FSC APCSC PSC ERFC

Biomarkers Lp-PLA2 Fibrinogen Lipid and metabolic Blood pressure
and cholesterol

Lipid, inflammatory
and metabolic

Studies 32 31 44 69 121

Participants 79K 154K 600K 1M 1.8M

Repeat measurements 3K 27K 50K 175K 300K

Person-years at risk 600K 1.4M 0.5M 12M 15M

Cardiovascular
outcomes

15K 11K 10K 55K 90K

Table 20.5. Preliminary summary of data available in the emerging risk factors collaboration on some lipid, inflammatory 
and metabolic markers

Marker
Participants 
with baseline 

measurements

No. with at
least two 

measurements

Person-years 
at risk 

(million)
CHD outcomes Stroke 

outcomes Total mortality

Triglycerides 910K 150K 10 38K 17K 73K

HDL-C 638K 74K 6.5 23K 15K 48K

LDL-C 593K 63K 5 20K 13K 36K

Apolipoprotein-B 302K 9K 2.5 8K 8K 13K

Apolipoprotein-AI 295K 9K 2.5 8K 8K 13K

Leucocyte count 189K 39K 1 8K 3K 18K

Albumin 172K 9K 1.5 11K 4K 22K

Lipoprotein(a) 131K 0.5K 1 8K 3K 13K

C-reactive protein 125K 11K 1 12K 7K 16K

Diabetes 569K 93K 6 29K 16K 65K

Fasting glucose 544K 67K 6.5 25K 9K 63K

Post-load glucose 72K 23K 1 8K 2K 12K

Creatinine 154K 42K 1.5 13K 5K 28K
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influence of the PSC, APCSC and 
the ERFC should be to facilitate the 
formation of further collaborative 
studies, as these initiatives have 
already brought together several 
hundred previously unconnected 
cardiovascular researchers 
to analyse and report data 
collaboratively.

Integration of information 
on genetic, biochemical and 
lifestyle factors in CHD

Several types of analyses require 
integration of data from different 
categories of exposures (e.g. 
genetic, biochemical and lifestyle 
factors). These include Mendelian 
randomization studies, optimization 
of risk stratification algorithms, and 
assessment of gene-lifestyle joint 
effects. Below, each is considered 
separately.

Mendelian randomization 
studies

Despite their advantages over 
individual studies of customary 
size, individual participant meta-
analyses of several prospective 
studies of emerging risk markers 
may not distinguish reliably 
whether associations of particular 
biomarkers with CHD reflect a causal 
relationship, or mainly a marker 
of established cardiovascular risk 
factors to which the biomarker 
is correlated, or mainly a marker 
of subclinical disease, or some 
combination of these possibilities. 
For example, the Fibrinogen 
Studies Collaboration has 
reported approximately log-linear 
associations of fibrinogen with CHD 
risk under a wide range of different 
circumstances (Figure 20.7) (162). 
The magnitude of this association, 
however, reduced considerably 
following adjustment for several 
established cardiovascular 

risk factors (162), as could be 
expected given the large number 
of established and emerging risk 
factors to which plasma fibrinogen is 
correlated (Figure 20.8) (157). The 
existence of these many correlates 
makes it difficult, therefore, to 
determine to what extent the 
observed associations of fibrinogen 
with CHD risk are independent 
from these markers. Statistical 
adjustment for confounding 
factors is potentially limited, as 
not all relevant confounders have 
been (or can be) measured in a 
study. Moreover, even measured 
confounders may be incompletely 
adjusted for because allowances 
are typically not made for within-
person variability or measurement 
error in levels of confounders 
(e.g. blood pressure, serum lipid 
concentrations). Alternatively, 
statistical overadjustment (the 
correction for markers in any causal 
pathway between fibrinogen levels 
and CHD risk) could, in principle, 

obscure a potentially important 
etiological relationship. In practice, 
however, it is difficult to judge the 
likelihood of overadjustment given 
that potential biological pathways are 
typically only partially understood 
(although they are probably better 
elucidated for fibrinogen than for 
most other candidate biomarkers in 
CHD).

Focused genetic studies may 
help to overcome some of these 
potential limitations of observational 
epidemiology (167–169). Mendelian 
randomization experiments 
attempt to minimize confounding 
and avoid reverse association 
bias by measurement of common 
polymorphisms or haplotypes in 
regulatory regions of genes that 
have been reliably associated 
with differences in circulating 
biomarker concentration (but not 
with any known change in biomarker 
function). According to Mendel’s 
second law (170), the inheritance of 
genetic variants should be subject to 

Figure 20.7. Age-specific associations of usual fibrinogen levels and coronary heart 
disease risk in 7118 cases among about 154 000 participants from the Fibrinogen 
Studies Collaboration (162). 

Figure not available
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Figure 20.8. Sex-specific shape of cross-sectional associations of fibrinogen with some cardiovascular risk factors in about 
154 000 individuals from the Fibrinogen Studies Collaboration (157). Reproduced with permission of Oxford University Press.

Note that the overall mean fibrinogen in each figure depends on which cohorts were included in the analysis having provided data for the relevant risk factor. 

the random assortment of maternal 
and paternal alleles at the time of 
gamete formation. So, if the levels 
of a particular biomarker actually 
increase the risk of CHD, then 
carriage of alleles (or haplotypes) 
that expose individuals to a long-
term elevation of that biomarker 
should confer an increased risk of 
CHD in proportion to the difference 
in biomarker levels attributable to the 
allele. Because of the randomized 
allocation of alleles from parents 
to offspring, potential confounders 
should be distributed evenly among 
the genotypic classes, and any bias 
due to reverse causation should be 
avoided because genotypes are 
fixed at conception and are unlikely 
to be modified by the onset of 
disease (171,172). Hence, by helping 
to judge the likelihood of any causal 

associations in CHD and estimating 
their magnitude, such focused 
genetic analyses should help to 
prioritize biomarkers for further 
study (e.g. as therapeutic targets) 
and elucidate disease pathways.

This approach has been applied 
to the study of plasma levels of 
fibrinogen (168,169). A report of 
a null association of fibrinogen 
genotypes with CHD risk, in a total 
of about 12 000 CHD cases and 
18 000 controls, has decreased the 
likelihood of a major causal role 
for fibrinogen levels (Figure 20.9) 
(169), but even larger numbers 
would be needed to exclude the 
possibility of a modest but still 
potentially important effect. For 
example, it has been estimated 
that greater than 15 000 cases and 
greater than 15 000 controls would 

be needed to confirm or exclude 
5–10% increases in CHD risk per 
1 SD increase in blood levels of 
C-reactive protein (CRP) (173). The 
CRP CHD Genetics Collaboration 
is therefore generating data and 
conducting pooled analyses of 
known relevant CRP genetic 
variants in about 37 000 CHD 
cases and about 120 000 controls 
from 35 contributing studies (173). 
This approach is being extended to 
the study of several other candidate 
biomarkers, including high-density 
lipoprotein cholesterol (HDL-C) 
(6,39,174), lipoprotein(a) (175), and 
interleukin-6 (176).

The potential limitations of 
Mendelian randomization analyses 
include: the need for very large 
sample sizes, because most 
genotypes have only modest effects 
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on concentrations of biomarkers; 
the scope for residual confounding 
by unrecognized pleiotropic effects 
of genotypes; and the potential 
obscuring of causal associations by 
processes related to developmental 
adaptation (“canalization”) 
(171,172,177,178). Furthermore, ideal 
Mendelian randomization analyses 
should probably involve information 
on genotypes, biomarker levels, 
and CHD status derived from the 
same individuals in a single very 
large prospective study (which for 
clinical CHD outcomes may require 
upwards of 20 000 incident CHD 
cases). In the current absence of any 
such studies, however, it has been 
necessary to combine information 
from several different studies; 
only relatively few of which may 
involve concomitant assessment 
of genotype, biomarkers, and 
CHD status (indeed, in the case 
of fibrinogen, studies focusing on 
biomarker–CHD and gene–CHD 
associations have largely been non-
overlapping). A possible limitation 
of such analyses is, of course, the 
increased scope for heterogeneity 
and the need for assumptions 
about similar effects across 
different populations and subgroups 
(171,172,177,178).

Risk prediction algorithms

Several risk prediction algorithms 
have been proposed to help stratify 
risk of cardiovascular disease in 
general Western populations, such 
as Framingham (179–181), PROCAM 
(69), SCORE (182), Reynolds (183) 
and QRISK (184,185) (Table 20.6). 
These algorithms each involve a 
core set of the same established 
risk factors (i.e. age, sex, smoking, 
blood pressure, total cholesterol), 
but differ in their inclusion of various 
other characteristics, such as HDL-C 
(in Framingham), triglycerides (in 
PROCAM only), CRP (in Reynolds 
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only), and body mass index or 
markers of socioeconomic status 
(in QRISK only). Other authorities 
recommend measurement of 
markers of glycemic status (e.g. 
fasting or post-load glucose levels, 
glycosylated haemoglobin (186–
190)), and novel biomarkers such as 
Lp-PLA2, as adjuncts to established 
risk factors for the stratification 
of cardiovascular disease risk 
(191,192).

Such divergent recommendations 
by scientific and professional groups 
stem partly from differences in 
methodological approaches and 
partly from limitations in available 
epidemiological data. Although 
many published prospective studies 
have commented on the potential 

value of particular markers in risk 
prediction, they have often reported 
on measures of association only (e.g. 
odds ratios, hazard ratios), which 
do not directly address the issue of 
the utility of a marker in prediction 
or stratification. Furthermore, even 
studies that have involved statistics 
relevant to the assessment of risk 
prediction have emphasized different 
metrics, including measures of 
discrimination (e.g. the measure D 
(193) and the C index (194,195), with 
the latter related to the area under 
the receiver operating characteristic 
curve), and reclassification methods 
that aim to summarize the potential 
of a marker to reassign individuals 
into more appropriate risk groups 
(196). Each of these approaches 

may impart somewhat different 
information (197). As recommended 
by a 2006 workshop report by the 
US National Heart Lung and Blood 
Institute (http://www.nhlbi.nih.gov/
meetings/workshops/crp/ report.
htm), further work is needed to 
compare and contrast the strengths 
and limitations of each of these 
approaches and to incorporate heath 
economic analyses to help judge the 
value of any such measurements 
in the light of potential additional 
costs and the consequences of any 
therapy (198).

Limitations in available data 
relate principally to the assessment 
of novel markers in comparative 
isolation from one another. For 
example, relatively few studies have 

Figure 20.9. Meta-analysis of 20 studies of predominantly European descent showing an overall null association of fibrinogen 
genotypes with risk of coronary disease (169). Reproduced with permission of Oxford University Press.

Meta-analysis of studies of coronary disease and -148C/T or - 455G/A polymorphisms in the beta-fibrinogen gene. These two polymorphisms are in complete linkage 
disequilibrium, so knowledge of genotype at one locus predicts genotype at the other locus with certainty. For each study, the risk ratio for coronary disease per higher-fibrinogen 
allele is represented by a square (area proportional to the information content of the study), with a horizontal line denoting the 99% confidence intervals (CI). The overall risk ratio 
and 95% CI is represented by a diamond, with values alongside. 
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assessed all of the risk markers 
named in the first paragraph of this 
section. This fragmentary approach 
has prevented direct comparisons 
of the relative merits of the different 
risk markers, a problem that has 
been compounded by development 
and evaluation of risk scores in 
studies of relatively moderate 
power. Advances in genetic 
epidemiology have encouraged 
recent suggestions that information 
on several genetic loci usefully add 
to conventional risk scores. But, as 
these analyses have so far been 
based on just several hundred CHD 
cases, much larger analyses in 
prospective studies are required to 
evaluate reliably any new risk scores 
that incorporate novel genetic loci 
(39,174) or lifestyle factors (199).

Joint effects of genetic and 
lifestyle factors

It has been proposed that reliable 
knowledge of the potential joint 
effect of genetic and lifestyle factors 
should contribute importantly to 

understanding the etiology of 
CHD and development of disease 
prevention strategies, such as 
optimum targeting of existing 
interventions (particularly if 
they are intensive or costly) and 
approaches for modifying the 
effects of deleterious genes by 
avoiding harmful lifestyle exposures 
(200–203). Although there is some 
evidence that the incidence of CHD 
is jointly determined by nature and 
nurture (200–203), the quantitative 
interplay of specific genetic and 
lifestyle components remains poorly 
understood. Assessment of genetic, 
biochemical and lifestyle factors 
has hitherto typically taken place 
in comparative isolation from one 
another, rather than in an integrated 
way, due to lack of sufficiently large 
prospective studies with appropriate 
and concomitant information on 
each of these exposure categories. 
Figure 20.10 indicates that at least 
10 000 CHD cases and a similar 
number of controls may be required 
for reliable assessment of such 
joint effects in the presence of 

relatively common genetic variants. 
Data on apolipoprotein E (apoE) 
genotypes, which are among the 
best studied genetic variants in 
CHD, illustrate current limitations 
in the understanding of joint 
effects. Although it is now clear 
that there are approximately linear 
relationships of apoE genotypes 
with LDL-C concentrations and 
with CHD risk (Cf. Figure 20.1) (28), 
it remains unknown whether the 
impact of apoE genotypes differs 
considerably in different individuals, 
such as overweight people (204), 
those with higher lipid levels 
(205), or those who consume high 
quantities of fat (206). A prospective 
study involving a few hundred CHD 
cases has proposed that there are 
important interactions on CHD risk 
of the ε4 allele of the apoE gene and 
cigarette smoking (207), putatively 
mediated through a direct effect of 
LDL oxidation (208), but this was not 
confirmed by a large retrospective 
study (209). Data are even sparser 
in relation to proposed joint effects 
on CHD risk of apoE variants with 

Figure 20.10. Sample size estimates for studies of joint effects between genetic and environmental factors and coronary risk 
(interaction effect, Rge)

Assumptions include: population coronary heart disease (CHD) risk = 5%; additive genetic model (odds ratio = 1.2 per allele increase); minor allele frequency = 0.05; environmental 
exposure normally distributed (odds ratio = 1.25 per standard deviation increase); type 1 error = 0.01; 1 case per control. Source: Quanto version 1.2, 2006
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dietary cholesterol (210), lipoprotein 
lipase gene variants and saturated 
fatty acid consumption (211), 
apolipoprotein AI gene variants and 
dietary fat consumption (203), and 
hepatic lipase gene variants and fat 
consumption (212).

Current nutritional guidelines, 
such as those of the Department 
of Health and the Food Standards 
Agency in the United Kingdom (213), 
encourage reduction in consumption 
of saturated fat, an increase in 
consumption of omega-3 fatty acids 
from fish oil or plant sources, and 
consumption of a diet high in fruits 
and vegetables. Yet evidence from 
prospective epidemiological studies 
of CHD (and dietary intervention 
trials) remains largely inconclusive 
(214,215). For example, one of the 
largest available studies, conducted 
in a cohort of American nurses, 
recently reported that diets higher 
in total and saturated fat were not 
significantly associated with CHD 
risk (216), and that there were 
only weak inverse associations of 
CHD risk with fruit and vegetable 
consumption (217). Interpretation of 
these findings has, however, been 
limited by relatively wide confidence 
intervals around estimates and by 
constraints of studying populations 
(such as health professionals) 
who may have comparatively 
homogeneous dietary habits. These 
limitations are compounded by 
likely measurement error in self-
reported diet (218–220). Similar 
uncertainties apply to the emerging 
evidence on other dietary factors, 
such as foods (e.g. meat and dairy 
products), minerals (e.g. calcium) 
and nutrients (e.g. the optimum 
balance of fatty acids) (221–223). 
These uncertainties underscore 
the need for analyses of dietary 
factors in larger prospective studies 
with concomitant genetic and 
biomarker information and involving 
populations with considerable 

heterogeneity in dietary habits to 
enhance study generalizability and 
sensitivity (e.g. such as different 
populations across Europe), use of 
calibration studies to help optimize 
data from dietary questionnaires, 
and measurement of nutritional 
biomarkers to supplement self-
reported diet. Similar considerations 
apply to studies of established 
lifestyle risk factors (e.g. physical 
activity and consumption of 
tobacco and alcohol), for which new 
evidence is needed to evaluate joint 
effects on CHD with genetic factors, 
to characterize important details 
of relationships (e.g. the shape of 
any dose–response relationships 
(224) and the magnitude of any 
associations in clinically relevant 
sungroups (225)), and to help better 
understand how lifestyle choices 
might mediate disease risk (226).

Maturation of prospective 
bioresources and discovery 
methods

The worldwide trend in recent 
decades towards the establishment of 
large epidemiological bioresources, 
notably those with prospective 
study designs and appropriate 
assessment of lifestyle factors, 
should facilitate the study of joint 
gene–lifestyle effects in CHD during 
the coming years. For example, the 
European Prospective Investigation 
of Diet in Cancer (EPIC) resource 
has recorded detailed lifestyle 
(notably, dietary) characteristics and 
stored biological samples for about 
400 000 mostly middle-aged adults 
from 10 countries (227–229). By 
2010, more than five million person-
years at risk had accrued in this 
cohort, yielding over 15 000 incident 
CHD cases (228). EPIC-Heart, the 
cardiovascular component of EPIC, 
plans detailed studies of the separate 
and combined effects of genetic and 
lifestyle factors (such as on a case–

cohort basis), including study of 
biomarkers in potentially causative 
intermediate pathways (229). Similar 
numbers of incident CHD cases 
will accrue from other large blood-
based prospective studies as they 
mature and record several million-
years of follow-up. For example, 
the Mexico City Prospective Study 
had by 2006 recruited about 
150  000 middle-aged adults (230). 
The 500 000 participant Kadoorie 
prospective study in China, which 
involves assessment of many 
lifestyle characteristics and storage 
of biological samples, completed 
recruitment in 2008 (231). The 
500 000 participant United 
Kingdom Biobank Study should 
be fully recruited by 2011 (232). 
Several further initiatives in CHD 
of comparable scale are planned, 
or have been started, in Australia, 
Canada, northern Europe and the 
USA (233).

The emergence of such 
bioresources has also encouraged 
the pursuit of large-scale “systems 
biology” studies in CHD (234–236). 
Such approaches aim to overlay and 
analyse multiple complementary 
layers of dense biological data (e.g. 
genomics (54,237), transcriptomics 
(238–240), and metabolomics (241)) 
from the same participants to help 
elucidate causal pathways. These 
methods are generally at relatively 
early stages in their development, 
but they should become increasingly 
valuable as laboratory and 
bioinformatics approaches mature.

Conclusions

Approaches that enable study of 
the separate and combined effects 
of genetic, biochemical and lifestyle 
factors should yield new scientific 
insights that contribute importantly 
to the prediction and prevention of 
CHD.
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Summary

Work-related respiratory diseases 
affect people in every industrial 
sector, constituting approximately 
60% of all disease and injury 
mortality and 70% of all occupational 
disease mortality. There are two 
basic types: interstitial lung diseases, 
that is the pneumoconioses 
(asbestosis, byssinosis, chronic 
beryllium disease, coal workers’ 
pneumoconiosis (CWP), silicosis, 
flock workers’ lung, and farmers’ 
lung disease), and airways diseases, 
such as work-related or exacerbated 
asthma, chronic obstructive 
pulmonary disease and bronchiolitis 
obliterans (a disease that was 
recognized in the production of 
certain foods only 10 years ago). 
Common factors in the development 
of these diseases are exposures to 

dusts, metals, allergens and other 
toxins, which frequently cause 
oxidative damage. In response, the 
body reacts by activating primary 
immune response genes (i.e. 
cytokines that often lead to further 
oxidative damage), growth factors 
and tissue remodelling proteins. 
Frequently, complex imbalances in 
these processes contribute to the 
development of disease. For example, 
tissue matrix metalloproteases 
can cause the degradation of 
tissue, as in the development 
of CWP small profusions, but 
usually overexpression of matrix 
metalloproteases is controlled by 
serum protein inhibitors. Thus, 
disruption of such a balance can 
lead to adverse tissue damage. 
Susceptibility to these types of lung 

disease has been investigated largely 
through candidate gene studies, 
which have been characteristically 
small, often providing findings that 
have been difficult to corroborate. 
An important exception to this has 
been the finding that the HLA-
DPB1E69 allele is closely associated 
with chronic beryllium disease 
and beryllium sensitivity. Although 
chronic beryllium disease is only 
caused by exposure to beryllium, 
inheritance of HLA-DPB1E69 carries 
an increased risk of between two- 
and 30-fold in beryllium exposed 
workers. Most, if not all, of these 
occupationally related diseases 
are preventable; therefore, it is 
disturbing that rates of CWP, for 
example, are again increasing in the 
United States in the 21st century.
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Introduction

Excluding lung cancer, which is 
thought to account for 10 000–12 
000 occupationally-related deaths 
annually in the United States 
(1), and infectious diseases like 
tuberculosis and histoplasmosis 
which may be work-related, several 
work-related lung diseases have 
been identified. These have been 
broadly divided into two types: 
interstitial lung diseases that are 
typified by the pneumoconioses 
(asbestosis, byssinosis, chronic 
beryllium disease, coal workers’ 
pneumoconiosis, silicosis, flock 
workers’ lung and farmers’ lung 
disease), and airways diseases 
like asthma, chronic obstructive 
pulmonary disease (COPD) and 
bronchiolitis obliterans. Work-
related respiratory diseases are a 
problem of major magnitude. They 
cut across all industrial sectors, 
constituting ~60% of all disease 
and injury mortality and ~70% of all 
occupational disease mortality (2).

Even though the capability has 
existed for many years to prevent 
pneumoconioses (e.g. silicosis, coal 
workers’ pneumoconiosis (CWP) 
and asbestosis), they still cause or 
contribute to more than 2500 deaths 
per year in the United States (3). 
The threat of other interstitial lung 
diseases, such as chronic beryllium 
disease in beryllium metal extraction, 
production and processing, or 
hypersensitivity pneumonitis in 
those exposed to metal working 
fluids, are also important concerns 
in specific industries (4,5).

Airways diseases, such as 
asthma and COPD, are important 
occupational problems. In 2004, 
11.4 million adults (aged ≥ 18) in 
the USA were estimated to have 
COPD (6). In the interval from 
1997–1999, an estimated 7.4 million 
people in the United States (aged ≥ 
15) reported an episode of asthma 

or asthma attack in the previous 
12 months (7). A 2003 statement 
by the American Thoracic Society 
estimated that 15% of COPD and 
adult asthma cases were work-
related, with a conservative annual 
estimated cost of nearly $7 billion in 
the USA alone (8).

An emerging area that thus far 
has not been explored in terms 
of molecular epidemiology is that 
of engineered nanotechnology. 
Nanoparticles and nanomaterials 
have diverse applications (e.g. drug 
delivery, electronics and cosmetics); 
however, their large surface area 
to volume and respirable nature 
suggest that they may pose a 
risk of lung disease. Studies in 
rodents have shown the potential 
of nanomaterials to cause oxidative 
stress, inflammation, and fibrosis 
(9).

In the last three decades, with 
the expansion of the emerging field 
of molecular epidemiology, several 
genetic susceptibility factors for 
work-related lung diseases and 
biomarkers of exposure and effect 
have been recognized. The majority 
of these findings took clues from 
physiological or pathobiological 
observations, and in some cases 
genetic linkage analysis, and applied 
them to candidate gene investigations 
in molecular epidemiological 
association studies. Though these 
types of studies may help to identify 
high risk subpopulations, their 
current utility is most valuable in 
understanding disease mechanisms 
and developing better laboratory 
models of disease.

Interstitial lung diseases

Asbestosis, asbestos-
related lung cancer and 
mesothelioma

Several mineral fibres, including 
chrysotile, amosite, crocidolite, 

tremolite, actinolite and anthophyllite, 
are collectively known as asbestos. 
Asbestos mineral fibres are flame- 
and heat resistant, pliable, strong, 
refractory to corrosive chemicals, 
and provide insulation. Therefore 
asbestos has been used as a 
building material to insulate buildings 
from heat and protect against fire 
(it has been especially important 
in the shipbuilding industry), in 
fabric to make protective suits, as a 
brake liner (e.g. in automobiles and 
railroad rolling stock) and for engine 
gaskets, and in making filters (e.g. in 
the chemical industry).

Although known and used for 
its fire resistant properties as early 
as 3000 B.C., asbestos started 
to become widely used in the 
mid- to late-nineteenth century 
(10). Asbestos-associated fibrosis 
(asbestosis) was described in the 
1920s, and mesothelioma (a very 
rare cancer of the mesothelium, 
an epithelial lining of the serous 
cavities: thorax and peritoneum) and 
lung cancer were linked to asbestos 
exposure in the 1960s (11). Thus, 
asbestosis, mesothelioma (almost 
exclusively associated with asbestos 
exposure) and asbestos-associated 
lung cancer are diseases frequently 
found in workers employed or 
formerly employed in construction, 
shipbuilding, mining, manufacturing 
and heat and frost insulation.

Fibrous particles generally have 
a large length to diameter aspect; 
asbestos fibres are generally 
considered to have a length to 
diameter ratio of at least 3:1. 
Respirable fibrous particles have 
an effective aerodynamic diameter 
that more closely resembles particle 
diameter than length. Thus, long, 
narrow fibres can reach the alveoli. 
Fibrous asbestos particles can exert 
their biological effects in several 
ways. Physiological attempts by 
the body to remove asbestos 
fibres from the deep lung may 
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result in “frustrated phagocytosis” 
by macrophages that engulf long, 
narrow fibres. These macrophages 
then disgorge digestive enzymes 
and other cytological materials 
potentially leading to inflammation, 
fibrosis and malignancy. It has also 
been proposed that the mineral 
fibres themselves can promote 
oxidative damage provoked by 
Fenton chemistry and the release of 
iron in the form of Fe3+ (12).

Several approaches have been 
taken to assess potential biomarkers 
of asbestosis. A major pathway is 
thought to be mediated through 
macromolecular and chromosomal 
damage resulting from reactive 
oxygen species (ROS) (e.g. O2

−, 
HO•, ONOO, NO2, NO3) formed in 
the processes described above (13). 
Because fibrosis and inflammation 
are major components of the 
pathobiology of asbestosis, various 
procollagen genes and cytokine 
genes have been suggested as 
potential disease susceptibility 
markers. In addition, because 
asbestos exposure is a risk factor 
for lung cancer and mesothelioma, 
various tumour markers have been 
investigated.

Carboxyterminal propeptide 
of type 1 procollagen (PICP) is a 
marker for collagen synthesis; it 
is also associated with tissue and 
organ fibrosis (14). In this context it 
has been investigated as a marker 
for asbestosis. Levels of PICP in 
bronchoalveolar lavage fluid (BALF) 
and epithelial lining fluid (ELF) 
were found to be highest among 
asbestosis patients (n = 5), with 
ranges of greater than 7 µl/L to 
approximately 12 µl/L (mean = 9.8 
± 1.8 µl/L) and approximately 300–
800 µl/L (mean = 489 ± 209) in BALF 
and ELF, respectively. Among 25 
asbestos-exposed patients, pleural 
plaques levels were in the range of 
zero to less than 5 µl/L (mean = 0.6 ± 
1.3 µl/L), and zero to 200 µl/L (mean 

= 51 ± 23 µl/L) in BALF and ELF, 
respectively. Among 12 persons with 
no X-ray evidence of abnormalities, 
only two were positive, and both of 
these had levels of PICP of less than 
3 µl/L and 200 µl/L in BALF and ELF, 
respectively. Data for N-terminal 
propeptide of type 3 procollagen 
did not support it as a marker of 
asbestosis. These results are 
supportive of PICP as a biomarker 
for asbestosis; however, PICP has 
been associated with several other 
fibrotic and chronic inflammatory 
conditions (e.g. idiopathic fibrosing 
alveolitis (15), sarcoidosis (16) and 
myocardial fibrosis (17)). PICP has 
also been implicated in bone growth 
and bone metastasis (18). Thus, 
whereas PICP appears to be a good 
biomarker of asbestosis, it is not 
entirely specific.

Leukocyte glycoproteins (cluster 
of differentiation) CD66b and CD69 
are antigens that signify leukocyte 
activation or hypersensitivity. 
Elevated levels of interleukins 
indicate increased inflammatory 
activity. Asbestos-exposed workers 
(n = 61 asbestos cement factory) 
and two groups of non-asbestos-
exposed control workers (n = 48 
“town” and n = 21 “factory”) were 
evaluated for expression of multiple 
eosinophilic leukocyte cluster of 
differentiation marker expression 
by flow cytometry, as well as serum 
interleukin (IL) levels by immunoassay 
(19). A statistically significantly 
increased expression of markers 
CD69 and CD66b on eosinophils 
was found in blood samples 
collected from asbestos exposed 
workers. In addition, serum levels 
of the proinflammatory cytokines 
IL6 and IL8 were statistically 
significantly elevated (20). Although 
these findings reached statistical 
significance, they did not support the 
use of these biomarkers as robust 
screening tests. Furthermore, others 
have shown that CD69 can be 

induced in human peripheral blood 
mononuclear cells in vivo by silica, 
but not by chrysotile asbestos (20).

Asbestosis progression has been 
monitored by X-ray analysis; the 
radiographic changes (International 
Labour Office (ILO) classified) 
over 2–10 years were correlated 
with a large series of biomarkers: 
adenosine deaminase, α-1-
antitrypsin, angiotensin-converting 
enzyme (ACE), β-2-microglobulin, 
β - N - a c e t y l g l u c o s a m i n i d a s e , 
carcinoembryonic antigen (CEA), 
complement components (C3 and 
C4), erythrocyte sedimentation 
rate (ESR), ferritin, fibronectin, 
and lysozyme (21). Radiographic 
changes, which ranged from ILO 1/1 
to ILO 2/2 (at an average of 0.4 minor 
ILO categories per year), were seen 
in 32 of 85 patients (OR = 1.54; 95% 
CI = 0.96–2.47). The only biomarkers 
that correlated with radiographic 
changes were fibronectin, ESR and 
ACE. The ranges of biomarker levels 
displayed overlap between the patient 
groups, and while the differences 
were statistically significant between 
those measured in patients who 
progressed compared to those 
who did not, they were relatively 
unimpressive (fibronectin OR = 1.01; 
95% CI = 1.00–1.02; ESR OR = 1.05; 
95% CI = 1.00–1.10; ACE OR = 1.10; 
95% CI = 1.00–1.20) (21).

An important tumour marker that 
has been investigated in asbestos 
exposed groups is p53. Altered 
expression or overexpression of p53 
can be detected in various ways: 
p53 mutations can be detected in 
DNA from tumour tissue (22) or as 
exfoliated material in blood before 
a tumour is clinically detected (23), 
p53 protein can be detected in blood 
if it is expressed at high enough 
levels, and p53 autoantibodies 
can be detected. In a study of 115 
compensable asbestosis cases, 
blood samples were drawn from 
103 cases between 1980 and 
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1988. Autoantibodies for p53 were 
assayed using an enzyme-linked 
immunosorbant assay (ELISA); 17 
individuals were found to be positive. 
This cohort was followed for 20 
years, and cancers developed in 
49 people, among whom 13 were 
seropositive for p53 autoantibodies 
(11 lung cancers, one mesothelioma 
and one lymphoma). The hazard 
ratio (HR) for cancer development 
in seropositive p53 autoantibody 
asbestosis patients was determined 
to be statistically significant (HR 
= 5.5; 95% CI = 2.8–10.9) (24). 
Similar results have been obtained 
by others (25). These results, plus 
data that showed that both tumour 
and histologically normal tissue may 
test positive for p53 expression, 
support the idea that p53 changes 
are an early event in asbestos-
associated lung cancer (25). Several 
reports have attempted to establish 
links between p53 expression 
as measured in tumour tissue or 
serum, and p53 mutations in DNA 
and autoantibodies (24,26,27). 
However, caution is recommended in 
consideration of such associations, 
as p53 is both a tumour suppressor 
gene, and when mutated, an 
oncogene. Mechanisms that lead 
to detectable expression of p53 can 
result from mutation or stabilization 
of wild-type p53. Mechanisms that 
lead to absence of detectable p53 
are normal expression of wild-type 
p53, and deletion of chromosome 
p17.13, which may be in the presence 
or absence of a p53 mutation.

A panel of markers was 
evaluated as a “fuzzy classifier” 
in both lung cancer patients (n = 
216) and asbestosis patients (n = 
76). This panel consisted of CEA, 
neuron specific enolase, squamous 
cell carcinoma antigen, cytokeratin 
fragment and C-reactive protein. This 
panel of markers had 95% specificity 

in distinguishing cancer cases from 
asbestosis patients; they were 
present in 70–98% (overall 92%) 
of cancer patients, but only 1.3% 
(1/76) of asbestosis cases (28,29). 
Other studies of asbestosis cases 
have found expression of CEA, 
but this appears to be a preclinical 
marker of asbestos-related lung 
cancer and mesothelioma (30,31). 
Similarly, soluble mesothelin-related 
protein was found to be higher in 
mesothelioma patients (n = 24) 
than asbestosis patients (n = 33) or 
healthy controls (n = 109; P < 0.05) 
(32).

Osteopontin is a glycoprotein 
expressed in several malignancies 
(e.g. lung, gastric, colorectal, breast 
and ovarian, as well as mesothelioma 
and melanoma) (33,34). Osteopontin 
interacts with the integrin receptor 
and the CD44 receptor to mediate 
cell matrix interactions and cell 
signalling. Although it has been 
identified as a potentially valuable 
serum marker for mesothelioma, its 
expression appears to be associated 
with asbestos exposure. An 
ELISA test was used to determine 
serum osteopontin levels in 76 
mesothelioma patients, 69 patients 
with asbestos-related non-malignant 
pulmonary disease, and 45 controls 
(no known asbestos exposure). The 
lowest serum osteopontin levels 
were found in the control group (20 
± 4 ng/ml) and the highest levels in 
mesothelioma patients (133 ± 10 
ng/ml); the levels in the asbestos-
related non-malignant pulmonary 
disease patient group were 30 ± 
3 ng/ml. Interestingly, osteopontin 
levels in this last group increased 
with the onset of fibrosis. In addition, 
levels of osteopontin were higher in 
those study participants with greater 
duration of asbestos exposure (0–9 
years, 16 ng/ml versus ≥10 years 34 
ng/ml; P = 0.02) (33).

In summary, since asbestosis 
itself is a risk factor for lung 
cancer and pleural mesothelioma 
it is difficult to disentangle specific 
biomarkers of asbestosis from 
biomarkers of asbestos-related 
lung cancer and mesothelioma. In 
addition, more robust biomarkers 
of asbestosis tend to be biomarkers 
of other conditions where the 
underlying pathobiology involves 
chronic inflammation and fibrosis.

Berylliosis

The elemental metal beryllium was 
discovered in 1798, isolated in 1828, 
and became an important strategic 
commodity in 1923 when a patent 
for a copper-aluminum-beryllium 
alloy was filed (35). Beryllium has a 
wide range of interesting properties 
that have made this metal important 
in the manufacture of a host of 
products. It is light, with an atomic 
weight of 9.012, strong, and has 
a high melting point (1560°K). It is 
a neutron moderator and is X-ray 
transparent. It is non-sparking, 
corrosion resistant, and acts as an 
anti-galling agent. It has excellent 
heat and electrical conductivity, 
formability, castability and 
dimensional stability. With these 
properties it is invaluable in the 
aerospace, telecommunications, 
biomedical, defence and automotive 
industries (36).1 

In the 1940s, exposure to 
beryllium in the fluorescent 
lamp industry was recognized 
as a respiratory hazard with the 
emergence of acute chemical 
pneumonitis (acute beryllium 
disease (ABD)) (37,38). In 
addition, extraction and primary 
production of beryllium metal was 
also associated with dermatitis, 
reversible pneumonitis and lung 
granulomas. In 1949, the Atomic 

 1 This reference contains a more detailed listing of specific applications. See also: http://www.berylliumproducts.com/
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Energy Commission introduced 
an occupational exposure limit 
for beryllium of 2 µg/m3 and ABD 
disappeared. However, chronic 
beryllium disease (CBD), which is 
characterized by a cell-mediated 
immunologic (type 2) hypersensitivity 
and lung granulomas, remains 
problematic today (4).

Immunological sensitization 
to beryllium, which is generally 
considered to precede CBD, was 
originally recognized in the 1950s 
when beryllium salts were applied 
to the skin with a patch (39). Patch 
testing is not considered to be a 
viable procedure for diagnosis of 
beryllium sensitization, since it 
requires beryllium exposure itself, 
albeit through the skin (40,41). In 
1987, an in vitro test for beryllium 
sensitization (BeS) was developed in 
which peripheral blood lymphocytes 
from beryllium sensitized individuals 
displayed beryllium specific 
proliferation (42). This beryllium 
lymphocyte proliferation test 
(BeLPT), though not perfect (43), 
has proved to be an important tool 
for occupational health screening 
and medical surveillance in the 
beryllium industry (44).

Latency in CBD is obscure; 
workers who are found to be 
positive for BeS are referred 
for bronchoalveolar lavage, to 
seek evidence of sensitized 
T-lymphocytes in the lung, and/
or lung biopsy, to seek evidence of 
granulomas formation (4). Workers 
found to be BeS, through medical 
surveillance or screening, often 
have asymptomatic CBD. In other 
cases of BeS, clinical CBD has 
only developed decades later (4). 
These issues concerning latency 
have provoked debate over the 
value of using the BeLPT in 
medical surveillance, because early 
diagnosis provides no information 
on which to base treatment options. 
Moreover, there is no evidence 

to support the notion that a BeS 
worker can avoid CBD by leaving 
the industry, and having a positive 
BeLPT absent CBD might be an 
unwelcome source of anxiety.

The benefits of medical 
surveillance using the BeLPT are 
that evidence of BeS can support 
claims under the Energy Employees 
Occupational Illness Compensation 
Program Act of 2000 (20 CFR Part 
30), help set priorities for disease 
prevention, and provide confirmation 
of the efficacy of intervention (4,45).

Together with the BeLPT, a 
genetic marker of BeS and CBD 
risk have also been described. In 
1989, the BeLPT was used to show 
that the proliferative response in 
peripheral blood lymphocytes from 
a BeS individual could be inhibited 
in the presence of antibodies elicited 
against the major histocompatibility 
complex two molecule, HLA-DPβ1. 
This finding led to seven molecular 
epidemiologic association studies 
that unequivocally demonstrated 
that the genetic marker HLA-
DPβ1E69 (a DNA sequence that 
codes for a glutamic acid residue 
at position 69 of the β chain of the 
HLA-DP molecule, an antigen 
presenting entity located on the 
surface of T-cells, macrophages, 
and Langerhans cells) is a risk factor 
for BeS and CBD (46–53).

The identification of a genetic 
marker closely associated with risk/
susceptibility to CBD in the presence 
of occupational exposure raises 
serious ethical, legal and social 
issues. Indeed, a major United States 
beryllium producer briefly used an 
anonymous toll-free telephone line 
to introduce prospective employees 
to the possibility of undergoing an 
industry-sponsored genetic test for 
HLA-DPβ1E69 and pre-employment 
counselling. This programme 
was discontinued because of a 
hiring freeze and was not revived. 
However, it is reasonable to note 

that it has been shown that the 
positive predictive value (PPV) 
of HLA-DPβ1E69 is poor (around 
10%), because the frequency of 
this marker in the population is high 
(~0.2 for the allele and 0.3–0.5 for 
carrier frequency) (54).

More recent refinements to these 
studies have provided evidence 
that not all HLA-DPβ1E69 alleles 
are equal with respect to CBD 
susceptibility. The HLA-DPβ1 gene 
represents a family of at least 150 
alleles having more than 40 single 
nucleotide polymorphisms (SNPs) 
in the hypervariable region (55). 
Consequently, there are 50 HLA-
DPβ1E69 alleles, 5 HLA-DPβ1R69 
alleles and 95 HLA-DPβ1K69 alleles. 
Among HLA-DPβ1E69 alleles, there 
appears to be a hierarchy of risk 
which ranges from approximately 
two- to 20-fold (36,56–58). Most 
recently these data have been used 
to shape the design of a transgenic 
mouse model. Moreover, scrutiny of 
specific genotypes is likely to reveal 
genetic biomarkers that have PPVs 
close to unity.

Coal workers’ 
pneumoconiosis (black lung 
disease)

Coal workers’ pneumoconiosis 
(CWP) is an interstitial lung disease 
that is caused by over-exposure to 
coal mine dust. In the United States, 
before the Coal Mine Health and 
Safety Act of 1969 (42 CFR Part 
37), coal mine dust levels were 
as high as six to eight milligrams 
per cubic metre. The Act dictated 
that dust levels be capped at two 
milligrams per cubic metre. At that 
time, between 30 and 35% of miners 
developed CWP. As coal mine dust 
levels dropped to reported levels 
in the range of one milligram per 
cubic metre, the percentage of 
miners developing CWP dropped 
to approximately 5%. Diagnosis of 
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CWP is made by the observation 
of radiographic changes according 
to the ILO’s classification system. 
In simple pneumoconiosis these 
changes are described as small 
opacities (graded, with increasing 
progression, as 1/0, 1/1, 1/2, 2/1, 
2/2, 2/3, 3/2, 3/3; where 0/0 or 0/- 
reflects a normal x-radiogram, and 
0/1 is no disease but stage 1 was 
considered), and in progressive 
massive fibrosis (PMF or macular 
CWP) these are described as large 
opacities (graded, with increasing 
progression, as A, B, C). CWP, a 
chronic inflammatory and fibrotic 
disease, is characterized by 
shortness of breath, cough, and 
deterioration of pulmonary function, 
all of which become progressively 
worse with increasing radiographic 
stage (59).

There is some blurring of 
distinction between CWP and silicosis 
in that both show characteristic small 
opacities on X-ray examination, and 
coal mine dust is often contaminated 
with crystalline silica, which is the 
more toxic component. It appears 
that oxygen free radical damage 
can be attributed to coal mine dust 
exposure from both ferrous iron, 
in the absence of silica, and silica 
itself (60,61). Apart from drawing 
a distinction between these two 
diseases, another challenge that 
faces the epidemiology of CWP is 
exposure assessment. One study 
that considered five strategies for 
exposure assessment found that 
using job and mine led to the most 
homogeneous exposure categories 
and most contrast between groups, 
although that method was the least 
precise (62).

It has been possible to determine 
measures of inflammatory response 
among miners (e.g. alveolar 
macrophages), polymorphonuclear 
leukocytes (PMNs), and the 
antioxidant superoxide dismutase 
(SOD). One small study of 20 coal 

miners and 16 control subjects (non-
miners) was able to demonstrate 
a correlation between cumulative 
exposure to quartz, estimated from 
work histories and mine air sampling 
data, and PMNs in bronchoalveolar 
lavage (P < 0.0001), SOD (P < 
0.01), and radiographic category 
(P < 0.0001) (63). However, a SOD 
promoter region polymorphism 
(SOD9Val/Ala) was not associated 
with progression to PMF (n = 700 
National Coal Workers Autopsy 
Study (NCWAS)) (64).

It has been shown that TNF-α, 
pulmonary surfactant protein A 
and phospholipids are increased 
in bronchoalveolar lavage fluids 
in response to coal mine dust, that 
TNF-α levels fall in response to 
cessation of exposure, and that 
these biomarkers increase with 
increasing radiographic evidence 
of disease progression (65). 
However, here as in most molecular 
epidemiologic studies of biomarkers 
of exposure and effect of coal mine 
dust exposures, the number of 
participants was small (n = 48).

Remodeling of extracellular 
matrix is also a critical event in the 
progression of fibrotic diseases. 
A small study of coal miners from 
Zonguldak, an old coal port on 
the Turkish Black Sea coast, 
found that serum pro-matrix 
metalloproteinase-3 (proMMP-3, 
also known as Stromelysin 1) was 
elevated in CWP (n = 44 CWP, 24 
ILO 0/0, 0/1, and 17 surface worker 
controls) (61). In addition, among 
the CWP group, increasing serum 
proMMP-3 levels were detected 
with disease progression or severity 
measured x-radiographically (P < 
0.01).

Observations that coal mine dust 
exposure can induce macrophages 
and monocytes to secrete cytokines, 
chemokines, and growth factors 
in vivo and in vitro, has led to 
the development of hypotheses 

implicating polymorphisms in 
members of these gene types in 
susceptibility to CWP and disease 
progression (66). The promoter 
region TNF-α G/A transversion 
polymorphism at positions −238 
and −308, with respect to the 
ATG translation signal, has been 
investigated in numerous studies of 
diseases that involve inflammation 
and fibrosis (67). In a study of 
78 coal miners and 56 controls 
(healthy members of a non-mining 
Belgian population), evidence of 
an association between the minor 
variant (A) of the −308 polymorphism 
and development of CWP was 
obtained by polymerase chain 
reaction–restriction fragment length 
polymorphism (PCR-RFLP) (NcoI) 
(68). Miners inheriting a TNF-α-308 
A-variant (or 2) allele were three 
times more likely to develop CWP 
(OR = 3.0; 95% CI = 1.0–9.0, χ2 = 4.1, 
P < 0.05). In this study there was no 
association between inheritance of 
the minor variant (A or 2-allele) of the 
TNF-α-238 polymorphism and CWP. 
When peripheral blood monocytes 
from 66 retired miners were exposed 
to coal mine dust in vitro, levels of 
TNF-α release were stimulated five- 
to 10-fold irrespective of genotype.

Eighty CWP patients and 54 
healthy volunteers were recruited at 
a hospital in the Republic of Korea. 
Peripheral blood mononuclear 
cells were harvested to provide 
DNA, and a segment of the TNF-α 
promoter region −331 to +14 was 
amplified to determine the identity of 
the TNF-α-308 G/A polymorphism 
(NcoI digestion) (69). The data 
showed that the frequency of the 
minor variant (A or TNF2) was 
over-represented in CWP patients 
by more than two-fold (F = 0.102 
versus 0.206; χ2 = 5.121, P = 0.024). 
Moreover, when simple CWP (n = 
41) was compared to cases of PMF 
(n = 39), the frequency of the minor 
variant was higher in PMF than 
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in simple CWP (F = 0.282 versus 
0.134; χ2 = 5.517, P = 0.019).

A study of 259 unrelated coal 
miners in France investigated an 
association between inheritance 
of the TNF-α-308 A-variant and 
CWP. There were 99 cases of 
CWP (80 active and 19 retired), 
and 152 without x-radiographic 
abnormalities for which genotyping 
data were presented (total n = 
212), but no direct association was 
found (70). However, an interaction 
was observed in coal mine dust 
overexposed miners with disease 
between the TNF-α-308 A-variant 
and erythrocyte glutathione 
peroxidase levels (OR = 2.5; 95% 
CI = 0.7–9.3; n = 61). In the same 
population, genotypes (n = 210) 
were also obtained for the biallelic 
A/G transversion polymorphism 
at nucleotide +252 (intron 1) of the 
lymphotoxin α gene (LTα, formerly 
known as TNF-β). In this case, again 
there was no difference in allelic 
distributions by disease status at the 
inception of the study (LTα A-allele 
frequencies of 0.277 and 0.367, 
and LTα A-homozygosity of 7% and 
13% for radiologically normal and 
CWP groups respectively). However, 
after five years of follow-up, the 
CWP group constituted 33.6% of 
the remaining study population (n 
= 202), an increase of 5%. At that 
time, the LTα A-allele frequencies 
were 0.254 and 0.433, and LTα 
A-homozygosity was 4% and 16% 
for radiologically normal and CWP 
groups, respectively, which were 
borderline significant (P = 0.07).

Among 246 Chinese (124 
CWP patients and 122 controls), 
the frequency of the TNF-α-308 
A-variant was found to be 0.0635 
and 0.0205, respectively (P = 0.036). 
However, when a similar analysis 
was performed for the TNF-α-238 
or the TNF-α-376 polymorphisms, 
no associations were found (71). 
Another study of 674 Chinese (234 

CWP patients and 450 coal worker 
controls) was less conclusive, 
finding no difference between 
CWP and controls (F = 0.1034 
versus 0.1091, respectively), but 
finding an elevated frequency of 
the TNF-α-308 A-variant among 
workers with advanced disease 
(0.2000) (72).

Polymorphisms in the chemokine 
receptor genes CCR5 and CX3CR1 
and interleukin 6 and 18 (IL6, 
IL18) have been implicated in the 
development of CWP (73–75), as has 
the urokinase-plasminogen activator 
PLAU (P141L) (76). Elevated levels 
of serum, urine and bronchioalveolar 
lavage fluid neoptrin, a marker of cell 
mediated immune activation, have 
been reported in both simple CWP 
and PMF (77). In addition, proMMP-3 
was found to be higher in miners with 
more advanced disease (61). In the 
NCWAS, multiple polymorphisms in 
a variety of cytokines, growth factors 
and matrix metalloproteinase genes 
were evaluated for associations with 
PMF (78), but only the polygenotype 
V E G F + 4 0 5 C / I C A M - 1 + 2 4 1 A / I L- 6 -

174G appeared to have a positive 
relationship with disease (OR = 3.4; 
95% CI = 1.3–8.8, n = 700) (78).

Silicosis

Silicosis is a problematic 
occupational lung disease; exposure 
to silica (quartz and cristobalite) 
causes an inflammatory fibrosing 
response that can result in interstitial 
disease (silicosis) or lung cancer 
(79). The primary origin of the tissue 
damage leading to these conditions 
is oxidative, thus fresh fractured 
silica is much more potent than aged 
materials (80). Therefore, silicosis 
has some commonality with both 
asbestosis and CWP. Occupations 
that incur prodigious risk are silica 
sand blasting and coal mining – 
especially roof-bolters. Indeed, in 
recent years, as coal seams have 

become thinner, there is need to 
cut more siliceous rock to extract 
the coal, which involves greater 
hazard of silicosis. An emerging 
area of concern is roadway repair 
and demolition, which generates 
airborne silica dust. Despite these 
problems, deaths from silicosis in 
the USA have fallen from more than 
1060 in 1968 to less than 170 in 
2005 (81).

Dosimetric methods for the 
assessment of silica are generally 
problematic. Methods have been 
developed that can detect silica 
in blood, urine, lung tissue, lymph 
nodes, and bronchoalveolar lavage 
cells, and range from chemical 
staining to a variety of electron 
microscopy techniques. However, 
measures of crystalline silica 
have not proved to be useful in 
establishing any kind of dose–
response relationship with silicosis, 
and these methods are not 
recommended for routine laboratory 
use (79).

Exposure to silica, like asbestos 
and coal mine dust, results in 
oxidative damage (80). This primary 
damage, mediated by MIP-2, 
TNF-α, IL-β, and TGF-β, is central 
to our current basic understanding 
of the pathobiology of silicosis (82–
84). Because various environmental 
and occupational exposures, as 
well as infections and chronic 
conditions, trigger oxidative stress, 
using measures of oxidative 
damage would be too non-specific 
to be a useful biomarker of silica 
exposure; indeed, few studies have 
assessed this possibility. However, 
8-hydroxydeoxy-guanosine (8-
OHdG) has been measured in 
leukocyte DNA and urine of quartz 
exposed workers (n = 42) and 
silicotics (n = 63) (85). The data from 
this study showed no difference in 
either 8-OHdG in leukocyte DNA 
and 8-OHdG exfoliated in urine 
between healthy workers and 
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silicotics. There was, however, 
an inverse relationship between 
urinary 8-OHdG and DNA-adducts 
in silicotics, suggesting impaired 
nucleotide and/or base excision 
DNA-repair of 8-OHdG, which may 
be a factor associated with lung 
cancer susceptibility in silicosis 
patients (86). In another study of 
silicosis patients (n = 46, with 27 
controls), serum heme oxygenase-1 
(heme-HO-1) levels were found 
to be elevated in silicosis patients 
compared to controls; serum heme-
HO-1 was inversely correlated 
with serum 8-OHdG levels, but 
positively correlated with measures 
of pulmonary function (87). Taken 
together, the results of these studies 
(85,87) suggest that both nucleotide/
base excision repair activity and 
antioxidant activity may play a role 
in protection against the adverse 
lung function effects in silicosis.

In addition to oxyradical damage, 
several potential biomarkers 
associated with oxidative stress 
have been investigated. A 
comprehensive review concluded 
that several factors may potentially 
be reliable biomarkers of early 
effects of exposure to crystalline 
silica (79). These include generation 
of reactive oxygen species from 
alveolar macrophages, activation 
of NFκB, total radical trapping 
antioxidant capacity, serum 
isoprostane and glutathione 
levels, antioxidant enzyme 
activities (glutathione peroxidase 
and superoxide dismutase), 
DNA damage in lymphocytes 
(measured by the comet assay), 
neoptrin (2-amino-6-[1, 2, 
3-trihydroxypropyl]-1H-pteridin-4-
one, a purine nucleotide derivative) 
(88), and clara cell 16 (CC16) (a 
protein secreted by non-ciliated 
cells unique to bronchioles).

More recent studies have 
investigated these markers further. 
Increased lipid peroxidation, 

resulting in isoprostane production, 
has been measured in urine and 
exhaled breath, and has been found 
to be elevated in silicosis patients (P 
= 0.0001, n = 85) (89,90); however, 
this marker of oxidative stress is 
not specific for silica exposure (91). 
Plasma erythrocyte glutathione 
levels were decreased among 
cement manufacturing workers (n = 
48) compared to controls (n = 28); 
conversely, plasma malondialdehyde 
levels were elevated (92). These data 
indicate an adverse shift in oxidative 
balance in cement workers that 
is likely associated with exposure 
to silica. In addition, all objective 
measures of pulmonary function 
were depressed in the cement 
worker group.

Among 90 silica-exposed 
workers (3 groups of 30 each; 
silicotics phase I, silicosis phase 
0+, and non-silicotics phase 0) 
compared with healthy controls, 
serum CC16 levels were reduced 
in all silica exposed workers (P < 
0.0001) (93). In the same study, 
surfactant protein D was increased 
in silicotics (phase I). In an autopsy 
study of 29 Canadian hard rock 
miners, there was a correlation 
between the amount of silica in the 
lungs and lymph nodes, the X-ray 
classification (ILO), and the amount 
of hydroxyvaline in the lung tissues 
(94).

Just as in CWP, TNF-α promoter 
region SNPs have been implicated 
in silicosis. In 2001, it was reported 
that among 489 study subjects (325 
silicotics and 164 controls) silicotics 
were one and a half- to two-fold 
more likely to have inherited the 
minor TNF-α-238 A-variant (OR 
= 1.56; 95% CI = 1.0–2.5) and 
the minor TNF-α-308 A-variant 
(OR = 2.35; 95% CI = 1.4–3.6) 
than controls (95,96). The same 
study also implicated the minor 
IL-1RA+2018 allele (OR = 2.12; 
95% CI = 1.3–3.5); however, there 

were no associations with IL1α 
and IL1β polymorphisms that were 
investigated. The association of 
silicosis with the minor IL-1RA+2018 
allele was confirmed in 212 Chinese 
silica-exposed workers (75 cases 
and 137 controls) (97). The 
association was confirmed between 
the minor A-variants of TNF-α-308 
and TNF-α-238 and silicosis in 241 
South African miners (121 silicosis 
cases and 120 controls) (98). 
This study further implicated the 
minor A-variant of the TNF-α-376 
promoter region polymorphism. 
Other proinflammatory cytokines 
that have been linked to silicosis 
include CD25+ and CD69+ (99).

The tumour suppressor and 
prooncogene p53 has an important 
role in programmed cell death 
(apoptosis) and DNA-repair 
mechanisms (100). Silica has been 
shown to cause p53 transactivation 
through both induction of p53 
protein expression and p53 protein 
phosphorylation in vitro and in vivo 
(101). It was observed that most 
apoptotic cells in mice instilled 
with fresh fractured silica were 
macrophages. Although it was not 
investigated in this study, different 
polymorphic variants of p53 have 
been implicated in carcinogenesis 
(102).

Silicosis patients frequently have 
associated autoimmune disease 
disorders (103). These appear to 
be mediated through the Fas or 
CD95 pathway. Fas is an important 
component of the TNF receptor 
pathway that triggers apoptosis 
upon ligand binding. Numerous 
studies have reported elevated Fas 
levels and variant Fas transcripts in 
bronchioalveolar lavage fluid and 
peripheral blood mononuclear cells 
of silicosis patients (79,104,105). 
Moreover, serum soluble Fas 
ligand (sFas) is elevated in silicosis 
patients and in systemic lupus 
erythematosus patients (106).
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Airways diseases

Asthma

Occupational asthma, or work-
exacerbated asthma, is a 
widespread constriction or 
obstruction of the airways due 
to exposure to an irritant present 
in the workplace that may occur 
through an allergic or non-allergic 
mechanism. Work-related asthma 
was recognized by Hippocrates 
(460–370 BCE) and associated 
with occupations involving work 
with metals, textiles and animals, 
including fish (107). Today work-
related asthma is commonly 
encountered in isocyanate 
production, in healthcare workers 
who use natural rubber latex gloves 
(although this is becoming less of 
a problem due to the substitution 
of other materials), and among 
office workers due to poor indoor 
environmental quality (108–110). 
It is estimated that between 15 
and 30% of asthmatics have 
new-onset adult asthma or work 
exacerbated asthma. Thus, over 
two million workers in the United 
States suffer from work-related 
or work exacerbated asthma (7). 
Despite these facts and statistics 
that suggest a major occupational 
disease that has been known for 
more than 2000 years, asthmagens 
remain difficult to identify, and the 
connection of asthma with materials 
or conditions in the workplace may 
be hard to establish.

Asthma has long been recognized 
to have both an environmental and 
a genetic component in addition 
to being a recognized multigenic 
disease. A large number of genetic 
linkage studies, molecular genetic 
studies, and molecular epidemiology 
association studies of asthma have 
been conducted. Examples of fifteen 
molecular epidemiology association 
studies or candidate gene studies 

are given in Table 21.1 (111–125). 
These studies have focused on: 
major histocompatibility genes (HLA-
DR, HLA-DQ, HLA-DP), chemical 
detoxication genes (GSTM1, 
GSTT1, GSTP1, GSTM3), cytokines 
(CD13, CD14, IL4, IL10, IL12b, IL13, 
IL18, TNF-α), oxyradical associated 
pathways (PTGS2), proteinase 
inhibitors (PAI or SERPINE2), 
growth factors (TGF-β), chemokines 
(RANTES) and related receptors 
(CCR3, FCER1B).

In addition to these studies, 
linkage studies have implicated 
genes on chromosomes 5q and 11q. 
These regions of the genome code 
are for atopy-related genes, cytokine 
genes, and the β-2-adrenoceptor 
gene (or β-2-adrenergic receptor 
ADRB2) (126). These studies have 
led to the conclusion that asthma 
is a multigenic disease with an 
environmental component.

Multiple studies have implicated 
the ADRB2; the product of this gene 
is present on smooth muscle cells in 
pulmonary airways. Polymorphisms 
in this receptor may dispose 
individuals to be susceptible 
to nocturnal asthma (127). A 
meta-analysis suggests that the 
ADRB2G16adrenoceptor glycine 16 
allele is associated with nocturnal 
asthma (OR = 2.2; 95% CI = 1.6–
3.1), and that β-2-adrenoceptor 
glutamic acid 27 (ADRB2E16) is not 
an asthma risk factor (OR = 1.0; 
95% CI = 0.7–1.4).

A transmembrane protein, 
ADAM33 (also known as MMP33), 
is a disintegrin and metalloprotease 
(endopeptidase) that has also 
been implicated in bronchial 
hyperresponsiveness. Matrix 
metalloproteases are normally 
involved with the structural modeling 
of tissues, like the lung, therefore 
disruption of their normal function, 
either through lack of proteinase 
inhibition or chronic inflammatory 
processes, may result in adverse 

pathology. In a study of 652 
nuclear families, a haplotype of 16 
ADAM33 SNPs was associated with 
susceptibility to asthma (P < 0.006); 
however, no single polymorphism 
alone was found to have a statistically 
significant association (128). All of 
these data contribute to asthma—a 
complex multigenic disease that has 
an environmental trigger.

With the advent of the HapMap, a 
collection of millions of SNP markers 
arrayed across the genome, genome-
wide association studies (GWAS) 
have become popular. These studies 
are unfettered by formal hypotheses, 
and multiplex SNP analysis is used 
to interrogate the entire genome 
simultaneously. For asthma, the 
following chromosomal regions have 
been found to contain markers that 
have P-values for association as 
low as 0.0000000001. They are: 
1q32, 2q12, 5q12, 5q22, 5q33, 6q23, 
8p21, 9q21, 17q21 and 20pter-p12 
(129,130). These GWAS studies 
have confirmed the involvement 
of various genes in asthma, 
while others have suggested new 
candidates. Examples of genes 
that have been confirmed by GWAS 
include: IL4, IL5, IL13, CD14, 
ADRB2, HLA-DQB1 and HLA-
DRB1 (131). New candidate genes 
that have been suggested by GWAS 
include: ORMDL3 (a transmembrane 
protein of unknown function that is 
associated with the endoplasmic 
reticulum) (132), ADRA1B (an 
adrenergic receptor distinct from 
ADRB2), PRNP (a prion related 
protein found on chromosome 
20p), DPP10 (adipeptidyl peptidase 
(130), PDE4D (a protein involved in 
the regulation of smooth muscle) 
(133), IL3, TLE4 (a transcription 
corepressor that in part regulates 
PAX5, a transcription factor), IL1R1, 
IL33, WDR36 (a gene involved in 
the synthesis of ribosomes), MYB (a 
transcription factor) and CHI3L1 (a 
chitinase-3-like protein) (129).
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Study and Subjects (n) Allele(s) Association† Reference

Paris, France HLA-DR4 P<0.0004  (111)

Cases (56, 62% ♀) HLA-DR7 P<0.05

Controls (39, 62% ♀) HLA-DQB1*0103
HLA-DQB1*0302

P<0.002
P<0.01

Helsinki, Finland‡ NAT1§ OR=2.5 (1.3-4.9) (112)

Cases (109, 22% ♀) GSTM1 + NAT1 OR=4.5 (1.8-11.6)

Controls (73, 12% ♀) GSTM1 + NAT2
NAT1 + NAT2

OR=3.1 (1.1-8.8)
OR=4.2 (1.5-11.6)

Cincinnati, OH, USA CD14159T P=0.03 (113)

Cases (175) CD14159TT OR=2.3 (0.9-5.8)

Controls (61) CD14159TT** OR=3.1 (1.1-9.1)

Taichung, Taiwan, China IL10627AA OR=3.6 (1.2-10.4) (114)

Cases (117, 48% ♀) IL10627AC OR=4.8 (1.7-13.9)

Controls (47, 64% ♀)

SE Anatolia, Turkey (115)

Cases (210, 74% ♀) GSTP1105val OR=0.3 (0.1-0.6)

Controls (265, 69% ♀)

Tokyo, Japan (116)

Japanese (210) CCR351C OR=1.4 (0.7-2.7)

Controls (181)

British (142) OR=2.4 (1.3-4.3)

Controls (92)

San Diego, CA, USA (117)

Cases (236) TNF-α-308 A OR=1.9 (1.0-3.3)

Controls (275) OR=1.7 (1.0-2.9)††

Osaka, Japan (118)

Cases (479) IL18105A P<0.01

Controls (85)

Sapporo, Japan (119)

Cases (298) RANTES-28G OR=2.0 (1.4-3.0)

Controls (311)

Boston, MA, USA (120)

Cases (527, 51% ♀) TGF-β509TT OR=2.5 (1.3-5.1)

Controls (170, 36% ♀) TGF-β509TC OR=1.3 (0.9-1.8)

Vancouver, Canada HLA-DRB1*0101 OR=0.3 (0.1-0.8) (121)

Cases (56, 2% ♀) HLA-DQB1*0603 OR=2.9 (1.0-8.2)

Controls (63, 0% ♀) HLA-DQB1*0302 OR=4.9 (1.3-18.6)

Helsinki, Finland (122)

Cases (42) GSTM1null OR=1.9 (1.0-3.5)

Controls (56) GSTM3MnlI+, GSTP1313val, 
GSTT1null

 
Not significant

Table 21.1. Genetic epidemiology association studies of asthma
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To address the multigenic nature 
of asthma, a statistical modeling 
attempt has been made to elucidate 
asthma risk. Sixteen alleles, most 
conveying susceptibility, but some 
with evidence of protection, were 
used as a basis of the model (134). 
A similar model has been used to 
predict overall risk of breast cancer 
(135). The model revealed a broad 
spectrum of potential risk and 
may help to more clearly identify 
susceptible populations; however, 
it will be challenging to integrate an 
environmental component. As noted 
in the section on berylliosis, this 
may be accomplished through an 
understanding of gene–environment 
interaction at the molecular level 
using the tools of computational 
chemistry (58).

Bronchiolitis obliterans

Bronchiolitis obliterans syndrome 
(BOS) is a fibroproliferative 
process that causes intraluminal 
obstruction of the smallest airways, 
the bronchioles. This condition can 
be caused by exposure to toxic 
chemicals (e.g. diacetyl in artificial 
butter flavoring, responsible for 
popcorn workers’ lung), it can occur 
following transplant surgery (notably 
bone marrow, lung, or heart and 
lung) and as the result of infection 

(136–139). Only a few studies exist 
that have looked for biomarkers of 
susceptibility, exposure and effect.

The first study of six lung 
transplant recipients evaluated 
transcripts of platelet-derived growth 
factor (PDGF)-β and TGF-β1 in 
bronchoalveolar lavage cells. Slightly 
elevated levels of both growth 
factors were found in BOS patients 
compared to controls, and the 
PDGF-β increase was associated 
with lung function decrement (140). 
Another study of 93 lung transplant 
recipients evaluated SNPs in TNF-α, 
TGF-β, IL-6, INF-γ, and IL-10. Both 
of the high expression variants of 
IL-6-174G and INF-γ+874T were found 
to be correlated with BOS (P < 0.05 
and 0.04 respectively). In addition, 
onset of BOS was more rapid in 
patients carrying these variants 
(141). A third study extended these 
data by examining the frequency of 
the same alleles in a cohort of 78 
lung transplant recipients. This study 
was able to confirm that IL-6-174G was 
associated with earlier onset BOS 
(P < 0.04) and a decreased overall 
survival (P < 0.05) (142).

A novel receptor gene, NOD2/
CARD15, can interact with NFκB to 
trigger an inflammatory response. 
Three SNPs in this gene (Arg702Trp, 
Gly908Arg, and Leu1007finsC) 
were investigated in a cohort of 427 

donor-recipient pairs involved in 
allogenic stem cell transplantation. 
The cumulative incidence of BOS 
rose in donor recipient pairs with a 
minor variant of this gene (F = 0.187 
versus F = 0.013 (those without 
mutation), P < 0.001); donor variants 
alone were significantly associated 
with the complication of BOS (F = 
0.132, P < 0.04) (143).

Chronic obstructive 
pulmonary disease

Chronic obstructive pulmonary 
disease (COPD) results in 
shortness of breath (dyspnea) 
due to thickening of the airways of 
the lung. This is an inflammatory 
condition, which in contrast to 
asthma is irreversible, and is caused 
by toxic exposure to tobacco smoke, 
dust and/or gases. COPD may be 
an occupational hazard caused by 
exposures to dusts and gases in 
the textile industry, coal and other 
mining industries, construction 
industry (silica), services industry 
(secondhand smoke), and damp 
non-industrial indoor environments 
(volatile organic compounds) (6).

COPD is a leading cause of 
morbidity and mortality in the United 
States and worldwide (6). In 2003, 
10.7 million United States adults 
were estimated to have COPD, 

†Statistics given as either P-values or odds ratios (OR) with 95% confidence intervals in parentheses
‡Isocyanate workers
§ Slow acetylator phenotype. Risk of NAT2 alone not significant (OR=1.4; 95% CI=0.7-2.6)
** Nonatopy only (n=47)
††European-Americans only (n=169 cases, 170 controls)
‡‡Statistics given as either P-values or odds ratios (OR) with 95% confidence intervals in parentheses

Amsterdam, Netherlands (123)

Cases (101) IL13-1055TT P<0.002

Controls (107)

Hong Kong SAR, China (124)

Cases (299) PTGS28473C OR=1.5 (1.0-2.3)

Controls (175)

Sapporo, Japan (125)

Cases (374) PAI-15G/ FCER1B109T/654C OR=0.2 (0.1-0.5)

Controls (374)
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although close to 24 million adults 
had evidence of impaired lung 
function, indicating underdiagnosis 
of COPD in the United States (144). 
The economic burden in the United 
States is approximately US$37.2 
billion, which includes health care 
expenditures of US$20.9 billion 
in direct costs, US$7.4 billion in 
indirect morbidity costs, and US$8.9 
billion in indirect mortality costs 
(145). Although smoking accounts 
for the majority of COPD cases, 
occupational factors associated 
with many industries are estimated 
to account for 19% of all cases and 
31% among never smokers (144).

COPD is a complex, mutagenic 
disease that only affects a fraction 
of smokers (15–20%), therefore it 
has been reasoned that genetic 
predisposition and environmental 
factors are important in its 
development. A genetic factor that 
was implicated about 40 years 
ago was α-1-antitrypsin (α1AT), or 
rather its deficiency (146). Alpha-
1-antitrypsin is a serum protease 
inhibitor (SERPIN). This family of 
glycoproteins prevents massive 
tissue damage from proteases 
released by host cells during 
inflammation.

Deficiency of SERPINA1, also 
known as α1AT (PiZ homozygotes), 
accounts for approximately 2% of 
COPD patients. Six SERPINA1 5 
SNP haplotypes were shown to 
increase risk of COPD by six- to 50-
fold (147). In contrast, there was no 
such association with SERPINA3 
even after an initial study had 
yielded positive results (141,147). 
SERPIN1A deficiency has also 
been implicated in liver disease. 
Another serum protease inhibitor, 
SERPINE2, was implicated in 
COPD by linkage analysis of 127 
probands and 949 total individuals 
in a family-based study (148).

Several matrix metalloprotease 
molecules have been implicated 

in COPD using a linkage strategy. 
They are: MMP1 or interstitial 
collagenase, MMP2 or gelatinase-A, 
MMP8 or neutrophil collagenase, 
MMP9 or gelatinase-B, and 
macrophage mellatoelastase. The 
allele MMP1-1607G was found to 
be associated with lung function 
decline (P = 0.02 for allele frequency 
between 284 patients with rapid 
decline and 306 with no decline) 
(149). In addition, this group found 
evidence that the MMP12357Ser 

allele was also associated with 
lung function decline. In several 
other epidemiological association 
studies, MMP9-1562T was found to be 
associated with COPD diagnosed 
with conventional computed 
tomography (CT) scans (150), 
spirometry (151) or high-resolution 
CT scans (152). Two further studies 
also implicated MMP9 alleles, 
MMP9279Arg that modifies substrate 
binding (153), and a promoter region 
polymorphism MMP9–82G (154). A 
large study using Boston, USA early-
onset COPD study subjects set out 
to confirm COPD associations with 
SNPs of 12 genes, including MMP1, 
MMP9 (short tandem repeats, not 
−1562T), and TIMP2 (155). The 
association between TIMP2853A 
and COPD (P < 0.0001), originally 
reported in Japanese subjects 
(85 cases, 40 controls), was found 
to be of marginal significance in 
the Boston population (P = 0.08) 
(155,156). Associations previously 
reported for MMP1-1607G and the 
short tandem repeats in MMP9 were 
not confirmed. A contemporary 
study has also implicated multiple 
SNPs in ADAM33 (157).

As with asthma and 
pneumoconioses, which are driven 
to some extent by oxidative damage, 
cytokines have been implicated 
in COPD. Several studies have 
examined the influence of SNPs 
in TNF-α (158–165). Most of these 
studies were null, and a meta-

analysis that included several of 
them confirmed this. Other cytokine 
genes that were investigated for 
COPD-associated SNPs include: 
LTα (159,164), IL6 and IL10 (159), 
and IL13 (162); of these the IL10–
1082G was associated with COPD 
(OR = 2.6; 95% CI = 1.5–4.4) (159). 
In a recent study of 374 active 
firefighters with at least five serial 
lung function tests, TNF-α-238 was 
found to be associated with a more 
rapid rate of FEV1 decline (166).

Several polymorphisms in 
xenobiotic metabolizing genes 
have received some attention. 
It is reasonable to assume that 
some of these genes could at least 
contribute to oxidative damage 
since induction of, for example, 
cytochrome P450s leads to redox 
cycling and the formation of 
oxygen free radicals (167). The 
isoleucine/valine polymorphism in 
residue 462 of CYP1A1, previously 
considered to be involved in gene 
induction (168), was investigated in 
patients recruited at the University 
of Edinburgh Medical School, 
Scotland (36 cases, 281 controls). 
An association was found between 
inheritance of the CYP1A1462val and 
COPD (OR = 2.3; 95% CI = 1.0–5.2) 
(169). Other xenobiotic metabolism 
genes that have been investigated 
are GSTM1, GSTP1, GSTT1 and 
EPHX1 (165,170-172). With the 
exceptions of epoxide hydrolase 
(EPHX1) and GSTP1, none have 
shown a positive association that 
could be confirmed (155). In the 
case of EPHX1, there is an histidine/
arginine polymorphism in residue 
139, EPHX1139Arg, which was found to 
be associated with COPD (P = 0.02) 
(155). In the case of GSTP1, there is 
an isoleucine/valine polymorphism 
in residue 105; GSTP1105Val was 
found to be associated with COPD 
(P = 0.05) (155).

More recently, GWAS technology 
has also been applied to analysis of 
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genetic factors in COPD. Using this 
strategy, involvement of several of 
the above implicated genes has been 
confirmed, including SERPINE2 
(at 2q33–2q37), EPHX1 (at 1q42) 
and GSTP1 (at 1p13) (173,174). 
These and other GWAS have 
implicated additional genes: SFTPB 
(a pulmonary surfactant protein at 
2p11), ADRB1 (at 5q32), TGF-β (at 
19q13) (175), and FAM13A (involved 
in hypoxia response through 
signal transduction in human lung 
epithelial cells at 4q22) (176). In 
addition, GWAS studies of COPD 
have also identified an association 
with CHRNA sub-units 3 and 5 (an 
α-nicotinic acetylcholine receptor, 
located at chromosome 15q25) (177) 
and ADAM33 (the metalloprotease 
located at chromosome 20p13) 
(178). For both asthma and COPD, 
it can be seen from the GWAS 
approach that there is some genetic 
overlap in these airways diseases.

Summary

The interstitial lung diseases 
asbestosis, silicosis and CWP have 
in common exposure to dusts and 
fibres that induce oxygen free radical 
damage. These exposures tend to 
stimulate inflammation and fibrosis, 
at least in part mediated through 
the TNF-α pathway. In silicosis 
and CWP this probably influenced 
the choice of SNP biomarkers that 
have been examined, and there 
is a preponderance of evidence 
to suggest that the promoter 
region polymorphism of TNF-α 
is implicated in susceptibility and 
severity of these diseases; this 
has not been the case for CBD. 
While most molecular epidemiology 
has focused on the major 
histocompatibility complex type 

2 molecules, and especially the 
HLA-DPB1 gene, there are several 
studies concerning the TNF-α 
promoter regions in CBD, but none 
of them have provided support for 
implication of this gene (49,178,179).

The studies on berylliosis 
provide an interesting example 
of a susceptibility marker for 
several reasons. First, the HLA-
DPB1E69 allele has been shown 
to be associated with CBD and 
beryllium sensitization in at least 
three sufficiently-sized, well-
characterized study populations 
(51–53) and several smaller studies, 
and essentially all of the studies 
agree. Second, it is a marker that 
could be used for pre-employment 
screening, but the positive 
predictive value is only about 7–14% 
(54). (This is a cautionary note: 
despite the strong and uncontested 
association with disease, it would 
not make good economic or ethical 
sense to use beryllium for testing, 
as exposure to it is what drives 
disease.) Third, if similar markers 
could be found for asthma, it may be 
possible to learn about asthmagens 
through computational chemical 
modelling (57,58).

In the case of the airways 
diseases, asthma and COPD, it is 
clear that aberrant tissue remodeling 
is a major contributory factor to 
pathology (180). Imbalances in 
matrix metalloproteases and serum 
protease inhibitors (SERPINs) in the 
presence of inflammation, which 
are associated to some extent with 
genetic polymorphisms, appear to 
be critical factors. These findings 
have prompted therapeutic targeting 
of matrix metalloproteases through 
the use of inhibitors for the treatment 
of COPD (181).

In terms of occupational 
diseases, molecular epidemiological 
studies of bronchiolitis obliterans, 
byssinosis and flock workers’ lung 
have not yet been developed. 
Byssinosis, or brown lung disease, 
was highly prevalent in the United 
States in the early 1970s, but 
numbers have declined due to 
implementation of the Cotton Dust 
standard (29 CFR Part 1910) and 
migrations of textile work to Asia. 
Thus, research in this area would 
now be confined to populations in 
India, China and other parts of Asia. 
A similar situation is evolving for 
flock workers.

Many of the molecular 
epidemiological association studies 
reported on here are small, and the 
variation in the quality of participant 
characterization is considerable. 
Many of the control populations 
are convenience samples, and 
less-than-appropriate samples that 
come from expired units from blood 
banks. This has led to considerable 
disparity across the field of molecular 
epidemiology with respect to the 
soundness of specific associations. 
One study, using a well-characterized 
molecular epidemiologic case–
control population to attempt to verify 
previous reports for 15 alleles in 
COPD, is a model and an approach 
that should be adopted if meaningful 
associations are to be established 
(155).

Disclaimer: The findings and conclusions 
in this chapter are those of the author and 
do not necessarily represent the views 
of the National Institute for Occupational 
Safety and Health.
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Summary

Degenerative diseases of the 
nervous system impose substantial 
medical and public health burdens 
on populations throughout the 
world. Alzheimer's disease (AD), 
Parkinson's disease (PD), and 
amyotrophic lateral sclerosis 
(ALS) are three of the major 
neurodegenerative diseases. The 
prevalence and incidence of these 
diseases rise dramatically with 
age; thus the number of cases 
is expected to increase for the 
foreseeable future as life spans 
in many countries continue to 
increase. Causal contributions 
from genetic and environmental 
factors are, with some exceptions, 
poorly understood. Nonetheless, 
molecular epidemiology 
approaches have proven valuable 

for improving disease diagnoses, 
characterizing disease prognostic 
factors, identifying high-risk genes 
for familial neurodegenerative 
diseases, investigating common 
genetic variants that may predict 
susceptibility for the non-familial 
forms of these diseases, and 
for quantifying environmental 
exposures. Incorporation of 
molecular techniques, including 
genomics, proteomics, and 
measurements of environmental 
toxicant body burdens into 
epidemiologic research, offer 
considerable promise for enhancing 
progress on characterizing 
pathogenesis mechanisms and 
identifying specific risk factors, 
especially for the non-familial forms 
of these diseases. In this chapter, 

brief overviews are provided of 
the epidemiologic features of PD, 
AD, and ALS, as well as illustrative 
examples in which molecular 
epidemiologic approaches have 
advanced knowledge on underlying 
disease mechanisms and risk factors 
that might lead to improved medical 
management and ultimately disease 
prevention. The chapter concludes 
with some recommendations for 
future molecular epidemiology 
research.

Introduction

Increasingly, epidemiologic research 
on neurodegenerative diseases 
has applied molecular techniques 
to identify host susceptibility 
factors to elucidate more clearly 
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pathogenesis mechanisms, and 
to characterize exposures to 
potential environmental risk factors. 
Advances in molecular genetics 
and exposure measurement 
have facilitated expanded use of 
these techniques. Largely due 
to the ease and availability of 
genotyping assays, studies of 
candidate gene variants have been 
the most common applications. 
In this chapter, illustrations of 
the contributions of molecular 
epidemiology related primarily to 
elucidating disease pathogenesis 
processes and identifying etiologic 
factors will be presented. The focus 
will be on Alzheimer's disease 
(AD), Parkinson's disease (PD) and 
amyotrophic lateral sclerosis (ALS), 
as they share some common clinical, 
pathological and epidemiologic 
features. Other chronic neurological 
disorders, such as multiple sclerosis 
and Huntington’s disease, are also 
significant public health concerns, 
but will not be discussed in the 
interest of brevity.

As background, brief 
descriptions of the clinical and 
pathological features of the three 
disorders will be provided, as well 
as summaries of epidemiologic 
aspects, including the relative 
contributions of genetics and 
the environment. No attempt to 
provide comprehensive reviews of 
these topics will be made, as they 
would be far beyond the scope of 
this chapter. Examples of various 
types of molecular epidemiologic 
approaches applied to investigations 
of AD, PD and ALS will be presented 
in the second section of this chapter.

Context and public health 
significance

Alzheimer's disease

Alzheimer's disease (AD) is the 
most common neurodegenerative 

disease. It also represents the 
most frequent cause of dementia, 
accounting for roughly half of all 
cases. The prevalence of AD is 
roughly 30% among people 85 years 
and older. Incidence rates climb 
steeply from 0.5% per year for ages 
65 to 75 to 6–8% per year for ages 
85 and up. AD onset is rare before 
the age of 50, except in cases of 
familial AD, which comprise roughly 
5–10% of cases (1).

The primary clinical manifestation 
of AD is dementia, which is an 
accelerated loss of cognitive function 
beyond that due to normal aging. 
Alterations in mood and behaviour 
often accompany the onset of 
dementia, followed by memory loss, 
disorientation and aphasia. The 
hippocampus and cerebral cortex are 
preferentially and severely affected in 
AD. Pathologically, senile or neuritic 
plaques and neurofibrillary tangles 
(NFTs) are the two characteristic 
lesions in affected tissues (2). 
Neuritic plaques in blood vessels 
and neurons of the hippocampus 
are primarily composed of amyloid 
β (Aβ) peptide aggregates. The 
second pathological hallmark, NFTs, 
are filamentous bundles comprised 
of abnormal (hyper-phosphorylated) 
tau proteins that accumulate in the 
cytoplasm of affected neurons. 
Tau protein is normally involved in 
nutrient transport along neuronal 
axons. Various lines of evidence 
indicate that AD develops primarily 
as a result of an “amyloid cascade” 
(i.e. an imbalance in the production 
and clearance of Aβ is the central 
mechanism) (3). Aggregation of 
hyperphosphorylated tau proteins 
leading to tangles may also contribute 
to this cascade mechanism. 
Other potentially relevant disease 
mechanisms include: microvascular 
damage, leading to diminished blood 
flow and nutrient deficiency to brain 
cells; oxidative stress; inflammation; 
and mitochondrial dysfunction (2).

Family studies have established 
that genetic factors play a substantial 
role in AD, especially in younger-
onset cases (<65 years). Familial 
AD has an autosomal dominant 
inheritance pattern. Three mutations 
in genes encoding proteins involved 
in amyloid plaque formation, the 
amyloid precursor protein (APP), 
presenilin-1, and presenilin-2 
genes, have been identified as 
causal genes for early-onset AD 
(4–6). Non-familial AD, typically 
defined as having an onset at age 
65 years or older, accounts for most 
of cases. Non-familial AD has been 
associated most consistently with 
the ε4 allele of the apolipoprotein 
gene (ApoE-ε4), which is a very 
low-density lipoprotein carrier that 
is required for Aβ deposition (7). 
Carriers of the ApoE-ε4 allele have 
reduced AD ages at onset, with 
3-fold and 15-fold risk excesses 
observed in heterozygotes and 
homozygotes, respectively (8,9). 
Numerous other candidate genes 
have been investigated as AD 
susceptibility factors, such as 
sortilin-related receptor-1 gene (10), 
but no strong or consistent findings 
have emerged.

Increasing age is a clear risk 
factor for non-familial AD, and rates 
are generally higher in women than 
in men (6,10). Other factors that have 
been investigated in relation to AD 
risk include: cardiovascular diseases 
(largely motivated by the link of lipid 
metabolism with ApoE-ε4) (11), head 
trauma (12), smoking (13), dietary 
antioxidants and fats (14), alcohol 
(15), occupational exposures to 
solvents (16,17), electromagnetic 
fields (18), educational status (19), 
and occupational exposures to 
pesticides (20,21). Epidemiologic 
evidence has been mixed thus far, 
as exemplified by contradictory 
findings for cigarette smoking 
(22). It is possible, yet remains 
to be established conclusively, 
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whether genetic factors account 
for the majority of the population 
attributable risk for AD.

Parkinson's disease

Parkinson's disease (PD), the second 
most common neurodegenerative 
disease, is a movement disorder 
whose cardinal clinical features are 
rest tremor, rigidity, bradykinesia 
and postural instability (23). PD is 
relatively rare before age 50, after 
which incidence and prevalence rise 
sharply through the eighth decade of 
life. Epidemiologic surveys, mainly 
in western countries, indicate a 
small (20–30%) excess risk in men. 
Annual incidence rates of 10–15 per 
100 000 have been noted in most 
surveys worldwide. Prevalence may 
reach 2% in persons aged 65 years 
and older (24).

The underlying cause of PD is a 
loss of dopamine-producing neurons 
of the mid-brain substantia nigra 
(SN). PD pathogenesis involves 
complex interactions among several 
mechanisms, including abnormal 
protein aggregation and deficient 
clearance of aggregates, altered 
dopamine metabolism, impaired 
mitochondrial function, oxidative 
stress, inflammation, necrosis 
and accelerated apoptosis (25). 
Intracellular deposits of aggregated 
α synuclein, ubiquitin, and other 
proteins (known as Lewy bodies) 
found in many surviving neuronal 
populations are considered to be 
the pathologic characteristic of PD 
(26,27). Whether Lewy bodies are 
themselves neurotoxic, or represent 
the end product of cellular defence 
mechanisms to sequester toxic 
abnormal proteins, remains to be 
determined.

Similar to Alzheimer's disease, 
epidemiologic differences in early-
onset (< 50 years) and late-onset 
PD have been described. Genetic 
factors, especially specific causal 

mutations, appear to be more 
prominent in early-onset PD, 
although the distinctions are by no 
means absolute. Kindred studies 
of heavily affected families have 
identified at least five genetic loci 
for PD (7,28). The initial discoveries 
were mutations of the gene 
encoding the α-synuclein protein 
that have been related to autosomal 
dominant early-onset PD, typified by 
rapid disease onset and progression 
(29). The functional consequences 
of mutations in these genes are 
incompletely understood, although 
abnormal brain protein aggregation 
and clearance appears to be a 
common feature. Mutations in the 
leucine-rich repeat kinase 2 (LRRK2 
or PARK8 gene), first identified from 
kindred studies in Japan (30) and 
subsequently confirmed in Europe 
(31) and North America (32), have 
also been associated with typical 
late-onset PD, and thus may also 
contribute to risk for non-familial PD 
(28). Identified mutations in other 
genes include: parkin (PARK2), 
PTEN-induced putative kinase I 
(PINK1 or PARK6) and DJ-1 (DJ-
1 or PARK7), all of which follow a 
recessive inheritance mode (7).

Candidate gene studies for late-
onset non-familial PD have explored 
associations with the same genes 
related to familial PD. In general, the 
rare causal mutations observed for 
familial PD have not been associated 
consistently with non-familial 
disease. Extensive efforts have 
also been undertaken to identify 
common variants of biologically-
based candidate genes that may 
confer PD susceptibility, either 
independently or in combination with 
host or environmental factors. These 
include variants of genes related to 
the metabolism of dopamine and 
toxic environmental chemicals, 
and to presumed PD pathogenesis 
mechanisms (e.g. oxidative stress). 
Perhaps not surprisingly, numerous 

associations have been observed, 
yet attempts at replication have been 
largely disappointing. An illustration 
is the inconsistent pattern of results 
for the gene encoding the enzyme 
monoamine oxidase B (MAO-B) that 
catabolizes dopamine (33–35).

Apart from older age, the 
most consistent epidemiologic 
observation has been an inverse 
relation between cigarette 
smoking and PD, with smokers 
having approximately half the rate 
as never smokers, and strong 
evidence for an inverse dose–
response (“protective”) effect with 
duration and pack-years smoked 
(36–39). The reduced risk among 
smokers does not appear to be 
due to selective survival bias. A 
biochemical basis may be the 
lowering of MAO-B enzyme activity 
in the brain, and consequent 
reduced dopamine catabolism 
(40,41). Alternatively, aversion to 
novelty-seeking behaviour, such 
as smoking, by persons who 
ultimately develop PD may explain 
the relation with smoking. Inverse 
PD risk associations have also 
been reported for caffeine (37,42) 
and non-steroidal anti-inflammatory 
medications (43,44), although the 
evidence is less consistent than for 
smoking. Additionally, family history 
of PD (45) and history of severe 
head trauma (46,47) have been 
related to elevated PD risks.

The discovery in the early 1980s 
of PD among intravenous drug 
users who had injected a synthetic 
heroin contaminated with 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), prompted great interest in 
the possibility that there are important 
etiologic roles of environmental 
toxicants (48). Induction of PD by 
MPTP in experimental animals and 
recognition of the chemical structural 
similarity of MPTP provided strong 
impetus for a focus on pesticides 
(49). Occupational exposures to 
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pesticides have been associated 
with elevated risk in some studies 
(50–54), although consistent 
associations with specific pesticides 
have not been identified. Metals, 
especially manganese, have been 
implicated as risk factors in several 
epidemiologic studies (55,56). 
Epidemiologic findings for PD risk 
among welders, whose jobs entail 
chronic exposures to various metal 
mixtures including manganese, have 
been inconsistent (57–60). There 
is only limited evidence supporting 
associations with solvents and other 
environmental chemicals (61–63).

Amyotrophic lateral sclerosis 
(ALS)

Amyotrophic lateral sclerosis (ALS) 
is a disease of the motor neurons of 
the anterior horns of the spinal cord 
and motor neurons in the cerebral 
cortex. Similar to AD and PD, there 
are both familial and non-familial 
forms of ALS, with the familial ALS 
accounting for about 10% of cases. 
The incidence of non-familial ALS 
is approximately 1–2 cases per 
100 000 per year, and appears to 
be slightly more common in men 
(64). ALS onset usually occurs in 
the middle to later years of life, and 
the incidence rises with increasing 
age. ALS is generally a rapidly fatal 
condition within two to three years of 
onset (65).

Excitotoxicity mediated by 
glutamate and elevated calcium 
ion (Ca2+) is considered to be a 
major pathogenesis mechanism 
in the neuronal death that occurs 
in ALS (66). As a consequence 
of neuronal cell death, neuronal 
muscle atrophy occurs, resulting 
in diminished muscle strength 
and bulk, fasciculations, and 
hyperreflexia. Effects on 
respiratory muscles can lead to 
pulmonary infection, and eventually 
amyotrophy leads to paralysis and 

death. The histopathology of ALS 
is characterized by intracytoplasmic 
inclusion bodies composed of 
neurofilaments and spheroids 
containing ubiquitinated copper 
and zinc superoxide dismutase 
(CuZnSOD) or SOD1, an enzyme 
that catalyses the conversion of the 
superoxide free radical to hydrogen 
peroxide.

Mutations in the SOD1 gene are 
present in roughly 20% of familial 
cases and perhaps as much as 10% 
of non-familial ALS (7,67). SOD1 
mutations may cause a reduced 
capacity to counteract oxidative 
stress. Additionally, mutations may 
result in mis-folded SOD1 proteins 
that aggregate and form toxic 
inclusion bodies, reminiscent of the 
presumed mechanisms involved 
in AD and PD pathogenesis (68). 
Mutations in a second gene 
associated with familial ALS, alsin 
(ALS2), has been identified in 
juvenile-onset recessive PD (69). 
Investigations of other genetic 
variants in non-familial ALS have 
not yielded consistent findings, 
although several potentially 
promising candidate gene loci have 
been identified by genetic linkage 
studies (70).

Potentially important etiologic 
roles of environmental factors are 
indicated, at least by default, by 
the absence of convincing support 
for ALS being a predominantly 
genetically-determined disease. 
Various environmental risk factors 
have been investigated, including 
smoking (71); pesticides and other 
agricultural chemicals (72–73); 
heavy metals, especially lead (74); 
electric shock; and electromagnetic 
fields (75). Reasonably consistent 
yet modest excess risks have 
been observed among cigarette 
smokers (71,76). In addition, reports 
of apparent case clusters of ALS 
among United States military 
personnel deployed in the first Gulf 

War prompted epidemiologic studies 
that are suggestive of associations. 
Exposures to pesticides, petroleum 
combustion products and 
mycotoxins have been speculated 
as the causative agents among Gulf 
War veterans, but none have been 
established (77).

Examples

Application of molecular 
epidemiology methods will be 
illustrated with some selected 
examples from the literature on 
neurodegenerative diseases. 
These examples span a range of 
applications, including molecular 
methods for biomonitoring of 
environmental neurotoxicants, 
candidate susceptibility investigation, 
gene–gene and gene–environment 
interaction analyses, and the more 
recently developed method of 
proteomics profiling to identify early 
disease markers.

Example 1: Occupational lead 
exposure and risk of ALS

An etiologic association between 
occupational lead exposure and 
ALS has been suggested primarily 
from case–control studies in which 
exposures have been based on 
the classification of self-reported 
jobs. To investigate whether lead is 
causally related to ALS with more 
precise exposure characterization, 
a population-based case-control 
study was conducted in the New 
England region of the USA (78). 
Study subjects were 109 ALS 
cases and age/sex/region-matched 
controls identified by random digit 
dialling. Exposures to lead were 
assessed as lifetime number of 
days worked in lead-exposed 
occupations, blood lead levels, 
and bone lead concentrations 
determined by X-ray fluorescence. 
Blood and bone lead measurements 
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were obtained for 107 cases, but 
only for 41 controls. Blood lead levels 
represent recent exposure (within 
three months, or the lifespan of red 
blood cells that store the majority 
of blood lead). Lead concentrations 
were measured in patella and tibia 
bones, representing the shorter 
(3–5 years) and longer-term (10–15 
years) body storage compartments.

The most striking finding from 
this study was a monotonically 
increasing exposure–response 
relation with cumulative lifetime 
lead-exposure work days, with a 
2.3 relative risk estimate found for 
the highest exposure category (≥ 
2000 days) compared to 0 days. 
Comparisons of cases’ and controls’ 
blood and bone lead levels (Table 
22.1) yielded slightly larger lead body 
burdens among cases. Overall, the 
study findings offer some support 
to the hypothesis that lead is a risk 
factor for ALS.

Several features of this example 
warrant comment. Measurement of 
exposure biomarkers, as opposed 
to reliance strictly on questionnaire 
response data, has a theoretical 
advantage of improved precision. 
However, it should also be realized 
that biological measurements 
may not necessarily be more valid 
than questionnaire data, even in 
situations where the precision of 
measurement techniques is well 
established, such as for blood and 
bone lead. Biological monitoring 
of exposure does have the 
advantage of taking into account 
multiple sources of exposures (i.e. 
occupational and non-occupational), 
which is both a strength and a 
limitation. The strength is that it 
provides a more complete picture of 
exposure levels than does, e.g., an 
occupational history. The limitation 
is that it can be difficult to identify 
specific exposure sources from 
biomonitoring if the goal of the 
epidemiologic study is intervention 

to minimize or eliminate exposure. 
Additionally, the low participation 
rate among controls in this study 
was perhaps not surprising, given 
that presumably healthy controls 
would have less motivation to 
undergo biological sampling, albeit 
relatively non-invasive.

Example 2: Alpha-synuclein 
(SNCA) promoter region 
variants in PD

As mentioned earlier, mutations 
in the alpha synuclein (SNCA) 
gene have been associated with 
increased risks of PD in familial, 
and to a lesser extent non-familial 
PD. Epidemiologic studies of an 
apparently functionally important 
dinucleotide repeat in the SNCA 
promoter region (Rep1) have 
provided mixed evidence for an 
association with PD risk (79,80). A 
pooled analysis of Rep1 variability 
was performed that combined 

data for 2692 PD cases and 2652 
unrelated controls from 11 study 
centres (in six western European 
countries, the USA and Australia) 
(81). Common genotyping protocols 
and quality control assessments, 
including selective re-genotyping, 
were incorporated into the study to 
minimize laboratory bias.

Analyses were performed for the 
three most common Rep1 base pair 
repeat lengths: 259, 261 and 263. 
The results of analysis comparing 
the Rep1 263 base pair genotype 
versus all others are summarized 
in Table 22.2. Overall, there was a 
modest yet statistically significant 
association (OR = 1.43; 95% CI = 
1.22–1.69). 
Notably, PD risk was elevated among 
carriers of 263 base pair length in 
each of the 11 studies. Moreover, 
the findings showed positive 
associations for both dominant 
(OR = 1.44; 95% CI = 1.21–1.70) 
and recessive (OR = 2.46; 95% CI 

Table 22.1. Blood and bone lead levels in ALS cases and controls

Lead measurement (units) Cases Controls

Blood (μg/dl) 5.2 ± 0.4† 3.4 ± 0.4

Patella (μg/g) 20.5 ± 2.1 16.7 + 2.0

Tibia (μg/g) 14.9 ± 1.6 11.1 ± 1.6

† Mean (± standard error). Adapted from (78).

Table 22.2. Associations of Parkinson's disease with the Rep1 263 base pair repeat 
of the alpha synuclein gene promoter region

Group No. cases/controls OR (95% CI)† P-value

All subjects 2686/2454 1.43 (1.22–1.69) <0.001

Negative family history 2241/676 1.33 (1.03–1.72) 0.03

Positive family history 413/38 1.67 (0.51–5.50) 0.40

Age ≤68 1361/1317 1.47 (1.17–1.84) 0.001

Age >68 1325/1137 1.31 (1.03–1.66) 0.03

Women 1083/1205 1.33 (1.06–1.67) 0.01

Men 1603/1249 1.54 (1.22–1.95) <0.001

† Odds ratio (95% confidence interval) for 263 versus other base pair lengths
Adapted from (81). Copyright © (2006) American Medical Association. All rights reserved.
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= 0.95–6.37) inheritance models, 
and varied little with respect to 
age, gender or family history of PD. 
There was a slight, although less 
consistently noted, reduced risk (OR 
= 0.86; 95% CI = 0.79–0.94) related 
to the 259 base pair repeat length. 
The 261 base pair repeat length was 
unrelated to PD risk.

This study exemplifies the 
approach of focusing on a single 
candidate gene that has a plausible 
relation to the phenotype of 
interest. By combining data from 
multiple studies and following 
standardized laboratory protocols, 
the investigators were able to 
achieve greater statistical precision 
than was possible in any previous 
study while maintaining a high 
level of validity. As with all studies 
of single gene associations with 
complex diseases, this study could 
not address the interactions among 
genes or with environmental factors. 
In fact, the investigators estimated 
that variability of the SNCA Rep1 
promoter region may account for a 
population attributable risk of only 
3%, but might be a component cause 
of a constellation of genetic and 
environmental factors that confer 
substantially larger population 
effects.

Example 3: Interaction of 
estrogen receptor and ApoE 
genetic polymorphisms in 
Alzheimer's disease

A study was conducted in Italy of the 
single and combined associations 
of two candidate genes, ApoE-ε4 
and the estrogen receptor-α (ER-
α) gene, in a case–control study of 
131 non-familial AD cases and 109 
age-matched controls, comprised 
mostly of cases’ spouses (82). 
The rationale for selecting these 
candidate genes was provided by 
previous studies demonstrating 
strong risks related to ApoE-ε4, 

and suggestions from the literature, 
albeit controversial, that estrogen 
may protect against dementia 
(82,83). Estrogenic activity is known 
to be mediated by α and β estrogen 
receptors; reduced AD risks among 
users of estrogen replacement 
therapy has been reported previously 
(83). Also, previous research 
indicated variable associations 
between two ER-α intronic single 
nucleotide polymorphisms (SNPs) 
in intron 1, rs2234693 [-397 T→C] 
and rs9340799 [-351 A→G], and AD 
(84,85).

Consistent with previous 
literature, ApoE-ε4 carrier status 
was strongly associated with AD in 
both women and men, as indicated 
by observed relative risk estimates 
OR = 6.48 (95% CI = 2.99–14.0) 
and 4.67 (95% CI = 1.98–11.0), 
respectively. No associations with AD 
were detected for either of the ER-α 
SNPs individually or in combination. 
In contrast, analysis of the joint 
effects of ApoE-ε4 and the ER-α 

intronic alleles revealed evidence for 
interactive effects, as shown in Table 
22.3. The strongest associations 
were observed in women for the 
combinations of ApoE-ε4/-397 T 
allele (OR = 7.24; 95% CI = 2.22–
23.6) and ApoE-ε4/-351 A allele 
(OR = 8.33; 95% CI = 1.73–40.1). 
Evidence of combined gene effects 
was considerably weaker in men. 
Notwithstanding the relatively small 
sample size of the study, this pattern 
of results could be interpreted as a 
gender-specific interaction between 
an established high risk allele, 
ApoE-ε4, and ER-α gene intronic 
variants, where the presence of 
the latter enhances the effects of 
ApoE-ε4. Moreover, the results from 
this study are strengthened insofar 
as they replicate findings from a 
previous study (85).

As this example illustrates, 
investigation of associations with 
combinations of gene variants, 
rather than a focus on a single gene, 
can provide further etiologic insight. 

Table 22.3. Alzheimer's disease risk in relation to combinations of ApoE-ε4 and 
estrogen receptor α (ER-α) intronic alleles

† Odds ratio (95% confidence interval)
‡ ER-α intron 1 −397 T/C (rs2234693); ER-α intron 1 −351 A/G allele (rs9340799)
Adapted from (82).

Women Men

ApoE allele OR (95%CI)† P-value OR (95%CI) P-value

ε4+ 6.48 (2.99–14.0) <0.001 4.67 (1.98–11.0) <0.001

ε4- Reference Reference

ApoE/ER-α intron 1 −397‡

ε4+/TT or TC 7.24 (2.22–23.6) 0.001 3.47 (0.71–16.9) 0.125

ε4+/CC 2.00 (0.43–9.26) 0.375 0.80 (0.10–6.35) 0.833

ε4-/TT or TC 0.76 (0.27–2.12) 0.603 0.51 (0.12–2.07) 0.343

ε4-/CC Reference Reference

ApoE/ER-α intron 1 −351‡

ε4+/AA or AG 8.33 (1.73–40.0) 0.008 2.31 (0.44–12.1) 0.320

ε4+/GG 1.25 (0.18–8.44) 0.819 0.60 (0.05–6.80) 0.680

ε4-/AA or AG 0.73 (0.18–2.96) 0.656 0.37 (0.08–1.69) 0.199

ε4-/GG Reference Reference
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This approach can be especially 
informative when one of the genes 
under study bears a predictable 
relation to disease risk, as is the 
case for ApoE and AD.

Example 4: Interaction of 
pesticides and CYP2D6 
genetic polymorphism in 
Parkinson's disease

Potential interactions between 
environmental and genetic risk 
factors for neurodegenerative 
diseases have become an 
increasingly prominent research 
focus, with the growing recognition 
that some persons may be especially 
susceptible to environmental 
toxicants, as illustrated by the 
following example.

The interaction between 
genetic polymorphisms of the 
cytochrome P4502D6 (CYP2D6) 
gene and pesticide exposure were 
investigated in a case–control study 
of PD in France (86). Pesticides 
have been regarded as plausible 
causes of non-familial PD, as 
reviewed earlier in this chapter. 
The CYP2D6 enzyme is known 
to metabolize MPTP and various 
toxic environmental chemicals, 
including some pesticides (87,88). 
The CYP2D6 gene is polymorphic, 
with carriers of the *4 (minor) allele, 
which contains a SNP at an intron/
exon junction, having diminished 

metabolic capacity proportional 
to the number of variant alleles. 
Pesticide exposures, determined 
by exposure assessment experts, 
and CYP2D6 genotypes were 
compared between 190 PD 
cases identified from the French 
health insurance organization for 
workers in agricultural occupations 
(Mutualite Sociale Agricole), and 
419 age/gender/regionally-matched 
controls who were also members 
of this insurance organization (86). 
A qualitative exposure gradient was 
defined as “no use,” “gardening use,” 
and “professional use,” assuming 
that the last category would 
represent the heaviest exposures. 
Analyses were adjusted for cigarette 
smoking, in addition to the matching 
variables.

For the entire study population, 
there was a modest gradient of 
PD associated with the CYP2D6*4 
genotypes: OR = 1.02; 95% CI = 
0.69–1.51 and OR = 1.56; 95% CI 
= 0.67–3.65 for carriers of one and 
two *4 alleles, respectively. The joint 
effects of pesticides and CYP2D6*4 
(Table 22.4) suggest synergism, 
whereby the most pronounced 
exposure-response trend was found 
among carriers of two *4 alleles, 
who would be classified as ‘poor 
metabolizers.’

The notable strengths of the 
study were the selection of a study 
population with a relatively high 

prevalence of the environmental 
exposure of interest, pesticides, 
and the choice of a candidate 
gene variant whose functional 
consequences are well understood 
and plausibly related to pesticide 
metabolism. As with most case–
control studies, this study was 
prone to exposure assessment 
uncertainties, particularly insofar as 
quantification of exposure levels to 
specific pesticides was not possible.

Example 5: Protein analysis 
of cerebrospinal fluid in 
Alzheimer's disease

Protein biomarker profiles in 
biological tissues have promise 
as early markers of disease 
onset and progression that may 
ultimately have diagnostic and 
medical management benefits. In 
addition, protein measurements 
may reveal characteristic patterns 
of response to toxic endogenous 
or exogenous agents that predict 
disease occurrence. Thus, from a 
neuro-epidemiologic standpoint, 
protein profiles offer several 
potential advantages by serving as 
early or surrogate disease markers, 
improving diagnostic accuracy, 
and suggesting host susceptibility 
factors. Because of its intimate 
anatomical and biochemical relations 
to the brain, cerebrospinal fluid 
(CSF) is the most relevant biological 

Table 22.4. Joint effects on Parkinson's disease risk of CYP2D6*4 genotype and pesticide exposure

‡ Odds ratio (95% confidence interval). Adapted from (86).

Pesticide exposure

CYP2D6*4 None Gardening use Professional use

Alleles OR (95%CI)‡ OR (95%CI) OR (95%CI)

0 1.00 [reference] -- 1.73 (0.86–3.48) 0.12 1.85 (0.96–3.55) 0.06

1 1.39 (0.70–2.76) 0.35 1.17 (0.49–2.77) 0.72 1.83 (0.84–3.95) 0.13

2 0.41 (0.04–3.99) 0.44 2.75 (0.55–13.7) 0.22 4.74 (1.29–17.5) 0.02
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medium that can be accessed ante-
mortem for epidemiologic studies 
of neurodegenerative disorders. In 
contrast, brain tissue can only be 
examined directly post-mortem, and 
blood or urine protein levels may 
reflect biological processes that are 
not-specific to the brain.

CSF levels of Αβ-amyloid1–42 
(Αβ1−42) have been consistently 
associated with AD. Specifically, 
Αβ1−42 levels are lower, whereas tau 
protein levels are higher in AD cases 
compared to controls (89). This 
pattern probably reflects impaired 
brain clearance (via CSF) of Αβ1−42 
and overexpression of tau protein 
in AD. A study was conducted in 
Sweden to determine whether 
these proteins were predictive of 
conversion to AD among persons 
with mild cognitive impairment (MCI) 
(90). These groups were compared 
at baseline: 93 AD cases, 52 MCI 
cases, and 10 healthy controls. AD 
and MCI were diagnosed according 
to established criteria. During a 
follow-up period of 3–15 months, 
29 MCI cases were determined to 
have converted to probable AD. As 
summarized in Table 22.5, Αβ1−42 
levels decreased consistently from 
lowest to highest among AD cases, 
MCI converters, MCI non-converters 
and healthy controls. For tau protein, 
a similar pattern in the opposite 
direction was observed. Relative to 
reference values established in an 
earlier study of 231 healthy Swedish 

subjects (91), abnormally low Αβ1−42 
levels were associated with an MCI 
conversion sensitivity of 59% and 
specificity of 100%. Sensitivity and 
specificity for MCI conversion to AD 
associated with abnormally high tau 
protein levels were 83% and 90%, 
respectively.

This study provides a vivid 
illustration of the utility of measuring 
well-established biomarkers of 
a defined clinical outcome, AD, 
to assess clinical progression 
from earlier symptomatic states. 
Serial measurements in addition 
to baseline assessments of Αβ1−42 
and tau among the MCI and control 
groups would have been valuable, 
although the requirement of multiple 
lumbar punctures would certainly 
have posed a logistical hurdle. 
The relatively small sample size, 
especially of healthy controls, is 
another limitation, partly offset by 
the availability of normative data 
obtained previously in a larger 
sample.

Strengths, limitations 
and lessons learned

There are some formidable and 
characteristic challenges that 
epidemiologists confront when 
investigating the causes and 
prognostic factors for AD, PD and 
ALS. Each is a complex disorder with 
varying phenotypes that may in fact 
represent different clinical entities. 

Subdivisions of disease phenotypes 
into familial and non-familial forms, 
or with respect to age at onset, is 
a convenient approach, although 
may be fraught with considerable 
uncertainty. For example, age 50 
is often cited as the demarcation of 
early- versus late-onset PD, largely 
based on the onset ages of familial 
cases, yet the age distinction is 
arbitrary. From an epidemiologic 
perspective, the relative 
homogeneity or heterogeneity of 
any disease rubric is especially 
important for identifying risk and 
prognostic factors. The generally 
slow rate of disease progression 
among the majority of cases (non-
familial) of the neurodegenerative 
diseases complicates establishing 
precise disease onset times. 
The net result is often inclusion 
of prevalent rather than incident 
disease cases in epidemiologic 
studies, and attendant biases due 
to differential survival associated 
with risk factors of interest. Other 
challenges, which are not unique 
to research on neurodegenerative 
disorders, include uncertainties of 
diagnoses that are based solely 
on clinical examination; reliance 
on questionnaire responses, 
sometimes by proxies, such as with 
AD, to determine exposure status; 
availability of very few population-
based neurologic disease registries 
(in contrast to cancer registries, 
for example); and typically low 

Table 22.5. Cerebrospinal fluid levels of β-amyloid and tau protein in relation to conversion from mild cognitive impairment (MCI) 
to Alzheimer's disease

CSF protein (ng/l)
Group†

AD (n=93) MCI converters  (n=29) MCI non-converters (n=23) Healthy controls (n=10)

Αβ-amyloid1-42 545 (± 230) 577 (± 197) 805 (± 368) 962 (± 182)

Tau 725 (± 266) 640 (± 162) 576 (± 275) 341 (± 118)

† Mean (± standard deviation). Table compiled from (90).
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response rates among controls 
when biological sampling is included 
in a study.

Due to the rarity of AD, PD 
and ALS, population-based case–
control studies have been the 
predominant study design. There 
have been some cohort studies in 
which neurodegenerative and other 
diseases have been investigated. 
Large cohort sizes and thorough 
exposure assessments are needed. 
The Nurses’ Health Study cohort 
in the USA is a good example of 
a valuable study population for 
investigating associations with 
common exposures, such as smoking 
(37). Cohorts with well-characterized 
environmental exposures can also 
be investigated for associations with 
specific agents, such as a study of 
neurodegenerative disease mortality 
among US workers exposed to 
polychlorinated biphenyls (92). 
Occupational cohorts, however, 
generally are limited by relatively 
small numbers of cases and 
reliance on death certificates for 
case identification. Investigations 
of disease incidence or clinical 
indicators of neurologic disease, 
such as symptoms determined from 
standardized clinical exams, may 
be desirable where there are clear 
a priori hypotheses regarding risk 
in relation to specific exposures. 
Studies of PD-related signs and 
symptoms among cohorts of career 
orchardists exposed to pesticides 
(93) and welders exposed to 
manganese and other metals (58) 
typify this approach.

With respect to study size, large 
samples are generally required 
to detect low to modest risk 
associations, such as those usually 
observed in case–control studies 
of candidate genes. Collaborative 
pooled studies following similar 
protocols, as illustrated in the 
example of SNCA and PD (81), are 
thus highly desirable in that they 

offer the opportunity to examine 
consistency of associations among 
various populations, with attendant 
increased statistical power.

The issue of sample size is 
especially relevant for genome-
wide association studies (GWAS), 
which have become increasingly 
prominent. Typically, GWAS 
include extremely large sample 
sizes (thousands of cases and 
controls) assembled across multiple 
collaborating studies to achieve 
adequate statistical power to detect 
modest associations. A particular 
advantage of this method  is the 
opportunity to replicate findings in 
heterogeneous study populations 
worldwide with high levels of 
statistical power. This is illustrated 
by two large independent GWAS 
of PD among persons of European 
ancestry (94) and of Japanese 
ancestry (95), both of which 
identified SNCA and LRRK2 as 
important disease-related genetic 
loci. Similarly, several GWAS for AD 
have consistently replicated findings 
for ApoE, but differences were 
noted for other loci (96–98). For a 
comprehensive review of GWAS 
results, the reader is referred to the 
National Human Genome Research 
Institute’s GWAS catalogue, at 
http://www.genome.gov/26525384.

Future directions 
and challenges

Molecular epidemiology cannot 
eliminate or mitigate all of the 
previously mentioned research 
shortcomings. Nevertheless, there 
are some distinct advantages to 
incorporating molecular methods 
into neuroepidemiologic studies. 
As demonstrated with the examples 
presented in this chapter, the 
range of potential benefits include: 
improved diagnoses and phenotypic 
characterization, identification of 
genetic susceptibility factors, and, 

at least in theory, more precise 
exposure assessments in some 
instances.

A particular challenge that 
arises in molecular epidemiologic 
studies of neuro-degenerative 
disorders is that the target tissues 
of the central nervous system 
are not directly accessible except 
in post-mortem studies, which 
typically have epidemiologic 
shortcomings (e.g. convenience 
sampling). Consequently, surrogate 
measurements of toxicants, 
metabolites and other biomarkers are 
necessitated. The exception is DNA 
that can be assayed for genotyped 
validity from multiple tissue sources. 
Figure 22.1 summarizes the inter-
relations between tissue sources for 
molecular biomarker assessment.

Molecular methods to date 
have mainly been applied to 
address relatively narrowly defined 
hypotheses, such as associations 
with a small number of genetic 
polymorphisms or exposure 
biomarkers. Nevertheless, as 
molecular technology becomes 
increasingly affordable and 
flexible, epidemiologists will be 
able to capitalize on technological 
advances to broaden the scope 
of research. GWAS and extensive 
linkage studies of PD (99) and ALS 
(100), and broad-based proteomic 
assessments of CSF in AD (101), 
indicate that this trend is underway. 
GWAS approaches are well suited 
to identifying common variants 
associated with disease, but other 
types of gene variation, namely 
rare variants and/or copy number 
variation, are not amenable to 
the current genotyping platforms. 
Hence, newer, more advanced 
approaches (whose development 
is in progress) will be necessary 
to query the genome fully, and in 
some cases this may necessitate 
even larger sample sizes. Molecular 
methods should also be particularly 
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advantageous for investigating 
risk and prognostic factors for pre-
clinical neurodegenerative disease 
outcomes, such as neuroimaging 
abnormalities or proteomic profiles, 
for which there are demonstrated 
high predictive values for late-stage 
disease.

Ultimately, consistent findings 
from epidemiologic studies, focused 
on narrow hypotheses that are 
corroborated by results from broader-
based molecular epidemiology 
investigations, will be important for 
the prevention and management of 
the neurodegenerative diseases.

Figure 22.1. Inter-relations between brain, cerebrospinal fluid and blood for molecular biomarker assessment

CSF, cerebrospinal fluid; CNS, central nervous system; BBB, blood-brain barrier; BCSFB, blood-cerebrospinal fluid barrier.
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Summary

Molecular tools have enhanced our 
understanding of the epidemiology 
of infectious diseases by describing 
the transmission system, including 
identifying novel transmission 
modes and reservoirs, identifying 
characteristics of the infectious 
agent that lead to transmission and 
pathogenesis, identifying potential 
vaccine candidates and targets for 
therapeutics, and recognizing new 
infectious agents. Applications of 
molecular fingerprinting to public 
health practice have enhanced 
outbreak investigation by objectively 
confirming epidemiologic evidence, 
and distinguishing between time-
space clusters and sporadic cases. 
Clinically, molecular tools are used to 

rapidly detect infectious agents and 
predict disease course. Integration 
of molecular tools into etiologic 
studies has identified infectious 
causes of chronic diseases, and 
characteristics of the agent and 
host that modify disease risk. The 
combination of molecular tools with 
epidemiologic methods provides 
essential information to guide 
clinical treatment, and to design and 
implement programmes to prevent 
and control infectious diseases. 
However, incorporating molecular 
tools into epidemiologic studies of 
infectious diseases impacts study 
design, conduct, and analysis.

Historical perspectives

The development of epidemiology 
as a discipline was roughly 
simultaneous with the development 
of microbiology. As the presence 
of infectious agents was linked to 
disease, laboratory methods were 
incorporated into epidemiologic 
studies. One epidemiologic hero is 
John Snow, who identified a strong 
epidemiologic association between 
sewage-contaminated water and 
cholera. Despite extremely well-
documented evidence supporting 
thoroughly researched and 
reasoned arguments, his findings 
remained in doubt for some time. 
Max Von Pettenkofer, 1818–1901, 
a contemporary of Snow and 
also an early epidemiologist, is 
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related (in a perhaps apocryphal 
story) to have drunk a glass of the 
stool of someone with cholera to 
test the hypothesis; Pettenkofer 
remained disease-free. Snow’s 
conclusions were not generally 
accepted until 25 years after his 
death, when the cholera vibrio was 
discovered by Joseph Koch, who 
definitively demonstrated the causal 
relationship between the vibrio and 
cholera (1). The strategy of isolating 
an organism from an ill individual, 
showing it can cause disease in a 
disease-naïve individual, and then 
be re-isolated as described in the 
landmark postulates of Henle and 
Koch reflects how incorporating 
laboratory methods enhances our 
ability to make causal inferences 
about disease transmission and 
pathogenesis from even the most 
carefully researched epidemiologic 
evidence.

Early epidemiologists made 
tremendous strides with what are 
now relatively simple molecular 
tools: using microscopy for 
identification, which showed that 
agents not visible by microscope 
caused disease (“filterable”); and 
detection of protective antibodies 
with haemagglutination assays. 
For example, Charles Nicolle and 
Alphonse Laveran showed that a 
protozoan caused malaria (2,3), 
and Charles Nicolle demonstrated, 
by injecting a monkey with small 
amounts of infected louse, that 
lice transmitted typhus. He also 
observed that some animals carry 
infection asymptomatically (3). 
Wade Hampton Frost used the 
presence of protective antibodies 
in the serum of polio patients to 
explain the emergence of polio 
epidemics (4). These early, 
dramatic successes combined with 
the successful development and 
implementation of vaccines against 
major childhood diseases, including 
smallpox, measles, diphtheria, 

whooping cough and polio, and 
the identification of antibiotics, 
led to a rather simplistic view of 
infectious disease, and ultimately 
to the incorrect impression that we 
might “close the book” on infectious 
disease during the 20th century. This 
assertion was quickly undermined 
in the last quarter of the 20th 
century by the emergence of new 
infectious agents such as human 
immunodeficiency virus (HIV), Ebola 
and Hantavirus, the re-emergence 
of tuberculosis and malaria, and 
the transcontinental transmission of 
agents such as West Nile Virus and 
Dengue.

Infectious disease 
epidemiologists were early adapters 
of modern molecular biologic 
techniques to epidemiology, such 
as those used in genomics. Indeed, 
the term molecular epidemiology 
came from infectious disease work 
(5). Modern molecular techniques 
have fundamentally changed our 
understanding of the epidemiology 
of infectious agents. Characterizing 
the genetics of human pathogens 
has revealed the tremendous 
heterogeneity of various infectious 
agents, and the rapidity with which 
they evolve. This heterogeneity 
and rapid evolution helps 
explain our difficulties in creating 
successful vaccines for the more 
heterogeneous organisms, such 
as Neisseria gonorrhoeae. With 
the increased ability to detect host 
immunologic response to infectious 
agents, we increase our ability to 
test and refine our theories about 
the extent and duration of immunity, 
a key parameter in disease spread. 
Molecular analysis has also revealed 
the role of infectious agents in the 
initiation and promotion of previously 
classified chronic diseases. Further, 
molecular tools have enhanced our 
understanding of the epidemiology 
of infectious diseases by describing 
the transmission systems, identifying 

novel transmission modes and 
reservoirs, identifying characteristics 
of the infectious agent that lead to 
transmission and pathogenesis, 
revealing potential targets for 
vaccines and therapeutics, and 
recognizing new infectious agents. 
The combination of molecular tools 
with epidemiologic methods thus 
provides essential information to 
design and implement programmes 
to prevent and control infectious 
diseases.

Outbreak investigations

Molecular tools have substantially 
improved inferences from outbreak 
investigations. We can more rapidly 
provide laboratory confirmation 
of disease diagnosis, and detect 
the presence of difficult-to-culture 
or uncultivable agents, enhancing 
the sensitivity and specificity of 
case definitions. Molecular tools 
make it possible to determine if 
the epidemiologically identified 
outbreak source, such as a 
food item, contains the infecting 
organism, and if the identified 
organism has the same genotype 
causing the outbreak, enhancing 
causal inference. Molecular typing 
can also be used to determine order 
of transmission (Table 23.1). It is not 
surprising that molecular typing has 
become a standard tool in outbreak 
investigation.

Case definition is an essential 
component of successful outbreak 
investigation. The detection of the 
infectious agent from all cases 
more accurately classifies cases 
than clinical diagnosis alone; 
molecular typing further minimizes 
misclassification. For point-source 
outbreaks, all individuals are 
expected to be infected with the 
same strain of a particular genus and 
species; for propagated outbreaks 
similar molecular fingerprints are 
expected that vary only in the 
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mutations accrued over repeated 
transmission events. The resulting 
reduction of misclassification of 
disease status increases the study 
power and the validity of inferences.

The first and most typical 
application of molecular tools in an 
outbreak situation is to confirm or 
refute epidemiologic information. For 
example, in a foodborne outbreak, 
isolates might be collected from 
all those with disease, the person 
suspected to have introduced the 
infected agent into a food item, and 
the suspected food item. Figure 23.1 
shows the molecular fingerprints, 
determined using pulsed-field 
gel eletrophoresis (PFGE), of a 
foodborne Staphylococcus aureus 
(S. aureus) outbreak isolated from 
the suspected food that had the 
same molecular type as S. aureus 
found in the food handler, and in 
those with disease.

In most foodborne outbreaks, 
neither specimens from all 
individuals that meet the case 
definition, nor the putative food is 
available for testing by the time it is 
identified. With clear epidemiologic 
evidence, the demonstration of 
genetic relatedness between 
cases and the putative item is 
solely confirmatory, and adds little 
unless the food vehicle has not 
been previously identified. For 
example, epidemiologic evidence 
linked consumption of toasted oats 
cereal with a multistate outbreak of 
Salmonella in the USA. A culture 
of the cereal from one opened 
and two unopened boxes found 
Salmonella agona (S. agona) with 

the same PFGE pattern as the S. 
agona causing the outbreak (7). 
This was the first time a commercial 
cereal product was implicated in 
a Salmonella outbreak, so the 
PFGE evidence was particularly 
compelling.

A second application in an 
outbreak investigation is determining 
whether cases occurring in the 
same time frame are part of the 
same outbreak. With disseminated 
outbreaks, there can be apparent 
sporadic cases that are actually 
linked. For example, in 1997 a large 
(n = 126) foodborne outbreak of 
hepatitis A occurred in Michigan (8). 
Epidemiologic evidence implicated 
frozen strawberries from a single 
processor. During the same time 
period, a much smaller outbreak (n = 
19) occurred in Maine, and sporadic 

cases occurred in three other states 
among individuals suspected to 
have consumed frozen strawberries 
from the same processor. The 
genetic sequences of the virus 
from all tested individuals were 
the same, confirming a common 
source of infection for all cases. 
Without molecular fingerprinting, it 
would have been very difficult, if not 
impossible, to link these apparently 
disparate cases to one common 
source using solely epidemiologic 
methods. This example also 
highlights the importance of using 
molecular tools with surveillance, 
discussed in detail in the next 
section.

A third application is to 
determine the order of transmission. 
This application has been 
particularly useful in forensic cases. 
Understanding the evolution of an 
organism and the ability to trace 
the order of that evolution has 
made it possible to detect cases 
where an individual deliberately 
infected others. For example, a 
gastroenterologist was convicted of 
infecting a former girlfriend with the 
blood of an HIV patient. A variety 

Table 23.1. Applications of molecular tools in outbreak investigations

• Enhance case definitions

• Determine whether cases occurring in the same time frame are part of the same outbreak

• Confirm or refute epidemiologic inferences regarding etiologic pathways

• Determine the order of transmission

Figure 23.1. Example of molecular typing using pulsed-field gel electrophoresis 
(PFGE). In this foodborne outbreak of methicillin sensitive Staphylococcus aureus, 
isolates from food handler (lane 6), cases of food poisoning (lanes 7-9, 11) and 
infected food (lane 12) had the same PFGE type (6).
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of molecular analyses, including 
phylogenetic analyses of HIV-1 
reverse transcriptase and env DNA 
sequences isolated from the victim, 
the patient, and a local population 
sample of HIV-1-positive individuals, 
strongly supported not only that 
there was transmission between 
the two individuals, but who had 
infected whom (9).

Surveillance

Surveillance is an essential 
component of a successful public 
health infrastructure. Laboratories 
are key components of many 
surveillance systems; hospital 
laboratories may be part of regional 
surveillance networks, as well as 
part of a local surveillance system. 
Monitoring of infectious disease 
isolates identifies time-space 
clusters of infection; molecular typing 
distinguishes between infectious 
agents of the same species, allowing 
differentiation among clusters of 
disease occurring by chance and 
true outbreaks. True outbreaks and 
clusters of the same strain can be 
traced back to a common source 
and presumably are amenable 
to public health intervention. 
Spurious clusters cannot, and 
their investigation wastes time and 
resources. Applying molecular tools 
to surveillance isolates can also 
identify new strains with increased 
virulence or changing patterns of 
resistance (Table 23.2).

Hospitals have high endemic 
rates of bacterial infection, but 
the infections are often due to a 
bacterial strain that was colonising 
an individual before entering the 
hospital, for example, S. aureus. 
The prevalence of S. aureus 
colonization among the general 
population is 32% in the nares (10), 
but much higher in patients and 
personnel in hospitals and long-
term care facilities. By typing strains 

causing infection among patients, a 
distinction can be made between a 
strain from the community and one 
circulating endemically or causing 
an outbreak within the hospital. The 
prevention and control strategies 
are different in each case, and thus 
it is important to make a distinction 
between them.

A second application of 
molecular tools in surveillance is 
to identify clusters requiring further 
investigation. By monitoring isolates 
from time-space clusters for the 
presence of a common molecular 
type, one can distinguish between 
common-source outbreaks that 
are local and those that are widely 
disseminated. Processed foods 
may be distributed widely, as 
demonstrated in the earlier example 
of the Michigan hepatitis A outbreak 
caused by frozen strawberries 
(8), so adding molecular typing to 
laboratory monitoring of specimens 
is essential. The US Centers for 
Disease Control and Prevention’s 
PulseNet, a molecular subtyping 
surveillance system for foodborne 
bacterial disease, monitors 
Escherichia coli (E. coli) O157:H7, 
Salmonella, Shigella, and Listeria 
monocytogenes, and other bacterial 
pathogens (11) causing disease 
throughout the United States. In 
2006, clusters of a common E. coli 
O157:H7 pulsed-field type were 
observed at several monitoring sites. 
An investigation revealed the source 
of the outbreak to be washed, pre-
packaged, fresh spinach. Once the 
epidemiologic investigation identified 
spinach, the public was notified and 

E. coli O157:H7 with the putative 
pulsed-field type was isolated from 
an unopened package of spinach 
from an individual’s home. Molecular 
typing enabled rapid linkage of cases 
occurring across several states, the 
identification of the disease source, 
and facilitated quick public health 
intervention.

A third application is the 
detection of infectious agents 
resistant or insensitive to prevailing 
therapies. A cluster of drug-resistant 
agents is often the first indication of 
an outbreak, particularly in a hospital 
setting. Mobile genetic elements that 
confer resistance can be exchanged 
between bacteria, even across 
species, complicating outbreak 
investigation. Molecular tools can 
distinguish between a common 
strain of a single bacterial species or 
a mobile genetic element, conferring 
antibiotic resistance across strains 
of the same or even different 
species. Outbreak control must 
take into account whether a mobile 
genetic element is being exchanged 
between species or if there is clonal 
spread of a single organism.

In the United States there is 
selective culture of organisms. 
In outpatient settings the most 
common bacterial infections, urinary 
tract infection and pneumonia, are 
generally treated empirically. Only 
if treatment fails is a culture taken. 
Thus surveillance for antimicrobial 
resistance reflects a biased sample, 
suggesting the subset most likely 
to have a resistant infection. The 
inherent selection biases should 
be taken into consideration when 

Table 23.2. Applications of molecular tools in surveillance

• Distinguish between time-space clusters and sporadic cases of the same infection

• Identify clusters requiring further investigation

• Detect the emergence of strains with new resistance profiles

• Estimate prevalence of infection and observe trends over time
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suggesting policy changes in 
therapies based on surveillance 
data.

Molecular tools have also 
been applied to screen biological 
specimens collected as part of 
ongoing national databases for 
the presence of known and newly 
discovered infectious agents. For 
example, blood samples are collected 
as part of the National Health and 
Nutrition Examination Survey, a 
multistage probability sample of 
the United States conducted every 
10 years. This has enabled the 
estimation of the prevalence of 
various infectious agents, including 
hepatitis B and C viruses, human 
herpes virus 8 (which causes Kaposi 
sarcoma) and herpes simplex 
viruses 1 and 2. These studies 
provide insight into the frequency 
of new agents, and the distributions 
of agents by spatial-temporal and 
host characteristics. Such studies 
are extremely useful for generating 
hypotheses about transmission 
systems, potential prevention and 
control strategies, evaluating the 
effectiveness of ongoing prevention 
and control programmes, and 
observing time trends.

Describe the transmission 
system

The transmission system of an 
infectious agent determines how 

infectious agents are circulated 
within a population, and includes 
the transmission mode, interactions 
between the infectious agent and 
the host, the natural history of the 
infection, and interactions between 
hosts that lead to infection. The 
emergence and re-emergence 
of a variety of infectious agents 
highlights the utility of understanding 
the various transmission systems, 
as this understanding is central 
to identifying effective prevention 
and control strategies. Combining 
molecular typing methods with 
questionnaire data can confirm 
self-reported behaviours, especially 
important when the validity of 
self-report may be in doubt, such 
as contact tracing of sexually 
transmitted diseases. As described 
in detail below, molecular tools 
facilitate estimating parameters key 
to understanding the transmission 
system, including the incidence, 
prevalence, transmission probability, 
duration of carriage, effective dose, 
and probability of effective contact.

Estimation of key parameters

When using simple transmission 
models to estimate R0, the average 
number of new cases generated 
from each infectious case in 
a fully susceptible population, 
the transmission probability per 
effective contact is needed, as well 

as the duration of infectivity and the 
rate of effective contact. Molecular 
tools can usefully be applied to 
estimate each of these parameters. 
Prior to the availability of modern 
molecular tools, our ability to 
empirically estimate transmission 
probabilities was limited. For 
example, the transmission of a 
sexually transmitted infection can 
be estimated by following couples 
where one is infected and the other 
is susceptible; however, without 
molecular tools it is difficult to 
ensure that the transmission event is 
not attributable to a person outside 
the partnership. For respiratory 
infections, such as pulmonary 
tuberculosis, our estimates of 
the transmission probability and 
natural history have been based on 
careful documentation of outbreaks. 
However, as we have been able to 
type individual strains, it has been 
determined that tuberculosis cases 
that previously were considered 
sporadic, and not part of apparent 
time-space clusters (because the 
exposure to the index case was 
very limited), were indeed part of the 
same outbreak (12).

Key transmission system 
parameters are incidence, 
prevalence, duration of infection, 
and transmission probabilities. The 
estimation of these parameters 
assumes the accurate measure 
of identical strains or subtypes 
of an infectious agent. As we 
have increased our ability to type 
infectious agents, we have been 
forced to re-evaluate many of our 
previous assumptions. One key 
assumption is that pathogens are 
clonal; that is, during active infection 
all infecting organisms are the same. 
A second, parallel assumption is 
that during an infectious process the 
pathogenic organism will be the one 
most frequently isolated from the 
infected site. For many diseases, 
we now know these assumptions 

Table 23.3. Components of the transmission system and associated parameters

Component Parameter

Occurrence in a population Incidence
Prevalence

Transmission mode Probability of transmission given contact

Natural history of infection Duration of infection

Interactions between agent and host Effective dose

Interactions between hosts leading to 
transmission

Probability of contacting an infected indivi-
dual
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are false. For example, individuals 
can be infected with different strains 
of human papillomavirus (HPV), 
gonorrhea and even tuberculosis. 
During a diarrheal episode, the 
predominant organism isolated 
from the stool may not be the one 
causing the symptoms: a toxin-
secreting organism occurring at 
low frequency may be the culprit. 
For infectious agents that also 
are human commensals, such as 
Streptococcus agalactiae, strains 
causing disease may be different 
from normal inhabitants and 
different strains may have different 
transmission systems.

These observations have 
profound impacts on the conduct 
of future studies. If the population 
genetic structure of pathogens is not 
clonal and the pathogen is not readily 
isolated, this must be reflected in 
the sampling of isolates for study. 
Multiple isolates must be sampled 
and tested from an individual. 
For example, if there is a second 
strain only 5% of the time and the 
pathogen is uniformly distributed 
in the sample, 28 different isolates 
must be sampled from an individual 
to reliably detect the second strain. 
Further, if an infectious agent 
mutates rapidly within a host, such 
as HIV, determining the mutation 
rate will be essential for accurately 
estimating transmission probabilities 
and following transmission chains.

As molecular tools can detect 
the presence of the organism or host 
response to a specific organism, 
in some cases, for a particular 
strain (13), studies can detect 
both incidence and prevalence of 
asymptomatic infection and clinical 
disease. Understanding the full 
extent of the circulation of a particular 
infectious agent is essential for 
making accurate predictions and 
determining appropriate prevention 
and control strategies.

The duration of carriage can 
be estimated from the prevalence 
and incidence, presuming that the 
average duration across strain 
type is of interest. However, if 
duration is short but incidence is 
high, an individual might become 
re-infected with a different strain 
type, suggesting a longer duration if 
strain types are not determined. By 
contrast, if a strain mutates rapidly 
within the human host, duration of 
carriage might be underestimated. 
Thus, strain-specific estimates 
of prevalence and incidence are 
essential to our understanding 
of disease etiology, especially if 
different strains have different 
propensities to cause diseases.

Using molecular tools 
to estimate contact patterns

Molecular tools can also assist in 
the estimation of contact patterns 
by identifying asymptomatic and low 
levels of infections. Asymptomatic 
infection is often a key component 
in maintaining disease transmission. 
For example, in a study of intra-
family transmission of Shigella, 
asymptomatic carriage increased 
risk of a symptomatic episode 
within 10 days by nine-fold (14). 
Molecular typing can also be used 
to enrich and validate contact 
tracing information. The addition of 
molecular typing to epidemiologic 
information on gonorrhea cases in 
Amsterdam identified large clusters 
of individuals with related strains, 
individuals infected with different 
strains at different anatomical sites, 
and persons with high rates of re-
infection (15). The results suggested 
that the transmission networks for 
men who have sex with men and 
for heterosexuals were essentially 
separate—a key public health 
insight for planning interventions.

Increase understanding 
of the epidemiology 
of infectious diseases

While the contributions of molecular 
tools to outbreak investigation and 
surveillance have been substantial, 
there have also been significant 
contributions to our understanding 
of the epidemiology of infectious 
diseases. Molecular tools enable 
us to trace the dissemination of a 
particular subtype across time and 
space, and thus develop theories 
of transmission and dissemination; 
determine the origin of an epidemic, 
and therefore test theories 
about reservoirs and evolution 
of a particular agent; follow the 
emergence of new infections as 
they cross species, testing our 
hypotheses about the apparent 
transmissibility and rate of evolution; 
and follow mobile genetic elements 
conferring antimicrobial resistance 
or virulence between strains within 
a species or between species, 
and so develop theories about 
evolution and transmission within 
the populations of infectious agents.

Tracing the dissemination 
of infectious agents across 
time and space

Infectious agents are constantly 
emerging and re-emerging. Some 
agents, like influenza, have a well-
understood pattern, where new 
strains generally emerge from 
southeastern Asia. This allows not 
only set up of sentinel surveillance 
points, but prediction, with some 
accuracy, of which influenza 
strain type(s) are most likely to 
cause the next epidemic. As the 
genetics of influenza is fairly well-
understood, appropriate vaccines 
for known variants can be prepared. 
The difficultly is when the virus 
undergoes an antigenic shift. At 
this writing, an influenza A strain 
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(H5N1, also known as avian or bird 
influenza) has repeatedly caused 
human infection with very high case 
fatality rates (~50%), although the 
chains of transmission have been 
relatively short and the total number 
of cases is relatively small. However, 
there is an ongoing widespread 
epidemic among wild birds, and 
there have been several outbreaks 
among domestic birds, resulting 
in large-scale culling of birds and 
considerable adverse economic 
impact.

Other infectious agents have hit 
by surprise, such as the emergence 
of HIV, and the migration of West 
Nile virus to the United States. 
Further, some infectious agents 
have mutated in unpredicted 
ways, such as the emergence of 
multidrug-resistant tuberculosis, 
penicillin-resistant Streptococcus 
pneumoniae, and community-
acquired methicillin resistant S. 
aureus. In addition to understanding 
the transmission system, the origin 
and source of entry of infectious 
agents into the population must be 
traceable to prevent and control the 
spread of infection. By comparing 
strains, it can be determined if there 

has been single or multiple points 
of entry, and if emerging resistance 
was from multiple spontaneous 
mutations or from dissemination of 
a single clone. For example, until 
2004, only occasional isolates of 
gonorrhea found in Sweden were 
resistant to azithromycin, and these 
cases were attributed to acquisition 
elsewhere (16). However, in 2004, 
epidemiologic evidence suggested 
that domestic transmission might 
have occurred; this was confirmed 
by molecular typing. The ongoing 
transmission of the azithromycin-
resistant strain in Sweden has short-
term implications for surveillance 
and long-term implications for 
treatment recommendations.

Streptococcus pneumoniae 
(S. pneumonia) is a major cause 
of pneumonia, but also causes 
meningitis and otitis media. A 
major human pathogen, it is one 
of the most common indications 
for antibiotic use. Resistance to 
penicillin emerged relatively slowly, 
but once it emerged it was widely 
disseminated in relatively few 
clones as defined by multilocus 
sequence typing. By contrast, the 
recent emergence of S. pneumonia 

resistant to fluoroquinolones 
has been due to a diverse set of 
genetic mutations (17), suggesting 
spontaneous emergence following 
treatment. As S. pneumonia resistant 
to fluoroquinolones rapidly followed 
the introduction of fluoroquinolones, 
alternative antibiotics will be needed 
in relatively short order to treat S. 
pneumonia infections.

Determine the origin 
of an epidemic

Molecular tools enable us to trace 
an outbreak or epidemic back in 
time to its origin, and back in space 
to its reservoir. Knowing the origin 
in time is essential for predicting 
future spread and identifying the 
reservoir for infection is central for 
controlling disease spread. The use 
of molecular techniques has solved 
long-standing mysteries, such as 
cholera’s reservoir betweencholera 
epidemics. The same strains of 
cholera that infect humans also 
thrive in aquatic environments 
(19). While the importance of pigs 
and fowl as the origin of antigenic 
shifts in the genetics of influenza is 
understood, molecular tools have 
clarified that avian influenza need 
not first pass through the pig before 
jumping to humans, and that direct 
transmission from birds to humans 
is often more virulent (20). Molecular 
tools can also provide insight into the 
origins of infection in highly endemic 
populations, such as hospitals. The 
prevalence of methicillin resistant 
Staphylococcus aureus (MRSA) 
has been steadily increasing in 
hospitals in the United States; 
in 2004 the prevalence among 
some intensive care units was as 
high as 68% (21). However, in the 
early 2000s, new strains of MRSA 
emerged among individuals in the 
community that could not be traced 
back to hospitals. Genetic typing of 
the strains confirmed that strains 

Table 23.4. Ways molecular tools increase understanding of the epidemiology of 
infectious diseases

• Tracing the dissemination of infectious agents across time and space

• Determine the origin of an epidemic

• Follow emergence of new infections

• Follow mobile genetic elements conferring virulence of antimicrobial resistance

 
Table 23.5. Applications of evolutionary theory to infectious disease epidemiology

• Identify genetic lineages

• Estimate rate of evolution 

• Generate theories about the emergence and maintenance of specific lineages of infectious 
agents
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isolated from those who had no 
epidemiologic linkage with hospitals 
had genotypically different strains 
(Figure 23.2) (18). More recently, 
community-acquired MRSA has 
joined hospital-acquired strains in 
causing infection in hospital settings 
(22).

Emergence of new infectious 
agents

Surveillance, outbreak investigation, 
sentinel networks, and the astute 
healthcare worker are keystones 
for identifying the presence of new 
disease syndromes. While a clearly 
defined clinical syndrome facilitates 
epidemiologic investigation, the 
potential for misclassification and 
associated bias can be high for non-
specific syndromes. Molecular tools, 
such as non-culture techniques, 
have dramatically improved our 
ability to rapidly identify the etiologic 
agent and develop diagnostic tools. 
In addition, detection of the agent 

improves our ability to predict 
transmission routes, and identify 
potential therapies and prevention 
strategies by analogy to similar 
organisms.

Severe acute respiratory 
syndrome (SARS) was the first 
emerging disease identified this 
century. The story of the rapid 
isolation, identification, and 
sequencing of the coronavirus 
causing SARS, is illustrative 
of the synergistic effects of the 
marriage of molecular methods 
with epidemiology. SARS was 
first reported in southern China in 
2002 and rapidly spread worldwide 
(Figure 23.3). Basic epidemiologic 
methods were essential for tracking 
the outbreak; a carefully collected 
epidemiologic case definition was 
sufficient for case ascertainment, 
clinical management, infection 
control, and identifying chains of 
transmission (23). However, key 
to characterizing and ultimately 
preventing and controlling the 

outbreak was the ability to detect 
mild cases and confirm that widely 
disseminated cases were caused 
by the same agent, which required 
a validated antibody test (24). Early 
in the epidemic there were many 
possible candidates identified as 
the causative agent, but these 
agents were not found in all SARS 
patients. A variety of state-of-the-art 
and standard molecular techniques 
were used to identify the viral agent, 
a new coronavirus. Molecular 
techniques established that the 
genetic sequences were the same 
throughout the world, and a rapidly 
developed test demonstrated that 
SARS patients had antibodies to the 
new coronavirus. Further, healthy 
controls not having SARS had no 
evidence of either past or present 
infection (25). 

Trace mobile genetic elements

Mobile genetic elements are 
sequences of genetic material 
that can change places on a 
chromosome, and be exchanged 
between chromosomes, between 
bacteria, and even between species. 
A type of mobile genetic element, 
known as a plasmid, can integrate 
directly into the chromosome or 
extra-chromosomal in the cytoplasm 
of bacteria and still code for proteins. 
The recognition of mobile genetic 
elements, and the ability to trace 
these genetic elements as they 
move within and between species, 
has caused a re-thinking of the 
rate of, and potential for, evolution 
of infectious agents. For example, 
Shiga toxin-producing E. coli 
probably emerged from the transfer 
of genes coding for Shiga toxin from 
Shigella into E. coli.

Antibiotic resistance is often 
spread via a mobile genetic element. 
These elements tend to code for 
genes providing resistance against 
multiple antibiotics. This explains 

Figure 23.2. Pulsed-field gel electrophoresis pattern relatedness of community-
associated and health care-associated methicillin resistant Staphylococcus aureus 
(MRSA) isolates to a reference strain. The reference strain was MR14, which was 
the most commonly identified pattern among Minnesota MRSA isolates with a 
community-associated case definition (18). 

Figure not available
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several apparent mysteries, such as 
the spread across several bacterial 
species within a hospital of the same 
antibiotic resistance profile, and 
why treating an individual with one 
antibiotic can result in resistance to 
multiple unrelated antibiotics.

Determine phylogenetic 
relationships

Genetic sequence and other 
molecular typing methods enable 
the construction of phylogenetic 
trees. Phylogenetics enables 
the use of evolutionary theory to 
explain epidemiologic phenomena, 
particularly emergence and 
transmission of more (or less) 
virulent strains, strains resistant to 
antimicrobials, simply to trace the 
transmission of a rapidly evolving 
species, or, in an outbreak situation, 
determine order of transmission. 
Separate phylogenies can be 
constructed for mobile genetic 

Figure 23.3. The rapid dissemination of severe acute respiratory syndrome (SARS) 
(http://yaleglobal.yale.edu/reports/images/SARS_MAP1.jpg, permission given by Yale Center for the Study of Globalization and 
YaleGlobal Online).

elements, or conserved elements 
on the chromosome.

Human immunodeficiency 
virus (HIV), which causes acquired 
immunodeficiency syndrome 
(AIDS), evolves quite rapidly even 
with a single host. Thus, the strain 
that infects an individual is not 
genetically identical to the strains 
that the individual might transmit 
to others. This property of HIV has 
made it possible to confirm the 
deliberate infection of one individual 
by another using a single blood 
sample from an individual (9) and 
to gain insight into the origin and 
spread of HIV worldwide.

There are three primary 
applications of phylogenic analyses 
in an epidemiologic context. First, 
phylogenic analysis enables us to 
determine genetic lineages. Using 
this type of analysis, researchers 
traced the introduction and spread 
of HIV in the Ukraine (Figure 
23.4) (26). They were able to 

demonstrate that two subtypes 
introduced into drug networks in 
the 1990s still contributed to the 
epidemic in 2001 and 2002, and 
that one subtype spread widely 
throughout the Ukraine and into the 
Russian Federation, the Republic 
of Moldova, Georgia, Uzbekistan 
and Kyrgyzstan. Further studies to 
determine the biologic and social 
contributions to the success of 
the one subtype over another will 
provide important insights into how 
to control HIV.

A second application is to 
determine the rate of evolution. 
This is a standard application in 
biology, but understanding how 
fast infectious agents evolve has 
profound implications for choosing 
a molecular typing technique and 
interpreting epidemiologic data. For 
example, some agents change very 
rapidly, so that the agent infecting an 
individual is different from the agent 
that is transmitted to another, for 
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example HIV. Other agents change 
very slowly, such as tuberculosis. 
Thus, the appropriate typing 
technique must be chosen, so that 
phylogeny can be used to determine 
if rapidly changing agents evolved 
from a common ancestor, and to be 
able to distinguish between slowly 
evolving isolates. A typing technique 
for a rapidly evolving agent might 
focus on a region of the genome that 
evolves relatively slowly; a typing 
technique for a slowly evolving agent 
might focus on a genetic region that 
evolves fairly quickly, so that the 
investigator can distinguish between 
outbreak and non-outbreak strains.

A final application is to generate 
theories about the emergence and 

maintenance of specific genetic 
lineages. This application is a by-
product of studies of genetic lineages 
and the rate of evolution. A key insight 
from the study in the Ukraine was 
the differential spread of different 
HIV subtypes (26). A study of the 
molecular epidemiology of norovirus 
outbreaks in Norway demonstrated 
the emergence of a new variant 
that accounted for a change in 
both the seasonal distribution 
and common transmission mode 
(27). A next step for furthering our 
understanding of the epidemiology 
of HIV and norovirus would be to 
generate theories to explain these 
phenomena.

Test hypotheses about 
transmission systems

Applying molecular typing to ongoing 
or endemic disease transmission 
increases our understanding of how 
contact patterns produce observed 
patterns of disease, revealing novel 
prevention and control strategies. 
In addition to characterizing 
ongoing chains of transmission, 
molecular typing can clarify who 
had contact with whom, and who 
was the source of infection, and thus 
identify a transmission network. 
Identifying transmission networks 
provides essential information for 
targeting intervention programmes, 
particularly when designing and 
implementing vaccine programmes.

Using polymerase chain 
reaction (PCR)-restriction length 
polymorphism typing of the porin 
and opacity genes of Neisseria 
gonorrhoreae and questionnaire 
data, a study of successive gonorrhea 
cases in Amsterdam identified 
several ongoing transmission chains. 
The epidemiologic characteristics, 
including number of sexual partners 
and choice of same or opposite 
partners of patients with different 
molecular types differed, suggesting 
that the transmission chains 
represented different transmission 
networks (15). Molecular typing has 
also improved our understanding 
of tuberculosis transmission. Until 
confirmed by molecular typing, 
tuberculosis was not believed to be 
transmitted by short-term casual 
contact. Several investigations have 
demonstrated that this assumption is 
incorrect, such as clusters associated 
with use of services at day shelters 
(28), and even linked to only a few 
brief visits to an infected individual’s 
worksite (12). Molecular typing has 
also demonstrated linkage between 
apparently sporadic tuberculosis 
cases, and determined that at 
least some recurrent tuberculosis 

Figure 23.4. Phylogenetic analysis of strains from different cities in Ukraine. 
Phylogenetic trees of strains from Kiev (a), Crimea (b), Nikolayev (c), Odessa (d), 
Donetsk (e), and Poltava (f). A, B, C, D (capital letters) shown on tree branches 
are the HIV-1 subtypes. A scale bar of 0.01 substitutions per site is shown under 
each tree (26). The publisher for this copyrighted material is Mary Ann Liebert, Inc. 
publishers.
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is attributable to exogenous re-
infection (reviewed by (29)).

Identify agent characteristics 
that lead to transmission and 
pathogenesis

The Microbial Genome Program of 
the US Department of Energy has 
sequenced more than 500 microbial 
genomes (http://microbialgenomics.
energy.gov/brochure.pdf); the 
genetic sequence of numerous 
human pathogens have already 
been published, and many more are 
ongoing, as well as experiments to 
compare the sequences of other 
strains to a sequenced strain. A 
great deal can be learned from 
sequence data; of particular interest 
here is the identification of new 
open reading frames (ORF) which 
correspond to gene sequences. 
Although inferences can be made 
about a particular ORF based on 
the genetic sequence by comparing 
it to other gene sequences of 
known function, we cannot be 
certain of the gene’s function or its 
importance to disease transmission 
or pathogenesis. However, 
conducting epidemiologic studies on 
appropriately collected samples can 
be done to increase understanding 
of the potential function of the genes 
and their relative prevalence using 
a molecular epidemiologic strategy 
(Table 23.6) (30). Many bacterial 
species are found in both diseased 
and healthy individuals and have 
highly diverse genomes. For 
example, E. coli, the most common 
cause of urinary tract infection and 
diarrhoea, is found in the normal 
bowel flora of virtually all humans 
and animals. When disease and 
commensal isolates are compared, 
the genome of E. coli is quite 
diverse, even when limited to human 
isolates. E. coli O157:H7, which 
causes diarrhoea and haemolytic 
urea syndrome, is substantially 

different in genetic content from 
the well-studied E. coli K12 strain, 
which was originally isolated from 
human feces in 1922 (http://www.
sgm.ac .uk /pubs /mic ro_ today/
pdf/080402.pdf). Epidemiologic 
studies can take advantage of 
this variation in genetic content to 
compare the frequency of a putative 
virulence factor present among 
strains isolated from individuals 
with a specific pathology with the 
frequency among commensal 
isolates. For infectious agents with 
less diverse genomes, studies can 
determine differences in genetic 
alleles or in gene expression.

Studies using a molecular 
epidemiologic strategy can be done 
using high-throughput methods, such 
as multiplex PCR or microarrays. 
For example, Library on a Slide is 

a novel microarray platform that 
enables the screening of thousands 
of bacterial isolates for the presence 
of a putative virulence gene in a 
single experiment. The genomes 
of up to 5000 bacterial isolates can 
be arrayed, in duplicate, on a single 
array, and screened for the presence 
or absence of a single gene using dot 
blot hybridization (Figure 23.5) (31). 
Library on a Slide has been created 
for Mycobacterium tuberculosis, 
Haemaphilis influenza, E. coli, S. 
pneumoniae, Group B Streptococcus 
and Streptococcus mutans.

The molecular epidemiologic 
strategy has been productively 
applied to many bacteria species. 
For example, a study screening 
collections of middle ear and 
throat non-typeable Haemaphilis 
influenzae isolates, a major cause of 

 
Table 23.6. Molecular epidemiologic strategy for gene discovery

• Identify candidate genes by combining bioinformatics information with molecular data

• Screen well-characterized representative samples of isolates causing different pathologies 
and asymptomatic infection 

• Analyse to determine relative frequency of selected characteristics in various populations

Figure 23.5. Library on a slide microarray platform compared with a United States 
quarter. Each spot on the slide contains the total genomic DNA of a strain of E. coli. 
Photograph and slide by Dr. Lixin Zhang. Reprinted from (32), Copyright (2007), with 
permission from Elsevier. 
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otitis media, identified a gene found 
significantly more frequently among 
middle ear isolates, lic2B. lic2B was 
found 3.7 times more frequently 
among middle ear isolates than 
in throat isolates from children 
attending day care (33,34).

Identify infectious agents 
that are adapted to particular 
human hosts

Humans and infectious agents are 
extremely well adapted to each 
other. Some infectious agents are 
essential to human development, 
such as for digestion of foods and 
production of nutrients such as 
vitamins (35). Thus, it is not surprising 
that recent evidence suggests that 
normal microbiota co-evolved with 
their human hosts (36). Further, 
several studies suggest certain 
pathogenic species are adapted 
to certain human populations, and 
that infectious agents may select for 
mutations in human lineages.

Evidence that a particular 
genetic lineage of a pathogen may 
be better adapted to certain human 
populations, has been gathered 
by comparing the epidemiology 
of specific lineages in human 
populations of mixed genetic origin. 
For example, HPV variants of African 
origin persist longer among African 
American women than among white 
women, and European variants 
persist longer in white women than 
among African American women 
(37). A similar association between 
the infected host’s region of origin 
and the infecting strain has been 
observed for tuberculosis (38). 
Social and behavioural factors have 
been associated with acquisition 
and persistence of each of these 
infectious agents, but tangible 
evidence of host susceptibility tied 
to specific agent characteristics 
implies that strategies based on the 
identification and development of 

more effective and specific therapies 
and prevention strategies may be 
more successful than attempts at 
changing human behaviour.

Infectious agents may also 
contribute to the evolution of 
humans. A well-documented case is 
the impact of malaria on the human 
host: there are several different 
genetic variations that protect 
against malaria. These variations 
are found in countries that either 
currently or in the past had endemic 
malaria. The effectiveness of the 
human genetic variant at reducing 
malarial disease varies with 
Plasmodium species. The most 
well-known variant is the sickle 
cell trait, but there are others, such 
as the Duffy blood group. When 
the Duffy blood group is absent, 
Plasmodium vivax is unable to 
enter the red blood cells (39). Using 
different molecular techniques, 
other human adaptations can be 
identified. These may provide 
insight into potential therapeutics, 
such as understanding the role of 
CCR5 in blocking HIV, or generate 
theories to explain observed human 
variation.

Identify new infectious agents 
causing disease

Epidemiologic studies have often 
suggested a possible infectious 
origin for a clinical syndrome. 
However, our ability to detect the 
etiologic agent has been hampered 
by our inability to culture most 
infectious agents. The development 
of the polymerase chain reaction 
(PCR) has dramatically increased 
our ability to detect infectious 
agents, both those cultivable 
and uncultivable. PCR has been 
essential to such public health 
triumphs as the development of a 
vaccine against HPV (the primary 
cause of cervical cancer), the 
identification of human herpes virus 

8 as the infectious cause of Kaposi 
sarcoma, and the rapid identification 
of the coronavirus as the cause of 
SARS.

The development of a vaccine 
against cervical cancer was a 
direct result of our ability to use 
molecular tools in an epidemiologic 
context. Cervical cancer has an 
epidemiology that strongly suggests 
a sexually transmitted infection. The 
disease is associated with a greater 
lifetime number of sex partners, 
early age at first intercourse, and 
history of a sexually transmitted 
infection. The precursors of 
cervical cancer (cervical dysplasia 
detectable via PAP smear), were 
studied extensively, but widespread 
misclassification obscured the 
results. Cervical infection with 
different HPV types have different 
propensities to progress to cervical 
cancer, but the clinical presentation at 
the initial stages of infection, cervical 
dysplasia, is indistinguishable 
among types. It was not until the 
tools were available to identify HPV 
and to determine the different HPV 
types that the epidemiology was 
truly understood and an effective 
vaccine developed (40).

The Kaposi sarcoma (KS) 
story demonstrates the potential of 
combining an exquisitely sensitive 
molecular detection technique 
with epidemiologic study design. 
Using representational difference 
analysis to identify DNA sequences 
present in KS lesions but absent or 
present in low copy number in non-
diseased tissue obtained from the 
same patient, researchers identified 
non-human DNA sequences in 
KS lesions of HIV patients (41). 
The sequences were determined 
to be herpes-like, subsequently 
designated human herpes virus 
8. A randomized, blind, evaluation 
of tissue from patients with KS of 
different origin was then performed: 
AIDS-associated, classic, and 
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among homosexual men who 
were HIV-seronegative (42). This 
confirmed that the DNA sequences 
were present in all types of KS, 
suggesting that the sequences 
were not found only among AIDS 
patients. Seroepidemiology studies 
confirmed that seroprevalence was 
correlated with risk of KS, and that 
seroconversion and seropositivity 
predicted development of KS (43).

The ability to detect non-
culturable infectious agents provides 
new strategies to more rapidly identify 
emerging infections. A surveillance 
system has been established in the 
United States to identify the infectious 
components of unexplained deaths 
and critical illnesses possibly due to 
infectious causes (http://www.cdc.
gov/ncidod/eid/vol8no2/01-0165.
htm). This system enabled the 
rapid detection of West Nile Virus 
encephalitis when it first appeared in 
the United States (44).

Identify infectious agents 
involved in the initiation and 
promotion of chronic disease

Infectious agents are popularly 
associated with acute disease 
processes, but many well-studied 
infectious processes lead to chronic 
diseases, such as tuberculosis and 
AIDS. However, other diseases that 
were previously attributed to genetics, 
behavioural, or lifestyle factors are 
now known to have an infectious 
component, including stomach 
ulcers, chronic liver disease, and 
arthritis (Table 23.7). Pathogenesis 
occurs at the infectious-chronic axis 
complex (Figure 23.6), and includes 
interactions between the agent, host 
and environment. Some of these 
diseases result from molecular 
mimicry, that is, the infectious agent 
has epitopes so similar to the host 
that the host response attacks 
itself, such as in reactive arthritis or 
rheumatic fever following infection. 

Table 23.7. Selected infectious causes of chronic diseases

Chronic disease Infectious agent

Arthritis Borrelia burgdorferi, Epstein-Barr Virus, 
Salmonella spp, Campylobacter spp, 
Yersinia spp, Chlamydia spp

Bladder cancer Schistosoma spp.

Cervical, anal, penile, head and neck cancers Human papillomavirus

Chronic liver diseases, hepatocellular 
carcinoma

Hepatitis B, Hepatitis C

Creutzfeldt-Jakob disease Variant Creutzfeldt-Jakob disease

Gastric cancer Helicobacter pylori

Heart disease Chlamydia pneumoniae

Kaposi sarcoma Human herpes virus 8

Leukemia Human T-lymphotropic virus type 1

Lymphoma Epstein-Barr virus, 
Human T-lymphotropic virus type 1

Peptic ulcer disease, chronic gastritis Helicobacter pylori

Whipple disease Tropheryma whipplei

Modified and expanded from (45).

Figure 23.6. Schematic showing how multiple factors interact leading to chronic 
sequelae of infectious diseases (45).
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Alternatively, there may be disease 
that results from a host primed for 
infection that does not happen.

Molecular tools have definitively 
demonstrated that there are 
infectious causes of cancer: hepatitis 
B and C can cause liver cancer; 
serotypes of human papillomavirus 
cause cervical, anal, penile, and 
head and neck cancers; and herpes 
virus 8 causes KS (45). Infectious 
diseases, such as Chlamydophila 
pneumoniae (C. pneumoniae), are 
hypothesized to lead to the promotion 
of atherosclerotic plaques and thus 
coronary artery disease. Numerous 
studies have demonstrated C. 
pneumoniae in atherosclerotic 
tissue, and severity of disease has 
been positively associated with 
antibodies to C. pneumoniae after 
adjustment for other known risk 
factors. However, results of antibiotic 
therapy in preventing progression 
of cardiovascular disease among 
those who already have disease 
have been disappointing. The 
totality of the evidence suggests 
that C. pneumoniae is neither a 
necessary nor sufficient cause of 
coronary artery disease, but is likely 
a modifiable risk factor (46).

Determining an infectious cause 
of a chronic disease is difficult: 
active infection often has ceased 
by the time the chronic disease is 
manifest. Disease clusters may be 
quite informative: Lyme disease 
was identified as a cause of 
juvenile arthritis because of careful 
epidemiologic investigation of a 
disease cluster (47). As the disease 
process is not solely a function 
of the presence of the infectious 
agent, but an interaction of the 
agent with the host, it is as likely 
to detect the presence of specific 
genes associated with the disease 
as the infectious agent. Moreover, 
there is evidence that infectious 
agents can incorporate their genetic 
material into the human genome: 

human endogenous retroviruses 
are the remnants of ancient germ 
cell infections (48). However, as we 
increase our ability to detect specific 
host response to infectious agents 
and detect traces of infection within 
the host, we will likely increasingly 
detect infectious causes of many 
diseases of unknown etiology.

Guide clinical treatment 
and intervention strategies

Knowledge of the molecular 
genetics of infectious agents and 
the interaction of the infectious 
agent with the host gained from 
molecular epidemiologic studies 
can be used to more rapidly detect 
infectious agents and thus improve 
patient diagnosis, predict disease 
course and identify potential vaccine 
candidates. Molecular techniques 
can also be applied to characterize 
the ecology of normal human flora, 
detect disruptions in the flora that 
lead to disease, and to detect the 
presence of biofilms (microbial 
structures which often contain 
multiple species that can initiate or 
promote disease or protect the host 
from disease) (Table 23.8).

Rapid detection of infectious 
agents

Increasingly, there are rapid methods 
for the detection of infectious agents. 

These methods have profound 
implications for public health practice, 
clinical diagnosis and epidemiologic 
studies. Rapid detection methods 
are based on either PCR, the 
amplification of genetic sequences of 
the infectious agent that can identify 
the agent present, or an antigen-
antibody reaction that detects the 
host response to the infectious 
agent or a metabolite of the agent. 
Rapid detection means faster 
and more accurate diagnosis. For 
example, intrapartum prophylaxis 
with antibiotics has reduced by 50% 
the incidence of neonatal Group 
B streptococcal (GBS) disease. 
However, GBS colonization is 
often transient, so many women 
may be treated unnecessarily. 
Detection of GBS colonization at 
time of labour and delivery would 
minimize inappropriate antibiotic 
use, decreasing unnecessary 
pressure for the development of 
antibiotic resistance. Further, GBS is 
increasingly resistant to the second-
line antibiotics used for women 
sensitive to the first-choice antibiotic. 
Rapid detection of antibiotic 
resistance, based on the detection 
of resistance genes and the ability to 
discriminate between more virulent 
GBS strains, will potentially improve 
medical care.

Rapid techniques are often 
extremely sensitive, so when 
applied in an epidemiologic context 

Table 23.8. Using molecular tools in a clinical epidemiologic context

• Rapidly detect infectious agents

• Distinguish between pathogens and commensals

• Distinguish between relapse and re-infection

• Predict disease course

• Evaluate potential vaccine candidates

• Guide intervention
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may be cost saving. For example, 
epidemiologic studies of colonization 
with MRSA, which has emerged as 
a community-acquired pathogen of 
some significance, can be screened 
for using rapid techniques; only 
specimens screening positive by 
rapid methods might be cultured. 
Culture is not only more time-
consuming, but costly in terms of 
reagents and personnel. However, 
the ability to propagate an infectious 
agent is highly desirable, as it 
facilitates more detailed studies at 
the molecular level.

Distinguish between 
commensals and pathogens

Increasingly, it is recognized that 
many species of infectious agents 
previously thought to be harmless 
commensals can, under certain 
circumstances, cause disease (49). 
For example, fungal infections are 
only a problem among immune-
suppressed patients. Acquired 
immunosuppression can result 
either from medical therapy, such 
as chemotherapy for cancer 
or immunosuppressive drugs 
prescribed to transplant patients, 
or as a result of infection, such as 
HIV. It has been discovered that all 
strains within a species do not have 
equal disease potential; indeed, an 
opportunistic infection may arise 
because of special characteristics 
of the infectious agent itself. This 
makes the identification of the causal 
agent in the laboratory difficult, 
as there are cases where basic 
clues such as quantity of the agent 
or agent type may be insufficient 
to identify the cause. Molecular 
tools can be used to identify and 
characterize the specific virulence 
potential, as well as identify humans 
particularly susceptible. This ability 
should eventually translate into 
improved laboratory tests, making it 
much easier for the laboratorian to 

determine the causal agent and the 
physician to prescribe appropriate 
therapy.

Distinguish between relapse 
and re-infection

Some infections have a chronic, 
recurring nature. In this situation, 
it is extremely useful to distinguish 
between a relapse, which implies 
treatment failure, and a new 
infection. Strain typing can be 
extremely useful in this situation, 
as typing allows us to distinguish 
between strains of the same 
species. For example, molecular 
typing demonstrated that individuals 
can be infected with more than one 
strain of tuberculosis (50) and of HIV 
(51).

Predict disease course

Disease course is a function of 
both host and agent factors. While 
an individual who receives a larger 
infectious dose of an infectious 
agent is, on average, more likely 
to become ill and to manifest 
symptoms more rapidly, this may not 
always be the case. The virulence of 
the infectious agent, whether the 
host has had previous exposure to 
the same or a similar strain of the 
infectious agent, or if the host has 
an underlying genetic predisposition 
or presence of predisposing factors, 
such as co-morbidities, all influence 
the infectious course. For example, 
initial viral load in HIV patients 
has been demonstrated as a good 
predictor of disease prognosis, as 
well as potential to transmit to others 
(52). Similar predictors for other 
infections are sure to follow.

Identify potential vaccine 
candidates

Early microbiology led to the 
development of several vaccines 

that have dramatically improved 
public health worldwide: smallpox 
has been eradicated, and measles 
and polio are largely under control 
in developed countries. Tetanus, 
influenza, diphtheria, mumps, 
rubella, chickenpox, hepatitis A and 
B, and yellow fever can be prevented, 
and the Bacille Calmette–Guérin 
vaccine for tuberculosis minimizes 
the most adverse manifestations 
of tuberculosis in children. Most 
recently, a vaccine against the HPV 
serotypes 16 and 18, which are most 
likely to cause cancer, was licensed. 
Nonetheless, many other infectious 
diseases that cause significant 
morbidity and mortality have 
remained intractable to prevention 
via vaccine using conventional 
strategies, but not from lack of 
trying. Some of these infectious 
agents, such as the bacteria that 
cause gonorrhea and bacterial 
meningitis, Neisseria gonorrhoeae 
and Neisseria menigitidis, can 
rapidly vary their surface antigens 
(53,54) making it difficult to identify 
an appropriate target.

The human pathogen 
sequencing project has resulted in 
a new strategy for the identification 
of vaccine candidates based on 
the predicted protein products 
based on the genetic sequence 
(Figure 23.7) (55). In silico analyses 
using bioinformatics enable the 
detection of potential epitopes. 
Many species are very diverse at 
the genetic level, thus not only must 
appropriate epitopes be identified, 
but epitopes that are found across 
the range of potentially diverse 
members of a particular species. 
Thus, epidemiologic screening of 
population-based samples of the 
species of interest for the presence 
of candidate epitopes can assist 
in selecting between potential 
candidates by ruling out those with 
limited geographic distribution (56).
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Guide intervention strategies

The ability of molecular tools to 
detect asymptomatic infection not 
only increases our understanding 
of the transmission system, but also 
has implications for clinical practice. 
For example, using culture, the 
protozoan parasite Trichomonas 
vaginalis (T. vaginalis) is detected 
in only 8–20% of male partners of 
women infected with T. vaginalis; 
testing urine with PCR detects T. 
vaginalis in up to 70% of partners 
(57). This has profound implications 
for preventing the spread of this 
common infection, suggesting that 
routine PCR testing of sex partners 
is in order.

Detecting the emergence and 
spread of resistance to therapy 
should lead to changes in clinical 
practice. Resistance genes are 
often carried on the same mobile 
genetic elements, so that resistance 
to one drug often implies resistance 
to others. Further, not only does 
treating an individual with antibiotics 
select for resistant organisms within 
that host, it also increases risk 
of acquiring resistant organisms 

Figure 23.7. Reverse vaccinology for identification of novel vaccine antigens (55). 
Reprinted by permission from Macmillan Publishers Ltd: Nature Biotechnology, 
copyright (2006).

in their contacts (58). A better 
understanding of the transmission 
of resistance genes between 
bacteria, and of resistant bacteria 
between individuals, will aid in 
designing effective policies. New 
therapies or combination therapies 
may be introduced or steps taken to 
minimize the spread of resistance.

Polymicrobial infections 
and interactions

Many diseases result from infection 
not with a single infectious agent, 
but as a result of a change in the 
microbial community that results 
from microbial activities (35). 
Microbes have certain nutrient and 
other requirements, but as they grow 
and die, they themselves serve as 
a source of nutrients for additional 
microorganisms. For example, 
an upper respiratory infection 
caused by a virus can enhance the 
environment for bacterial growth. 
Thus, upper respiratory infections 
are often a precursor to otitis media 
or bacterial pneumonia; influenza 
vaccination of children reduces rates 
of otitis media. Further, by-products 

of microbial growth can create local 
variations in pH, and in the presence 
of oxygen result in the growth of 
biofilms that enable colonization 
by other infectious agents. Biofilms 
are complex, often polymicrobial 
structures formed on a variety of 
surfaces in the environment and 
human body. The scum that forms 
on the insides of water pipes is a 
biofilm, but so is plaque on teeth, 
and the slimy surface on the tongue, 
inside the nose and throat, in the 
vaginal cavity and on other surfaces. 
There are also natural synergies 
or anergies between organisms 
of the same or different species; 
for example, the anergy between 
S. pneumoniae and S. aureus 
colonization in the nasal cavity (59). 
There are also synergies, such 
as is observed in the vaginal flora 
with lactobacillus modifying the pH 
and enabling the growth of other 
species.

PCR and high-throughput 
sequencing have enabled the 
description of the complex 
microbiota found on and in the 
human body. These studies use the 
fact that all cells have a ribosome, 
and that the sequence of genes 
that code for the ribosome can 
be used for taxonomy (61). These 
techniques have a great advantage 
over detection by culture, as culture 
requires at least a rough idea of 
what organisms might be present 
and their growth requirements. For 
example, applications of non-culture 
techniques to microorganisms in the 
human gut suggest that as many 
as 93% of the rRNA sequences 
identified are from uncultured 
organisms (62). Most non-culture 
techniques are based on some type 
of PCR and detect highly-conserved 
genes, such as those coding for 
16sRNA, which vary at the species 
level and are semiquantitative. 
Others involve in situ hybridization 
techniques, enabling both detection 



  Unit 5 • Chapter 23. Infectious diseases 437

U
n

it
 5

C
h

a
p

te
r

  2
3

of organism presence and 
visualization of structure, such as 
vaginal epithelium shown in Figure 
23.8 (60). There is much to learn 
about what constitutes normal flora; 
the dynamics of colonization; how 
colonization varies with normal 
biovariations such as the menstrual 
cycle, pregnancy and aging; and in 
the face of antibiotic therapy and 
disease.

Implications of using 
molecular tools for the 
design, conduct and analysis 
of epidemiologic studies

Modern molecular techniques 
combined with epidemiologic 
methods allow us to identify novel 
methods of disease prevention 
and control, markers of disease 
diagnosis and prognosis, and 
fertile research areas for potential 
new therapeutics and/or vaccines. 
However, the success of these 
studies depends not only on the 
molecular measure chosen, but 
also on whether the strengths and 
limitations of the chosen measure 
are considered in the design, 

Figure 23.8. Vaginal epithelium from a healthy premenopausal woman hybridized with a universal probe (x400) and lactobacillus 
probe (inset x1000). Only a small number of bacteria are scattered over the surface of intact epithelium (A). Long rods can be 
seen with high magnification (inset). Bacteria are found in similar concentrations on the subepithelial surface of the biopsy that 
was exposed by mechanical trauma of the tissue (B) (60).

conduct, analysis, and interpretation 
of the study results (Table 23.9).

Some molecular measures are 
relatively invariate with time, such as 
human genes. Studies associating 
genetic susceptibility to an infectious 
agent might be conducted using 
genetic material collected long 
before or after the disease occurred. 
By contrast, studies of host response 
to infection must be collected within 
a fairly tight time frame. Antibodies to 
an infectious agent may not appear 
until a defined period after infection, 
such as for HIV, or the infectious 
agent may be present only for a short 
duration, such as for Streptococcus 
agalactiae. Thus, some studies might 
be nested in large cohort studies or 
conducted using a case–control 

technique, while others require a 
prospective design.

The requirements of the 
molecular tool also affect sampling. 
For example, if a test must be 
conducted on fresh samples, the 
sampling of cases and controls 
in a case–control study should 
be done so that the groups are 
sampled and tested in similar time 
periods to minimize potential biases 
resulting from assay drift, which is 
where a method gives increasingly 
higher or lower results with time. 
For nested case–control studies, 
how specimens are collected 
may determine whether controls 
can be sampled from the base 
population (case-based, also called 
case–cohort, sampling) or at time 

Table 23.9. Impact of using molecular tools on the design, conduct and interpretation 
of epidemiologic studies

• Study design: design choice, sampling

• Conduct: specimen collection and handling

• Analysis: translating laboratory measures to interpretable variables

• Interpretation: limitations of measures
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of incidence disease (incidence 
density sampling) (63).

The conduct of the study must 
take into account the requirements 
of molecular testing. Some tests 
are sensitive to freezing and 
thawing and must be tested 
immediately, while others degrade 
over time, even if stored properly. 
Multiple different strains of a single 
infectious agent might be isolated 
from one individual, such as from 
different body sites. Labelling 
should make it possible to identify 
the appropriate strain and link it 
back to the appropriate individual 
and isolation site. Further, infectious 
agents may be grown in different 
media, passed in multiple cultures 
that might change phenotypic 
characteristics, or a plasmid might 
be lost. Thus, noting the number of 
times an isolate is cultured and on 
what media is important.

Epidemiologic analyses often 
use simple cut-offs: e.g. diseased 
versus not diseased. Laboratory 
measures often are continuous, but 
the scales may be ordinal, that is, 
the differences between values are 
not consistent. The interpretation of 
the measures might vary with the 
study population or the presence 
of other ancillary information. For 
example, >100 000 of a single 
bacterial species in the urine of 
an asymptomatic, healthy, non-
pregnant individual has no clinical 
significance. If the individual 
has symptoms referable to the 
urinary tract, such as urgency and 
frequency, the individual probably 
has a urinary tract infection (64). 
By contrast, >100 000 of a single 
bacterial species in the urine of an 
asymptomatic, healthy, pregnant 
woman, is a treatable condition, 
because of the increased risk of 
pyelonephritis due to physiologic 
changes that occur during 
pregnancy.

Conclusions 
and future challenges

The applications of molecular 
tools to the study of infectious 
disease are varied, including 
applications to public health practice, 
diagnostics, and understanding 
of the transmission, evolution and 
pathogenesis. To date, the major 
potentials have been explored using 
genomics, but applying the power 
of proteomics and transcriptomics 
to the understanding of disease 
transmission and pathogenesis and 
host-agent interactions will open new 
avenues to understanding.

Much remains to be learned 
about infectious agents. Some 
future challenges are listed in Table 
23.10. One area that is particularly 
amenable to study using molecular 
techniques is the normal human 
flora or microbiota. Extremely little 
is known about normal human 
microbiota, its response to invasion 
by pathogens, and its response to 
therapeutic treatment. Disruptions of 
normal microbiota are associated with 
a variety of pathogenic syndromes, 
such as bacterial vaginosis, that put 
the affected host at increased risk of 
acquiring other, often more serious, 
infectious agents. Interactions 
between disrupted normal 
microbiota and the host may also 
be important in explaining chronic 
recurring infections. Relatively little 
is understood about the structures 
formed by microbes within the human 
body; there are also structures that 
microbes stimulate the human host 

to form, such as pedestals on which 
E. coli O157:H7 sit.

Another area to explore is the 
interaction between the host and 
the agent. With molecular tools it 
was possible to identify why some 
individuals are repeatedly exposed 
to HIV but do not develop disease: 
these individuals have a variant in 
their CCR5 receptor that makes it 
difficult for HIV to invade the cell 
(65). It is also possible to identify 
human genes that explain why some 
individuals infected with HIV do not 
progress to AIDS. For example, a 
genome-wide association study 
(GWAS) identified the HCP5 gene 
of the HLA region in chromosome 
6 (66). GWAS have been applied to 
hepatitis C virus to identify why the 
infection spontaneously resolves 
in some individuals and treatment 
of chronic disease only eradicates 
infection in 40% of cases (67). 
Other human genetic variants likely 
modify risk of infection and response 
to infection, both positively and 
negatively, for many other infectious 
agents.

We have only begun to explore 
these interactions, and many 
challenges, both technological and 
methodological, remain (68). By 
combining modern molecular tools 
with epidemiologic methods, we have 
a powerful means to understand host 
agent interactions—an understanding 
essential for us to learn to live 
peacefully with microbes within our 
bodies, which, after all, outnumber the 
human cells that comprise us.

 Table 23.10. Future challenges in the study of infectious disease

• Normal flora

• Biofilm formation

• Host agent interactions 

• Successive infection
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Summary

The adverse effects of obesity 
support the use of biomarkers to 
help elucidate disease mechanism, 
therapeutic interventions, and 
preventive strategies. Emerging 
biomarkers for obesity-associated 
cardiovascular disease (CVD), 
type 2 diabetes and cancer play 
diverse roles in biological pathways 
including immune modulation and fat 
metabolism. Animal and in vitro data 
support the association of these 
biomarkers with obesity-associated 
diseases, but evidence in humans 
is still lacking. In humans, plasma 
levels of biomarkers are widely used 
to determine risk, but many studies 
are limited by ethnicity/race, gender 
or sample size. In this chapter, 
the use of biomarkers in obesity 
research and in the context of CVD, 

type 2 diabetes and cancer will be 
discussed. Markers of exposure 
(adipokines), effect (resulting 
metabolic abnormalities), and 
susceptibility (genetic determinants 
for obesity and related disorders) 
are covered for each of the three 
diseases.

Introduction

Obesity epidemiology has typically 
relied upon long-established 
markers, such as blood cholesterol, 
triglycerides and blood pressure. 
It is now recognized that novel, 
non-traditional biomarkers have 
the potential to augment the utility 
of traditional markers. Emerging 
as a more formative tool in obesity 
epidemiology, the majority of non-

traditional biomarkers act in relation 
to fat cells, or adipocytes. Acting 
as endocrine organs, adipocytes 
produce a variety of peptides and 
metabolites that result in a cascade 
of events leading to inflammation 
and oxidative stress. These products 
are being explored as biomarkers 
for the prevention, diagnosis, 
risk stratification and control of 
obesity co-morbidities, such as 
cardiovascular disease (CVD) (1,2), 
type 2 diabetes (3,4) and certain 
cancers (5,6). Despite the dangerous 
health effects of obesity, little is 
known regarding the clinical utility of 
adipokines in modifying disease risk, 
especially cancer.

This chapter focuses on the use of 
non-traditional biomarkers in obesity 
research and more specifically, in 
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the context of CVD, type 2 diabetes 
and cancer. Adipokines will be 
referred to as markers of exposure 
and the resulting metabolic 
abnormalities as markers of effect. 
Genetic determinants for obesity 
and related disorders are referred to 
as markers of susceptibility. Markers 
of exposure, effect and susceptibility 
are discussed for each of the three 
co-morbidities.

Obesity is multifactorial

Generally defined, obesity is a state 
of excess weight gain and increased 
body fat that is disproportionate 
to the individual’s height. Obesity 
is a prevalent disorder adversely 
impacting quality of life (7,8) and 
life expectancy (9). In the USA it is 
estimated that 32% of adults and 17% 
of children and adolescents aged 
2–19 years were obese in 2003–
2004, a dramatic increase from the 
previous two decades (10), justifying 
the need for prevention of obesity 
and related disorders. Caused by a 
combination of genetic, metabolic 
and environmental factors, obesity 
is characterized by an imbalance 
between energy intake and energy 
expenditure. This imbalance 
is closely regulated by signals 
emanating from and controlled by the 
central nervous system.

The central melanocortin system 
is integral in regulating food intake 
and peripheral lipid metabolism (11). 
Peripheral signalling molecules, such 
as ghrelin (12) and cholecystokinin 
(13), communicate with this system 
to control energy metabolism (11). 
Other signalling networks, such 
as the endocannabinoids (14), 
are believed to be involved in the 
development of obesity. In addition 
to the central nervous system, the 
adipose tissue is integral in the 
development of obesity because its 
expansion signifies the obese state 
(Figure 24.1).

Adipose tissue is an active 
organ innervated by the sympathetic 
nervous system (15), communicating 
with the hypothalamo-pituitary 
axis and the adrenal glands (16) 
to influence food intake, hunger, 
energy expenditure and adipose 
tissue mass. Adipose tissue 
secretes a variety of signals that 
influence energy balance, including 
leptin and adiponectin (17). Leptin 
reduces food intake, and resistance 
to its activities is often found in 
obesity. Adiponectin promotes 
insulin sensitivity and exhibits 
anti-inflammatory actions (17). In 
addition to the influence of adipose 
tissue, obesity can be caused by 
inherited defects.

Rare, monogenic forms of 
obesity are caused by single 

genetic mutations in genes, such 
as leptin, leptin receptor and pro-
opiomelanocortin, as well as 
chromosomal rearrangements (18). 
These defects are among the few 
direct causes of obesity and are not 
the focus of this chapter.

Non-genetic causes of obesity 
are commonly implicated in the 
current rise in obesity prevalence in 
the USA and worldwide. Modifiable 
behavioural risk factors, including 
energy intake and a sedentary 
lifestyle, are principal components in 
the development of obesity (19,20). 
As a result, improving dietary habits 
by increasing the intake of fruits 
and vegetables and decreasing fat-
laden foods, together with an active 
lifestyle, are vital techniques for the 
prevention of obesity and have been 

Figure 24.1. The central melanocortin system, endocannabinoid system, and 
autonomic system are among the most important central nervous system (CNS) 
control areas regulating energy intake and expenditure. Short-term signals control 
food intake, while long-term signals chronically regulate lipid storage and metabolism, 
as well as glucose homeostasis. The signals simultaneously exert their peripheral 
effects to control energy metabolism via multiple tissues including adipose tissues. 
Fat deposition modifies adipose tissue function, leading to abnormal production of 
various molecules. The resulting potential biomarkers occur at various stages in the 
course of obesity and may interact with environmental, behavioural, and genetic 
factors and possibly with traditional risk factors, leading to disease manifestations.
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the focus of large obesity prevention 
trials (21).

Just as obesity is a complex 
disorder, molecular biomarkers 
that occur in obesity and that help 
identify individuals most at risk for 
subsequent cardiovascular disease, 
diabetes or cancer are complex. 
There is a significant degree of 
functional overlap among the 
biomarkers, and in some cases it is 
hard to discern the order in which 
they first appear in the body. For 
simplicity, however, the biomarkers 
have been broadly classified into 
exposure, effect or susceptibility 
(Table 24.1).

Overview of inflammation 
and oxidative stress

Abnormal adipokine production 
with consequent inflammation 
and oxidative stress may play an 
instrumental role in obesity-related 
disorders. Increased accumulation 
of adipose tissue, particularly 
visceral obesity, causes abnormal 
cytokine release and macrophage 
recruitment, all of which induce 
systemic inflammation (22).

Accumulation of adipose tissue 
also leads to increased oxidative 
stress partly via the oxidant effects 
of free fatty acids (23). Leukocytes 
derived from obese individuals 
and healthy individuals infused 

with free fatty acids generate 
reactive oxygen species (24,25). 
Consequently, reactive oxygen 
species induce a pro-inflammatory 
state and promote adverse 
metabolic complications, such as 
insulin resistance (23). Despite 
the association of oxidative stress 
with CVD independent of traditional 
risk factors (26), prospective 
clinical trials of antioxidant 
supplementation for reducing CVD 
risk provide conflicting evidence 
(27,28), possibly due to lack of a 
strong effect of oxidative stress 
on atherosclerosis, choice of 
antioxidant therapy, confounding 
by other dietary and non-dietary 
factors, or unsuitable choice of the 
biomarker. Nevertheless, oxidative 
stress is increasingly recognized 
as a potential mechanism for 
obesity-related disorders, hence it 
is included in this chapter.

Owing to the clear link between 
fat accumulation, inflammation 
and oxidative stress, the following 
three sections focus on these 
mechanisms in the context of CVD, 
diabetes and cancer. The sections 
are not intended to be all-inclusive, 
but aim to introduce the reader to 
major biomarkers of potential benefit 
in disease prevention and early 
detection. A brief introduction to the 
major epidemiologic study designs 
used to evaluate the biomarkers 

and common methodological issues 
then follows.

Biomarkers of obesity 
and subsequent 
cardiovascular disease

For the purposes of this section, 
cardiovascular disease (CVD) 
outcomes comprise cerebrovascular 
disease (cerebral embolism, 
thrombosis and haemorrhage), 
peripheral arterial disease, coronary 
heart disease, and atherosclerosis. 
Different mechanisms are implicated 
in the link between obesity and 
CVD. For example, the fetal origin 
of metabolic risk (29), epigenetic 
gene regulation (30), and the “pup 
in a cup” model (31) are potential 
causes of increased CVD risk in 
obesity. In addition, cardiovascular 
injury is promoted by adipokines, 
cytokines and other molecules 
that affect multiple pathways, such 
as lipid metabolism and immune 
modulation, eventually leading to 
inflammation or oxidative stress (32).

Inflammatory biomarkers that 
are elevated in obesity include leptin, 
plasminogen activator inhibitor 1, 
and adiponectin. Beyond regulation 
of energy expenditure, leptin 
induces a myriad of inflammatory 
mediators (33) and alters myocardial 
structure (34). Leptin has extensive 
regulatory functions and has been 

Table 24.1. Classification of molecular biomarkers for obesity and subsequent cardiovascular disease, diabetes or cancer

Class Molecular biomarkers Examples of studies

Exposure Adipokines: surrogates for adipose tissue deposition Characterise adipose tissue type and activity; 
association with disease outcome; assess change with 
weight loss

Effect Markers of inflammation and oxidative stress: 
mechanisms by which obesity may exert its toxic effects

Monitor disease progression; association with disease 
outcome; disease prognosis; disease intervention

Genetic susceptibility Gene polymorphisms: account for variation in 
susceptibility to obesity-related disorders

Gene-phenotype relations; heritable variations in the 
quantity of systemic biomarkers; risk stratification
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implicated in multiple adverse 
CVD endpoints independent of 
traditional risk factors. The National 
Health and Nutrition Examination 
Survey (NHANES) III was used to 
conduct a retrospective analysis of 
leptin concentrations and history 
of myocardial infarction and stroke 
(35). Plasminogen activator inhibitor 
1 is an indirect correlate of abdominal 
obesity (36), though the molecular 
mechanism is still uncertain (37). 
Increased plasminogen activator 
inhibitor 1 contributes to CVD 
by impairing fibrinolysis and 
promoting cardiovascular tissue 
remodeling and the formation of 
blood clots. Its involvement in CVD 
is still controversial, as shown, 
for example, in a case–control 
study and meta-analysis on stroke 
(38,39); nevertheless, data suggest 
a role in patients with a prior history 
of CVD. In these patients, genetic 
variants in plasminogen activator 
inhibitor 1 have been implicated 
in disease recurrence such as 
recurrent myocardial infarction 
(40,41). Plasminogen activator 
inhibitor 1 is also associated with 
traditional risk factors, as well as 
other CVD risk indicators including 
low adiponectin (42). Adiponectin 
is a protective molecule inversely 
related to obesity and the associated 
metabolic abnormalities (43), and 
some studies, including prospective 
evaluations, strongly suggest that 
low plasma concentrations are 
implicated in increased CVD risk 
(43–45). Adiponectin’s protective 
effects arise from its versatile 
immune functions and its ability to 
protect the vascular endothelium 
by antagonising inflammation and 
oxidative stress (43).

A hallmark of oxidative stress, 
reactive oxygen species mount 
their effects by reacting with diverse 
biological molecules including lipids 
and lipid derivatives. For example, 
oxidized low density lipoproteins are 

readily taken up by macrophages, 
thus promoting atherosclerosis (46). 
F2-isoprostanes are prostaglandin-
like compounds formed from 
the oxidation of cell membrane-
derived fatty acids and have been 
implicated in atherosclerosis (47). 
The Framingham Heart Study was 
accessed to examine the utility of 
using F2-isoprostane as a biomarker 
of oxidative stress. After adjustment 
for age and sex, it was found that the 
biomarker was increased in obese 
individuals (48).

In addition to oxidation products, 
enzymatic manipulation of reactive 
oxygen species further determines 
the effects of oxidative stress. 
One of the most studied oxidative 
stress-related enzymes in the 
field of cardiovascular medicine 
is glutathione peroxidase 1, an 
antioxidant that has been shown to 
drop in obese individuals in both 
prospective (49) and cross-sectional 
(50) studies. It is also expressed in 
the endothelium and protects blood 
vessels against oxidative stress, 
not just by counteracting reactive 
oxygen species, but by inhibiting 
oxidative enzymes that contribute to 
atherosclerosis (51).

Other potential markers of CVD 
risk in obese individuals include 
monocyte chemoattractant protein 
1 (52). In addition to macrophages 
and endothelial cells in the vascular 
wall, monocyte chemoattractant 
protein 1 is synthesized by adipose 
tissues. Microarray gene expression 
profiles of subcutaneous adipose 
tissues demonstrate increased 
expression in obese compared 
to non-obese individuals (53). By 
recruiting macrophages to blood 
vessel walls, this chemokine 
contributes to atherosclerosis, but 
its link to CVD risk is still under 
investigation (54), as some studies 
do not find an association with 
subsequent cardiovascular events. 
Other studies provide evidence, 

however, for a role in long-term CVD 
prognosis. For example, prospective 
evaluation of patients with acute 
coronary syndromes indicates that 
monocyte chemoattractant protein 
1 is independently associated 
with long-term mortality and 
cardiovascular events (55). Another 
biomarker that is associated with 
obesity and cardiovascular events is 
the angiotensin converting enzyme 
(56,57). In addition to blood pressure 
regulation, this enzyme exerts local 
pro-inflammatory effects in several 
tissues, including cardiac myocytes, 
and has long been employed for 
the management of heart failure. 
A recent meta-analysis maintains 
that angiotensin converting 
enzyme inhibitors reduce the risk 
of cardiovascular mortality, as well 
as specific endpoints, such as 
myocardial infarction and stroke, but 
the mechanism is yet to be explained 
(58). Table 24.2 summarizes the 
effects of the above biomarkers, 
as well as other molecules that 
can potentially be used for disease 
prevention or intervention. Also, see 
Chapter 20 for additional discussion 
of biomarkers associated with CVD.

Biomarkers of obesity 
and type 2 diabetes

Insulin resistance is a precursor of 
type 2 diabetes, an inflammatory 
condition (59,60) characterized by 
glucose intolerance (61). Due to the 
central role of glucose metabolism 
in the pathogenesis of type 2 
diabetes, molecular biomarkers that 
function in this pathway may prove 
instrumental in targeting individuals 
with the highest risk for disease, 
designing tailored interventions, 
and improving risk stratification. 
One gene involved in glucose 
synthesis is PCK1, encoding the 
enzyme phosphoenolpyruvate 
carboxykinase. PCK1 is expressed 
in adipocytes, intestinal epithelia, 
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and hepatocytes. Hepatic 
overexpression is associated 
with a diabetic phenotype in 
mice and overexpression in 
adipose tissues causes obesity. 
Among the few human studies 
performed to date, some show a 
link between PCK1 variants with 
type 2 diabetes (62). Another gene, 
ectonucleotide pyrophosphatase/
phosphodiesterase 1, has shown 
conflicting associations with type 
2 diabetes and obesity, but its role 
as an inhibitor of insulin signalling 
warrants further examination as a 
potential candidate gene for obesity-
associated type 2 diabetes. In 
some populations, polymorphisms 
in this gene are associated with 
childhood and adult obesity, as 
well as type 2 diabetes in obese 
individuals (63–65) (see Chapter 7). 
Further population-based studies 
are needed to validate its use as 
a predictive biomarker. Glucose 
homeostasis is also regulated 
by several obesity-associated 
adipokines that control multiple 
immune pathways. Low adiponectin 
concentrations (66,67) and high 

tumour necrosis factor-α levels (68–
70) have often been associated with 
insulin resistance. Despite conflicting 
evidence, promoter polymorphisms 
in the tumour necrosis factor-α 
gene have been implicated in 
increased insulin resistance, 
particularly in obese adults with 
type 2 diabetes (71–73). Further, 
one large (n = 809) population-
based cross-sectional study of 
unrelated Caucasians showed that 
this gene interacts with adiponectin 
resulting in lower adiponectin levels 
and higher glucose and insulin 
concentrations two hours after 
glucose administration (74).

In addition to glucose, perturbed 
fatty acid metabolism, uptake and 
transport has been implicated in 
insulin resistance and diabetes. 
Uptake of fatty acids is partly 
controlled by fatty acid translocase 
(CD36), which regulates long chain 
fatty acid transport in skeletal 
muscles and adipose tissue (75). 
Subcutaneous adipose tissue 
expression of this binding protein 
was increased in obese individuals 
and further increased in those with 

type 2 diabetes (75). A promoter 
polymorphism in CD36 was also 
linked with insulin resistance and 
type 2 diabetes (76). Interestingly, 
CD36 is linked to oxidative stress, 
because it is a scavenger receptor 
for oxidized lipoproteins on the 
surface of macrophages, rendering 
them insulin-resistant (77).

Other genetic candidates 
include stearoyl-coenzyme A 
desaturase type 1 (SCD1) and 
11β-hydroxysteroid dehydrogenase 
type 1 (11HSD1), a glucocorticoid-
amplifying enzyme. Genetic variants 
in the fatty acid metabolizing 
enzyme SCD1 have been linked 
with decreased waist circumference 
and improved insulin sensitivity in 
adults (78). The glucocorticoid-
amplifying enzyme 11HSD1 is an 
intriguing molecule with varying 
roles ranging from regulation of 
adipocyte differentiation to possible 
amplification of macrophage-
driven adipose tissue inflammation 
in obesity (79). It stimulates lipid 
synthesis in the intra-abdominal 
fat depots of diet-induced obese 
mice (80). Several studies find 

Table 24.2. Biomarkers associated with obesity and cardiovascular disease outcomes

Class Biomarker Disease/risk factor (Reference)

Exposure Interleukin 18 Coronary heart disease (113)

Leptin Haemorrhagic stroke (114) 
Acute myocardial infarction (115)

Plasminogen activator inhibitor 1 Recurrent myocardial infarction (116)

Low adiponectin Coronary artery disease (43-45)

Effect Oxidized low density lipoproteins Ischemic damage in cortical lesions (115)
Coronary heart disease (117)

Glutathione peroxidase Reduced risk of death from cardiovascular events or 
non-fatal myocardial infarction (118)

F2-Isoprostanes Coronary artery calcification (119)
Coronary artery stenosis (120)

Monocyte chemoattractant protein 1 Long-term mortality and cardiovascular events (55)

Genetic susceptibility Angiotensin-converting enzyme Coronary heart disease (121,122)

Plasminogen activator inhibitor 1 Recurrent myocardial infarction (40,41)
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dysregulated adipose tissue activity 
in obesity (81) and type 2 diabetes 
(82), including one prospective study 
(83). Lipid storage and adipocyte 
differentiation is partially regulated 
by peroxisome proliferator-activated 
receptor gamma (PPAR-γ). This 
nuclear receptor is highly expressed 
in adipose tissues and favourably 
controls the release of several 
adipokines, such as adiponectin, 
leptin, resistin, interleukin 6 and 
monocyte chemoattractant protein 
1, mounting anti-inflammatory 
and anticoagulant actions that 
intensely counteract the adipose 
tissue dysfunction plaguing 
obesity (84,85). Notably, PPAR-γ 
improves glucose uptake and 
insulin sensitivity, as evidenced 
by the actions of receptor agonists 
for treatment of type 2 diabetes. 
According to multiple investigations, 
a Pro12Ala polymorphism that 
decreases receptor activity, protects 
against hyperinsulinemia, type 2 
diabetes (86), and high free fatty 

acid concentrations (87). The Ala12 
carriers show up to a 19% risk 
reduction, and the protective effect 
is greatest at a lower body mass 
index (BMI) (88). It is important to 
note that, as in the case with any 
gene, the effects of this variant 
can be modified by other genetic 
influences, such as variants within 
the same or other genes, and by 
environmental factors, such as diet, 
BMI or physical activity. Indeed, 
physical activity was found to 
modify its effect in one follow-up 
study (89). LDL receptor-related 
protein 1 is another vital regulator 
of systemic lipid transport and 
absorption in liver, muscle, heart 
and adipocytes. This receptor plays 
a role in the uptake and hydrolysis 
of triglyceride-rich lipoproteins. 
Adipose-specific knockout mice are 
protected from diet-induced obesity 
and exhibit increased metabolic 
rate and glucose tolerance (90). 
By understanding the potential role 
of LDL receptor-related protein 

1 in humans, this receptor can 
potentially serve as a valuable 
marker for conferring susceptibility 
to obesity and type 2 diabetes in 
individuals at risk. In addition to the 
above biomarkers, other candidates 
for obesity-associated insulin 
resistance and type 2 diabetes are 
highlighted in Table 24.3.

Biomarkers of obesity 
and cancer

Cancer is a condition of uncontrolled 
cell growth triggered by a variety 
of factors. It is estimated that 
one third of all cancer deaths in 
2006 were related to physical 
inactivity, nutrition and obesity (91). 
Compared to other known genetic 
or environmental risk factors for 
cancer, obesity may play a minor 
role. Nevertheless, its effect can be 
magnified in susceptible individuals, 
such as those with a family history of 
cancer or who belong to a particular 
race or gender.

 Table 24.3. Biomarkers associated with obesity and type 2 diabetes risk

Class Biomarker Disease/Risk Factor (Reference)

Exposure Lipocalin 2 Insulin sensitivity (123)

Cideb Insulin sensitivity (124)

Monocyte chemoattractant protein 1 Insulin resistance (125)

Interleukin 8 Insulin resistance (126)

Low adiponectin Insulin resistance (66,67)

Genetic Susceptibility SCD1 Insulin sensitivity (78)

PCK1 Blood glucose and triglyceride synthesis (62)

11HSD1 Fasting glucose and insulin resistance (82,83)
Increased lipid synthesis and adipose tissue mass in 
mice (80)

CD36 Insulin resistance and type 2 diabetes (75,76)

Peroxisome proliferator-activated receptor gamma Type 2 diabetes (86)

Ectonucleotide pyrophosphatase/ phosphodiesterase 1 Type 2 diabetes (64,65)

Tumour necrosis factor-α Increased postprandial free fatty acid concentrations 
and insulin resistance (71,72)
associated with lower adiponectin concentrations (74)
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Defined using BMI or a high upper 
body (central) fat distribution, obesity 
modified risk for the development 
and progression of cancers affecting 
multiple target organs, including 
the gastrointestinal system (92–
94), ovaries (95), breasts (96) and 
prostate (97). For example, women 
with a high BMI exhibited cytological 
abnormalities in the breast that may 
predispose to cancer (98). A few 
of the many possible mechanisms 
implicated in these findings is 
detection bias, hormonal imbalance 
(e.g. sex hormones or insulin) or 
genetic predisposition. Notably, 
abnormal adipokine regulation is 
another potential mechanism for this 
predisposition.

In the obese environment, insulin 
stimulates leptin activity in breast 
cancer cells (99), and an imbalance 
in leptin and adiponectin secretion is 
highly implicated as one mechanism 
for breast cancer development 
(100). Leptin exerts mitogentic and 
antiangiogenic effects that appear 
to be counteracted by adiponectin, 
which is decreased in obesity and 
protects against breast cancer 
(101). High leptin or low adiponectin 
levels are also implicated in other 
malignancies, such as non-Hodgkin 

lymphoma (102) and endometrial 
cancer (103).

In addition to adipokines, genetic 
variants in lipid metabolizing genes 
are associated with breast cancer, 
such as the leptin receptor and the 
paraoxonase gene (PON1), which 
prevents low density lipoprotein 
oxidation. Polymorphisms in these 
genes are protective against 
breast cancer development in 
postmenopausal Caucasian women 
with benign breast disease (104) 
(these findings should be interpreted 
with caution due to the small 
number of cases (61 cases out of a 
total of 994)). The aforementioned 
molecules and other molecules 
putatively implicated in obesity-
linked cancer are summarized in 
Table 24.4.

Common epidemiological 
study designs 
and methodological issues

Multiple epidemiologic study designs 
have been used to examine putative 
biomarkers in human populations 
(see Chapter 14). Case–control 
and cross-sectional studies are 
among the most common designs. 
Relatively cheap and rapid, the 

designs are a sound stepping stone 
for collecting background information 
on the desired criteria for any 
biomarker, including average plasma 
concentrations, inter-individual and 
intra-individual variability, effect 
size in cases compared to controls, 
stability, half-life, circadian variation 
and ethnic/racial differences, as well 
as age and gender effects. Several 
biomarkers illustrated in this chapter 
have been preliminarily identified 
and repeatedly investigated using 
these designs to justify further study 
in more demanding prospective 
evaluations. More difficult to 
conduct, population-based 
prospective, longitudinal studies and 
randomized controlled trials greatly 
help strengthen the predictive role 
of the biomarker and support its 
predictive and clinical utility.

Conclusions 
and future directions

The adverse effects of obesity 
propagate through many human 
generations, begging the use of 
biomarkers that help elucidate 
disease mechanism, therapeutic 
interventions and preventive 
strategies. Emerging biomarkers 

 Table 24.4. Biomarkers associated with obesity and cancer risk

Class Biomarker Disease/Risk factor (Reference)

Exposure Leptin Cellular proliferation, anti-apoptosis (126)
Differentiation of breast cancer (99)

Adiponectin Antiangiogenic (127)
Low levels implicated in breast cancer (128)
and prostate cancer (129)

Interleukin 6 Prostate cancer (129)
Breast cancer (130)

Effect Vascular endothelial growth factor Regulates angiogenesis and cell migration, implicated in prostate 
cancer (129)

Genetic susceptibility Leptin receptor Polymorphism associated with lower risk of breast cancer in benign 
breast disease (104)

PON1 Polymorphism associated with lower risk of breast cancer in benign 
breast disease (104)
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for obesity-associated CVD, type 
2 diabetes or cancer play diverse 
roles in biological pathways 
including immune modulation and 
fat metabolism. Support for the 
association of these biomarkers 
with obesity-associated diseases 
stems from animal and in vitro 
data, but evidence in humans is 
still lacking. In humans, plasma 
levels of biomarkers or genetic 
polymorphisms are widely used to 
determine risk, but many studies 
are limited by ethnicity/race, gender 
or sample size. These deficits are 
perhaps the most challenging to 
overcome in future studies, but it is 
the only way by which a biomarker 
can be validated for reliable use in 
human populations. Along these 
lines, there has recently been a 
series of large-scale genome-wide 
association studies of BMI that are 

uncovering a substantial number 
of new loci associated with obesity 
(105–111).

In the field of chronic 
inflammatory disorders exist acute 
indicators, such as C-reactive 
protein, an acute phase protein that 
rises in any inflammatory condition, 
and chronic prognostic indicators, 
such as monocyte chemoattractant 
protein 1 in the case of CVD. 
Management of obesity-associated 
disorders may benefit from the 
use of acute indicators augmented 
with chronic markers to better 
predict disease progression. In 
fact, multiple biomarkers may be 
required to complement standard 
traditional risk factors to enhance 
risk stratification and to develop 
measurable therapeutic targets.

Additional measures of obesity 
aside from the typical BMI are 

required to better characterize 
obesity in the context of other 
chronic disorders. Other non-
invasive measures (e.g. waist 
circumference, waist-to-height 
ratio and the conicity index) are 
surrogates of abdominal (central) 
obesity. Central obesity is often 
found to predict disease outcome 
better than BMI (112). One major 
cause of central obesity is a large 
visceral adipose tissue distribution. 
Visceral adipose tissue actively 
expresses and secretes a myriad of 
adipokines and other agents that act 
locally and systemically to promote 
obesity-associated disorders. 
Therefore, central obesity should 
be fully investigated in the context of 
relevant biomarkers, for it may add 
to their predictive utility and clinical 
validity.
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Summary

This chapter focuses on biomarkers 
of reproductive health and disease 
that have been developed in the 
past 15 years. Due to the gender- 
and age-dependency of most 
of the advances in measuring 
reproductive health status and 
outcomes, these biomarkers have 
been categorized with respect to the 
unique member of the reproductive 
triad of interest (i.e. mother, 
father, conceptus). Biomarkers of 
female and male puberty, female 
reproductive function, fetal and 
infant development, and male 
reproductive function are discussed. 
The strengths and limitations of 
developing and implementing 
biomarkers in reproductive health 
studies over the past decade are 
explored.

Introduction

The utilization of biomarkers in 
reproductive and perinatal health 
research has greatly enhanced 
our understanding of these critical 
areas of public health. There has 
been increasing emphasis on these 
time periods in early development 
as vulnerable windows over the life 
course, during which humans are 
most highly susceptible to the effects 
of exposure to toxic agents in the 
environment. The periconceptional, 
prenatal, perinatal and peripubertal 
time periods are considered to 
be the most susceptible intervals 
for adverse health events (1–7). 
However, methodologic issues 
unique to this area of research 
render the identification of 
appropriate biomarkers a daunting 
challenge.

Reproductive epidemiology 
studies often consist of a triad, 
including the mother, father and 
conceptus, which constitutes the unit 
of both observation and analysis. 
The ability to obtain biomarkers for 
all three of these subjects varies 
greatly, compounded by the differing 
time intervals of concern for each 
subject in terms of biomarkers of 
exposure, susceptibility and effect. 
Other challenges include the 
interrelatedness of reproductive 
outcomes across the spectrum 
of time-dependent endpoints of 
interest and the accuracy and 
reliability of the markers available 
for evaluation. Examination of 
effects that occur at later time 
points in gestation (e.g. recognized 
spontaneous abortions or preterm 
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delivery) are restricted to those 
conceptions that have survived 
long enough to be identified for 
evaluation. This reinforces the urgent 
need to develop methodologies, 
including biomarkers, that enable 
us to examine the earliest outcomes 
along this spectrum (8).

Context and public health 
significance

In developing biomarkers that 
would be appropriate for use in 
large-scale epidemiological studies 
of reproductive outcomes, one 
must consider not only sensitivity, 
specificity, predictive value, within-
subject reliability (low coefficients 
of variation) and cost, but also 
acceptability and ease of use by 
study participants (9). Several 
studies have reported an increase 
in participation rates when study 
subjects are taught how to collect 
and ship biological specimens from 
the privacy of their own homes, as 
opposed to having the samples 
collected in clinics or field offices 
(10).

In this chapter, the earlier review 
by Lemasters and Schulte (11) is 
updated, focusing on biomarkers 
of reproductive health and disease 
that have been developed in the 
15 years since that publication. 
Due to the gender- and age-
dependency of most of these 
advances in measuring reproductive 
health status and outcomes, the 
biomarkers have been categorized 
with respect to the unique member 
of the reproductive triad of interest 
(i.e. mother, father, conceptus). 
Detailed discussions of advances in 
molecular biomarker technologies to 
measure exposure to environmental 
and infectious agents in reproductive 
epidemiology studies (beyond the 
scope of this chapter) are covered 
in Chapters 9–13 of this text and 
in comprehensive reviews devoted 

to these topics (12–20). Likewise, 
readers are referred to Chapter 
7 and the wealth of resources 
described in Perera and Herbstman 
(14), Burke et al. (21), Seminara et 
al. (22), Field & Sansone (23) and 
Ho & Tang (24) for more in-depth 
information on developments in 
genomic, transcriptomic, proteomic, 
metabolomic and epigenomic 
technologies to examine disease 
susceptibility and etiopathogenetic 
pathways in reproductive 
epidemiology research. An 
overview (25) describes how the 
combination of bioengineering 
and bioinformatics has evolved to 
help reveal integrated, dynamic 
molecular networks underlying 
complex functions in biological 
systems like human reproduction 
and early development. Also 
beyond the scope of this chapter, 
but covered well in several recent 
publications, are genome-wide 

association studies of reproductive 
health outcomes (26–33).

Figure 25.1 provides an 
illustration of the spectrum of 
reproductive outcomes (although 
not exhaustive) that are available 
for investigation. This figure 
attempts to present these topics in 
a chronological fashion, from the 
earliest sentinel of potential adverse 
reproductive function among males 
and females, to early or delayed 
onset of puberty, and extending to 
childhood cancers in their offspring 
that may be linked to prenatal 
exposures. Again, the earliest events 
along this chronological spectrum 
represent the target areas of greatest 
focus, as these outcomes enable 
the examination of a representative 
cohort at risk, and may serve as 
early sentinels of exposure to 
toxic agents in the environment, a 
major and unresolved public health 
concern.

Figure 25.1. Selection of reproductive outcomes available for study
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Biomarkers of female 
and male puberty

There has been persistent, 
increasing concern over the 
past several years regarding the 
observation that children in the USA 
are entering puberty at younger ages. 
While advancing age at puberty 
may reflect inadequate nutritional or 
socioeconomic conditions, younger 
ages may be indicative of other 
adverse scenarios, including obesity 
and exposure to endocrine active 
compounds in the environment (34). 
Most expert panelists assembled 
by the US Environmental Protection 
Agency (EPA), the National Institute 
of Environmental Health Sciences 
(NIEHS) and Serono Inc. to evaluate 
secular trends in the timing of 
puberty concluded that there is 
sufficient evidence of earlier breast 
development onset and menarche 
in girls (35). On the other hand, 
almost all the panelists agreed 
that there is insufficient evidence 
regarding trends in male pubertal 
development.

The Tanner scales have been 
widely used by clinicians for several 
years to examine onset of puberty in 
girls and boys. The scales assess 
stages of breast development, 
pubic hair growth, genitalia 
changes, and age at menarche 
(36). A method of self-assessment 
using photographs and written 
descriptions of the various stages 
of development was developed 
and evaluated by researchers in 
different populations (37–39). A 
recent review of biological markers 
for assessing puberty status, 
however, indicated that many study 
participants are reluctant to undergo 
this examination by a clinician, and 
several studies have indicated a 
range of correlations between self-
reported and physician Tanner 
scores, depending upon many 
factors including race/ethnicity, 

age and certain psychological 
disorders (40). Moreover, many 
young individuals are reluctant to 
perform this self-assessment, even 
in the privacy of their own homes; 
one study had a 61% response rate 
when participants were asked to 
complete the procedure at home 
and mail in their information (41).

There are several biomarkers 
currently undergoing evaluation for 
use in ascertaining pubertal status. 
Most have limited feasibility for use 
in large, population-based studies, 
as the components of interest have 
short serum half-lives and would 
require the collection of serial blood 
samples. These include leptin, 
an adipocyte hormone involved 
in energy homeostasis that also 
interacts with the reproductive axis, 
and Müllerian inhibiting substance 
(MIS), a glycoprotein hormone 
produced by the Sertoli cells of the 
male during fetal development that 
causes regression and atrophy 
of the Müllerian ducts (42–44). 
Leptin is a critical regulator of body 
fat stores, which may underlie 
its role as a possible biomarker 
of approaching puberty. Given 
the well-known changes in body 
fat mass and percent body fat 
associated with puberty, it is 
hypothesized that leptin may serve 
as a biomarker of peripuberty 
and pubertal advancements (45). 
In girls, serum leptin levels rise 
markedly as they approach puberty, 
and this increase is correlated with 
body fat mass. The levels continue 
to increase throughout puberty, 
whereas among boys, there is an 
initial increase during peripuberty, 
followed by a return to prepubertal 
levels as they advance through 
puberty (43). The ability to measure 
leptin in urine would greatly 
enhance the utility of this biomarker 
in studies of peripubertal events. A 
recent cross-sectional study of 188 
children, aged 5–19 years, reported 

a correlation of r = 0.65 (P < 0.01) 
between serum and urinary leptin 
levels (46). Of note, urinary leptin 
levels corresponded to serum levels 
and patterns by gender during 
puberty.

The gonadotropins, luteinizing 
hormone (LH) and follicle 
stimulating hormone (FSH), and the 
sex steroid hormones, estrogen and 
testosterone, also increase in early 
puberty, and can be measured in 
urine (47,48). A small longitudinal 
study recently evaluated the 
relationship between urinary leptin 
and gonadotropin levels in 13 boys 
and seven girls over a six-month 
period as they were expected 
to approach puberty (49). Three 
consecutive first morning urine 
samples were collected each month. 
These results indicated significant 
correlations between urinary leptin 
and LH levels (r = 0.43, P < 0.001) 
and FSH levels (r = 0.32, P < 0.001). 
Moreover, urinary leptin levels were 
higher among the girls, and were 
increased among both girls and 
boys nearing puberty compared 
with those remaining prepubertal 
over the course of the study.

Both MIS and inhibins, peptides 
that suppress FSH levels, have 
been characterized as potential 
biomarkers of pubertal onset in 
males. MIS is detected at high 
levels during late infancy in males, 
then declines gradually until the 
presence of primary spermatocytes 
are detected, which appear to 
inhibit MIS (50). In contrast, MIS 
is only synthesized postnatally by 
granulosa cells in pubertal girls, 
and is measured in serum (51,52). 
Serum concentrations are similar in 
both sexes after puberty (53). Inhibin 
B is a gonadal polypeptide hormone 
that regulates, via a negative 
feedback loop, the synthesis and 
secretion of FSH (54). Similar to 
MIS, among males there is a peak 
concentration of serum inihibin B in 
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infancy, followed by a rapid decline 
until onset of puberty, when another 
rise in serum levels is noted. Inhibin 
B is also associated with FSH, LH, 
testosterone and testicular volume in 
varying patterns throughout puberty 
(54,55). In girls, serum inhibin B is 
positively correlated with age and 
FSH levels during childhood, and 
an increase during early breast 
development stages (56). However, 
because these biomarkers currently 
require drawing blood samples 
for measurement and biological 
variability (e.g. diurnal fluctuations) 
is unknown, research is needed to 
develop valid and sensitive urinary 
biomarkers that will also be feasible 
in terms of cost and acceptance by 
study participants in longitudinal 
studies (57).

Molecular epidemiology 
studies associating 
environmental exposures 
with puberty onset

The few epidemiologic studies 
that have associated pubertal 
development with exposure to 
endocrine disrupting chemicals (e.g. 
polychlorinated and polybrominated 
biphenyls (PCBs and PBBs) and 
phthalate esters) have been the 
topic of several recent reviews 
(58–60). Conflicting findings and 
uncertainties regarding critical 
windows of susceptibility and the 
possibility of exposure to complex 
mixtures of chemicals that may 
have antagonistic effects highlight 
the need for further research with 
objective biomarkers. A recent 
epidemiologic investigation of 
pubertal stages in nine-year-old 
inner-city girls in New York City 
was unique in associating delayed 
breast development with high levels 
of the hormonally active agents 
phytoestrogens and isoflavones 
measured in urine (61). An expert 
panel recently convened to review 

the association between endocrine-
active chemicals in the environment 
and altered timing of pubertal 
onset concluded that the evidence 
available appears suggestive (62). 
Future epidemiologic research 
to elucidate gene-environment 
interactions and the molecular 
pathways mediating the influence 
of environmental exposures on 
pubertal development is eagerly 
awaited.

Biomarkers of female 
reproductive function

Female libido

Changes in usual patterns of sexual 
desire can also serve as an early 
sentinel for exposures that may 
adversely affect reproductive health. 
Most of the concerns regarding a 
relationship between exposure to 
endocrine active compounds and 
decreased libido have focused 
on males, although some have 
questioned whether this may also 
be a problem among women (63). 
The complex interactions between 
sex steroid hormones and the 
hypothalamic-pituitary-gonadal axis 
at varying times over the menstrual 
cycle also add to the challenges 
in measuring these hormones as 
biomarkers of decreased libido (64). 
There have been several recent 
studies of diminished sexual desire 
in females, but the majority have 
examined this condition among 
postmenopausal women (65–68). 
A related outcome, hypoactive 
sexual desire disorder (HSDD), 
is defined as low sexual desire 
accompanied by personal distress 
caused by this decrease in sexual 
desire (69,70). The prevalence of 
low sexual desire among younger 
and middle-aged women that is 
not ascribed to menopausal effects 
ranges from 24–31% (71,72). While 
questionnaires to ascertain HSDD 

have been tested for validity and 
reliability, a biomarker for HSDD in 
women remains elusive. Although 
there is a growing body of evidence 
supporting the role of testosterone 
and sexual desire in women, the 
association between decreased 
serum androgen levels and women 
reporting low libido remains unclear 
(73,74). The development of assays 
to measure testosterone levels 
in saliva samples would greatly 
facilitate the investigation into the 
potential relationship between 
exposure to endocrine active 
compounds in the environment and 
decreased libido (75,76).

Menstrual cycle 
characteristics

Alterations in menstrual cycle 
characteristics may also serve 
as early sentinels of exposure to 
potentially harmful environmental 
contaminants. Furthermore, 
changes in menstrual cycle 
parameters have been associated 
with adverse reproductive 
outcomes, including infertility and 
spontaneous abortion (77–80). One 
small study (n = 14) determined that 
urinary FSH was significantly lower 
in the periovulatory period in cycles 
that did not result in conception 
compared with those that did, 
rendering urinary FSH a potentially 
useful predictor of cycle fecundity.

Numerous studies have been 
conducted using questionnaires to 
obtain information on cycle length, 
days and severity of menstrual flow, 
and dysmenorrhea; however, these 
methods often do not yield valid 
information. One study described 
the use of urinary biomarkers to 
determine sex steroid hormone 
levels throughout the menstrual 
cycle among healthy premenopausal 
women (n = 403) (81). The women 
were required to collect and freeze 
daily morning urine samples that 
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were analysed for pregnanediol-
3-glucuronide, estrone sulfate and 
estrone glucuronide (combined and 
referred to as E1C) by enzyme-
linked immunoassay. Using 
computer-generated algorithms to 
define menstrual cycle events, the 
researchers were able to utilize the 
hormone data to describe menstrual 
cycle length, the length of both 
the follicular and luteal phases, as 
well as occurrence and timing of 
ovulation.

Using the same sampling frame 
as the study above, the Kaiser 
Permanente Medical Care Program 
in California evaluated variability 
in estrogen and progesterone 
metabolites according to these 
menstrual cycle characteristics, 
as well as demographic variables 
and reproductive history (82). With 
an average length of participation 
of 141 days, urine samples were 
collected on over 95% of the study 
days in this sample of mostly 
white, highly-educated women. 
They reported urinary estrogen 
metabolite levels 10–13% higher in 
the baseline interval (days 1–5) and 
during the follicular phase among 
women who experienced shorter 
menstrual cycles. There was also 
an association between increased 
urinary progesterone metabolites 
and a longer luteal phase. 
Associations between estrogen 
and progesterone metabolites and 
race/ethnicity, prior reproductive 
experiences, age, BMI and 
educational level were also noted.

A large study was conducted 
in 1989–1991 to determine the 
relationship between occupational 
exposures among women employed 
in the semiconductor industry and 
fertility and early pregnancy losses 
(83). Investigators evaluated the 
influence of demographic and 
lifestyle factors on menstrual 
cycle characteristics among 309 
women from this cohort. Duration of 

follicular and luteal phase segments, 
and occurrence and timing of 
ovulation were determined using 
urinary estrogen and progesterone 
metabolite levels that were analysed 
in daily morning urine samples. 
These efforts confirmed earlier 
reports that menstrual cycle 
characteristics vary by age, race/
ethnicity and lifestyle factors (e.g. 
alcohol consumption) (84–86).

Taken together, these studies 
provide evidence that urinary 
biomarkers can be used in large, 
population-based studies of 
menstrual cycle function, as well as 
in selected fertility and pregnancy 
outcomes. However, it must be 
noted that the majority of these 
protocols required daily specimen 
collection over varying lengths 
of time. While compliance rates 
with urine specimen collection in 
prospective pregnancy studies is 
generally quite high (8), it must also 
be noted that these studies typically 
involve women (or couples) who are 
planning to conceive. There may 
therefore be considerable variability 
with compliance, depending upon 
the goal of the study and the 
pregnancy intentions of the sample.

Additional biomarkers that 
would be feasible for use in large, 
population-based studies focusing 
on the detection of ovulation include 
cervical mucus monitoring, which 
has been available and used for 
several years, and salivary sex 
steroid hormones levels. However, 
studies examining the validity and 
feasibility of analysing salivary 
samples for various biomarkers of 
reproductive function have included 
relatively small sample sizes, and 
reported considerable intra- as well 
as interindividual variability for the 
sex steroid hormones (87–91).

Infertility/early pregnancy 
loss

The only approach that allows 
researchers to distinguish between 
women having infertility and those 
experiencing subclinical or early 
pregnancy loss is the prospective 
pregnancy study design. Though 
beyond the scope of this chapter 
because of limited application in 
large-scale epidemiologic research, 
diagnostic advances in assisted 
reproductive technology (ART) 
have shed light on this distinction, 
and readers are referred to several 
recent and thorough reviews (92–
94). As illustrated in Figure 25.2, 
there is increased emphasis on the 
periconceptional environment that 
may impact fertilization as well as 
implantation. Scientists have made 
great strides in the ability to detect 
early pregnancies once implantation 
takes place. The measurement 
of urinary human chorionic 
gonadotropin (hCG) as a marker 
of early pregnancy loss has been 
used since the late 1980s (95–97). 
The algorithm for determining the 
level of hCG that exceeds normal 
background levels and indicates 
that conception has occurred was 
developed by examining hCG levels 
throughout the menstrual cycle in 
women who had been surgically 
sterilized (96). Concerns were 
later raised suggesting that urinary 
hCG alone may not be a sensitive 
indicator of early pregnancy among 
those conceptions terminating 
in subclinical losses (98–100). 
However, when patterns of serum 
and urinary hCG levels were 
compared between successful 
pregnancies and those terminating 
in early pregnancy loss and clinical 
spontaneous abortion, there were 
no differences, thus validating the 
solitary measure of urinary hCG as 
a biomarker of pregnancies around 
the time of implantation (101).
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A prospective, longitudinal 
study of early pregnancy loss 
(conceptions ending within five 
weeks of ovulation) among 
indigenous women of rural Bolivia 
correlated salivary progesterone 
measurements with urinary hCG 
measurements (102). Among the 
191 study women who were eligible 
(taking no active steps to either 
prevent or achieve conception) 
and visited a clinic every other day 
(to collect samples and record the 
first day of menstrual bleeding), 
eight early pregnancy losses were 
detected and 32 pregnancies were 
sustained past the five-week cut 
point. Overcoming some of the 
limitations of salivary progesterone 
measurements described above, 
the investigators were able to detect 
ovulation as a sudden, steep rise 
in salivary progesterone, and they 
reported a significant association 
between elevated follicular phase 
(pre-ovulatory) progesterone and 
subsequent early pregnancy loss.

The development of fertility 
monitors and sensitive urinary hCG 
assays that can easily be used by 
women in the home to detect early 
pregnancy has greatly enhanced 
the ability to examine fecundability, 
infertility, time-to-pregnancy and 
early pregnancy loss (103,104). 
The Oxford Conception Study is a 
randomized clinical trial to determine 
if knowledge of the timing of peak 
fertility increases conception rates 
among couples trying to achieve 
pregnancy (103). The study is using 
the Clearblue® Easy fertility monitor, 
which measures levels of urinary 
estrone-3-glucuronide (E3G) and 
LH. The monitor screen displays 
bars to indicate high and peak (which 
displays an egg symbol) fertile days in 
the cycle. There are two intervention 
arms to the study: one third of women 
receive feedback only on the early 
fertile time, defined as the first rise in 
E3G until the LH surge is detected, 
and another one third receive 
information only about the late fertile 

time, or the onset of the LH surge 
and the subsequent two days. The 
control group does not receive any 
fertility monitor feedback concerning 
fertile windows. This same fertility 
monitor is also currently being used 
in the Longitudinal Investigation of 
Fertility and the Environment (LIFE) 
study, a prospective examination 
of the impact of environmental 
exposures and lifestyle factors on 
fecundability and fertility, which will 
be described later.

There are additional advantages 
to using the fertility monitors. 
Women are requested to collect first 
morning urine samples beginning on 
day six of their cycle, and continue 
for 10 or 20 days depending upon 
their cycle length; thus the need 
for daily urine sample collection is 
reduced somewhat. Moreover, the 
monitors store data on the estrogen 
and progesterone metabolite 
levels, which may be downloaded 
using a data card and processed 
for data analysis. These hormone 

Figure 25.2. The sensitive periods in human development (230). Copyright Elsevier (1998).
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data are also used to generate 
graphs for study participants, which 
provide a clear illustration of their 
fertile windows during each cycle, 
and reinforce the importance of 
engaging in sexual intercourse on 
those days to increase likelihood of 
conception.

The utilization of fertility 
monitors and home pregnancy 
test kits as described above has 
greatly enhanced the information 
that can be obtained in prospective 
pregnancy studies. However, the 
home pregnancy tests cannot 
detect fertilization, and only begin 
to measure hCG around the 
time of implantation. Thus, the 
interval between fertilization and 
implantation remains a ‘black box’ in 
the investigation of factors affecting 
fertility. There have been some 
attempts to measure a substance 
known as early pregnancy factor 
(EPF) (105–107). EPF is believed 
to be a substance secreted by 
the ovary in response to a trigger 
from the zygote (107). This ‘ovum 
factor’ is secreted at the time that 
the ovum is fertilized, and can be 
measured in the maternal serum 
within 2–6 days post ovulation 
(106). Despite the fact that several 
earlier studies demonstrated the 
ability of EPF to detect fertilization 
in humans before implantation, this 
biomarker has not been evaluated 
for use in prospective studies of 
fecundability and fertility. Again, 
the need to draw blood samples 
during each menstrual cycle to 
detect EPF, renders this less than 
optimal in large-scale population-
based studies, but a recent study 
reported the presence of EPF in the 
cervical mucus of pregnant women 
(108). Mean EPF activity, measured 
in rosette inhibition titres (RIT), 
was significantly higher among 53 
pregnant women during their first 
trimester of gestation, and seven 
women in the second trimester, 

compared with 25 non-pregnant 
women (6.58, 5.71, and 3.44 RTI, 
respectively (P < 0.001). Moreover, 
there was a significant correlation 
between serum and cervical mucus 
RTI values, r = 0.611 (P < 0.0005). 
Additional research on EPF 
activity in cervical mucus around 
the time of ovulation is needed 
to determine the feasibility of this 
biomarker in identifying fertilization 
and preimplantation events in 
fecundability and fertility studies.

The challenges inherent in 
establishing and maintaining 
prospective pregnancy study 
cohorts underscore the importance 
of developing biomarkers that are 
sensitive, specific and cost-effective 
but also acceptable and relatively 
easy to use. The LIFE study, 
designed to examine the relationship 
between environmental and 
lifestyle factors and fecundability 
and fertility, is funded by the US 
National Institute for Child Health 
and Human Development and is 
currently enrolling couples in Texas 
and Michigan (http://www.lifestudy.
us). This study methodology is 
the only approach that allows for 
ascertainment and examination 
of the early critical events in the 
reproductive process in humans 
(i.e. to distinguish between failures 
of fertilization versus subclinical 
pregnancy losses), and hopefully 
soon, implantation failures versus 
these other two outcomes. The 
LIFE study recruitment efforts 
have determined that willingness to 
comply with protocol requirements, 
including collection and testing of 
biological samples and completion 
of diaries during the interval of 
attempting to conceive, as well as 
changes in pregnancy intentions due 
to varied life events while enrolled in 
the study, illustrate the need both 
for the development of sensitive 
and acceptable biomarkers, as 
well as very large sampling frames 

in population-based prospective 
pregnancy studies.

Biomarkers of fetal 
and infant development

Adverse fetal 
or infant outcomes

The major focus of this review 
is the identification of new 
biomarkers of reproductive health 
that can be employed in large-
scale epidemiologic studies of 
reproduction. Although the many 
promising biomarkers developed 
recently for use in clinical obstetrics 
and reproductive endocrinology 
are beyond the scope of this 
chapter, readers are referred to 
in-depth discussions of advances 
in the detection of pregnancy 
complications (e.g. pre-eclampsia 
and intrauterine growth retardation) 
and other adverse prenatal events 
provided elsewhere (109–112). 
Several resources are also available 
for updates on screening and 
diagnostic tests for aneuploidy, 
including Down syndrome (113–
117), other congenital anomalies 
(118), fetal lung maturation (119) 
and haematologic disorders 
and complications (120) during 
gestation. Epidemiologic studies 
of perinatal outcomes and long-
term health in children conceived 
by ARTs have been an important 
source of prospective and high 
quality data. Outcomes following the 
more recently developed ARTs (e.g. 
intracytoplasmic sperm injection) 
are currently being compared 
with outcomes following the more 
established technologies, such as in 
vitro fertilization (121–123).

There have been recent 
advances in the utilization of 
dried blood spots (DBS) that hold 
great promise for large-scale 
epidemiologic studies aiming to 
identify valuable biomarkers of 
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susceptibility, exposure and effect. 
Blood spots, obtained via heel 
stick, are collected within 24–48 
hours after birth on nearly all 
newborns in the USA. The spots 
are stored on special filter paper 
Guthrie cards and used by states in 
screening programmes to diagnose 
a variety of disorders among 
newborns. The number of different 
disorders assessed in the screening 
programmes is determined by 
each state’s department of health. 
There has been a surge of interest 
recently in the analyses of DBS to 
investigate diverse disorders in large 
population-based studies, including 
environmental exposures and their 
relationship to congenital anomalies 
and developmental disorders, the 
prevalence of infectious diseases 
among newborns, and genetic 
disorders and potential biomarkers 
of susceptibility (124–129).

A recent meeting discussed the 
issues and approaches to using DBS 
in studies investigating environmental 
exposures and infant health 
outcomes (130). Preliminary work 
has been conducted to determine 
the feasibility of analysing DBS 
for several exposures of concern, 
including persistent bioaccumulative 
toxics (PBTs is the term used by the 
US EPA, whereas the United Nations 
Environment Programme uses the 
term persistent organic pollutants, 
or POPs), metals, infectious 
agents, immune factors and genetic 
disorders. The scientists concluded 
that DBS represent a very valuable 
source of biomarkers of exposure, 
effect and susceptibility, but there 
are limitations that must be resolved 
before they can be used to the 
maximum potential. The limitations 
include inadequate sample volume, 
as many laboratory techniques 
to measure environmental 
contaminants require relatively large 
volumes; development of reference 
values for elements with large 

variability in whole blood matrices; 
and issues related to stability, 
recoverability, half-life and storage 
over time. Great care must be taken 
in the collection, drying, storage and 
transport of the spots if they are to 
be of future use in research studies 
(131). There is also the critical need 
to develop policies regarding the 
ethics and human subjects research 
challenges presented by these 
specimens (132,133).

Molecular epidemiology 
studies associating 
environmental exposures with 
fetal and infant development

An extensive review of the 
epidemiologic literature (including 
original studies, expert panel 
reports, meta-analyses, and 
pooled analyses) published 
between 1970 and 2006 examined 
adverse reproductive and 
developmental outcomes in relation 
to preconceptual and prenatal 
exposures to environmental 
compounds (18). The pregnancy 
outcomes examined included fetal 
loss, intrauterine growth retardation, 
preterm birth, birth weight, 
congenital anomalies and childhood 
cancers among others. The 
environmental exposures included 
metals, pesticides and hormonally 
active agents (e.g. methyl mercury 
and PCBs). The question of whether 
in utero exposure of male offspring 
to hormonally active agents in the 
environment (e.g. the plasticisers, 
phthalates) (134) increases their 
risk of testicular dysgenesis 
syndrome (TDS) (i.e. impaired 
spermatogenesis, hypospadias, 
cryptorchidism and testicular 
cancer) in a manner similar to in 
utero exposure to diethylstilbestrol 
(DES), was evaluated in a recent 
meta-analysis (135). Although 
the meta-analysis confirmed the 
association of DES with TDS, there 

is as yet no compelling evidence 
that any other hormonally active 
agents increase the risk of TDS.

An enormous amount of valuable 
information on the reproductive and 
developmental effects of the atomic 
bombing of Hiroshima and Nagasaki 
has been compiled and summarized 
(136). The unique and precedent-
setting contributions to the field of 
reproductive epidemiology, as a 
result of the investigators’ careful 
and extensive use of biomarkers 
throughout the extended course 
of this research, are remarkable. 
Recent studies reporting increased 
risks of preterm birth, low birth 
weight, and small for gestational age 
among the births to female survivors 
of childhood cancer further illustrate 
the advantages of accurate, 
carefully documented biomarkers 
in revealing the reproductive health 
effects of exposures at time points 
early in the mother’s development 
(137,138).

Gene–environment 
interaction studies in 
pregnancy outcomes

Molecular epidemiology studies 
examining the influence of gene-
environment interactions on 
reproductive health have focused 
most often on the relatively common 
birth defects, such as neural tube 
defects, oral clefts, hypospadias 
and gastroschisis (139–147). 
Several these studies have linked 
either folate metabolism genes with 
maternal nutritional factors (139–
141) or metabolic/detoxification 
pathway genes with maternal 
smoking (143,144,146). Maternal 
exposure has been assessed by 
questionnaire or interview (without 
biomarkers) and genotyping has 
been performed on DNA from the 
mother (146), infant (142,145,147), or 
rarely, the entire triad including the 
father (143,144).
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Researchers have emphasized 
the utility of examining Mendelian 
randomization, or the random 
transmission of genes that occurs 
between parent and offspring, in 
drawing inferences from studies 
that examine the developmental 
health effects of in utero exposures 
in combination with candidate 
susceptibility genes (148). Studies 
that genotype each member of 
the triad separately may confer 
an important advantage to the 
interpretation of study results. 
Specifically, if the genetic variant 
under study either influences 
exposure to the etiologic factor of 
interest or modifies the exposure–
disease relationship, then the 
expected relative risk for the 
adverse pregnancy outcome 
would be farthest from the null 
when presence of the risk gene is 
measured in mothers’ DNA, closer 
to the null when the presence of the 
risk gene is measured in fathers’ 
DNA, and somewhere in-between 
when presence of the risk gene is 
measured in infants’ DNA.

Research interest in the 
interactions between metabolic/
detoxification genes and maternal/
in utero exposure to environmental 
agents has begun to extend 
across the spectrum of pregnancy 
outcomes including preterm delivery 
(149), infant birth weight (150), 
pervasive developmental disorders 
(e.g. autism) (151) and childhood-
onset attention deficit disorder (152). 
These studies further illustrate 
the methodologic challenges 
often confronted by molecular 
epidemiologists: constraints on the 
study design (e.g. statistical power 
issues and the need to rely on 
case-control or case-only designs); 
source populations of varying race, 
ethnicity and genetic backgrounds 
(e.g. case and control groups may 
not be comparable); participant 
recruitment (e.g. requiring 

consent for sensitive, invasive or 
complicated sample collection 
procedures); exposure assessment 
(that may include idiosyncratic 
sample collection, processing 
and storage requirements and 
expensive analytical techniques); 
and data analysis strategies that 
must take into account important 
interrelationships (e.g. confounding 
and effect-measure modification) 
across large numbers of measured 
independent and dependent 
variables.

Childhood cancer

The extent to which the etiology 
of childhood cancer involves in 
utero or preconceptional parental 
exposure to environmental agents 
remains a major public health 
concern and an important research 
question for both reproductive and 
cancer epidemiologists. Biomarkers 
of childhood cancer and a review of 
the epidemiologic investigations that 
have incorporated molecular markers 
of exposure and susceptibility are 
discussed in detail in Chapter 26. 
A recent comprehensive review 
of pesticides and childhood 
cancer (153) is discussed only 
briefly here to emphasize the 
critical need for improvements 
in exposure assessment (e.g. 
objective biomarkers of exposure 
to environmental chemicals) and 
for the detection of specific gene–
environment interactions that are 
likely contributors to the complex 
etiology of childhood cancer. Among 
the 77 studies included in the 
review (153), parental exposure to 
pesticides (including herbicides and 
insecticides) was measured indirectly 
(e.g. by proximity of residential 
address to chemical production 
plants or by classification of usual 
occupation on birth certificate) by 
responses to interviews or self-
administered questionnaires, 

review of employment records, 
or by environmental monitoring 
techniques. None of the studies had 
measured exposure to pesticides 
using biological samples (e.g. urine or 
blood). This is understandable given 
that over time, study participants 
may have been exposed to several 
different compounds (either one 
at a time or in complex mixtures), 
that many pesticides have short 
half-lives in the biological samples 
commonly used for analysis, and 
that the limits of detection for many 
of the standard chemical analyses 
are relatively high.

Transgenerational health 
effects and epigenetic 
mechanisms

Several recent studies have 
advanced yet another challenging 
but essential area of research to 
determine adverse reproductive 
effects of environmental 
exposures—the conduct of second-
generation studies in humans. 
The critical importance of this 
effort is illustrated by the studies 
of the offspring of women who 
took DES during pregnancy to 
prevent spontaneous abortions. 
Earlier animal studies suggested 
that the carcinogenic effects of 
prenatal DES exposure may be 
transgenerational, reporting an 
increase in reproductive tract 
tumours among the offspring of mice 
with prenatal exposure to DES (154–
156). After noting the occurrence of 
hypospadias among two boys born 
to mothers who had been exposed 
to DES prenatally, researchers in 
the Netherlands conducted a cohort 
study among women experiencing 
fertility problems to examine this 
association (157). Among 205 
women who reported having been 
exposed to DES in utero, four gave 
birth to sons with hypospadias, 
compared with eight cases reported 
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among the 8729 sons born to 
non-exposed women (prevalence 
ratio = 21.3; 95% CI = 6.5–70.1). 
This finding generated several 
studies in more representative 
populations, all indicating an 
increase in hypospadias among 
sons of prenatally exposed DES 
mothers. However, the magnitude 
was much lower, with prevalence 
ratios of 5.0 (95% CI = 1.2–16.8) 
among a French population and 1.7 
(95% CI = 0.4–6.8) among women 
in the USA, and a case–control 
study of both maternal and paternal 
in utero DES exposures yielded 
an adjusted odds ratio (OR) of 4.9 
(95% CI = 1.1–22.3) for maternal 
exposures, but no increase 
among males whose fathers were 
prenatally exposed to DES (OR = 
0.9; 95% CI = 0.1–6.7) (158–160). In 
addition, there were case reports of 
other congenital anomalies among 
second-generation offspring of 
DES-exposed women, including 
limb reduction defects, deafness 
and ovarian carcinoma (161,162).

There have been several recent 
reports on approaches to examine 
the transgenerational adverse 
reproductive effects of in utero 
DES exposure in animal models. 
Experiments in mice exposed to 
DES within 1–5 days after birth 
have supported the hypothesis 
that epigenetic dysregulation (e.g. 
hypomethylation of multiple CpG 
sites of the proto-oncogene c-fos) 
could be a causal mechanism 
underlying the adverse effects of 
DES on uterine tissue (163). As 
described in greater detail in Chapter 
26 and recent reviews (164,165) 
of the ‘developmental origins’ or 
Barker hypothesis (166–168) (i.e. 
that environmental exposures 
during the earliest and most plastic 
stages of human development may 
be among the most significant 
causal factors underlying many 
chronic diseases in children and 

adults), epigenetic mechanisms 
regulate gene expression through 
DNA methylation, histone 
modification of chromatin structure, 
and autoregulatory DNA binding 
proteins.

Although epigenetic 
mechanisms can cause phenotypic 
discordance between monozygotic 
twins, epigenetic influences can also 
be inherited (e.g. an imprinted gene 
in which the only allele expressed 
in the offspring is the one inherited 
from either the mother or the father, 
never both). Epigenetic alterations 
can occur at the level of transcription, 
translation or post-translation, and 
appear to mediate the development 
of adverse reproductive health 
effects following experimental 
exposure to several hormonally 
active environmental toxicants, at 
least in animal models (e.g. dioxins 
and PBBs) (169). In rodents, for 
example, in utero exposure to 
the endocrine-active compounds 
bisphenol A (170) and vinclozolin 
(171) produced epigenetically-
mediated changes in coat colour 
and in reproductive organs including 
testicular defects and prostate 
tumours, respectively. In the latter 
study of rats, the epigenetic changes 
and adverse reproductive health 
effects appeared to be transmitted 
through a paternal allele in three 
consecutive generations (i.e. 
transgenerational), despite the lack 
of any vinclozolin exposure beyond 
the first generation of pups.

As is so often the case for 
findings from novel and intriguing 
animal experiments, they await 
confirmation in other experiments, 
since replication is the hallmark 
of good science. The validity 
and reliability (e.g. coefficient of 
variation) of the intricate molecular 
techniques to measure epigenetic 
mechanisms in different human 
biological matrices with varying 
amounts of each individual sample 

are highly uncertain at this time, 
and gold standard methodologies 
have yet to emerge (24). In humans, 
molecular epidemiology studies able 
to examine biomarkers of epigenetic 
mechanisms and reveal the ways 
in which such mechanisms mediate 
the relation between exposure 
to environmental chemicals and 
reproductive outcomes may lag 
only a few years behind the ground-
breaking studies in animal models. 
However, it may take many years 
before molecular epidemiologists 
can measure epigenetic markers and 
their ultimate effects on reproductive 
health across multiple generations. 
There is hope that answers will come 
from the National Children’s Study 
(http://www.nationalchildrensstudy.
gov), which plans to examine 
mothers and fathers before and 
during pregnancy, and to follow their 
children for decades thereafter (172).

Biomarkers of male 
reproductive function

Male libido

Biomarkers of male reproductive 
function have been reviewed (173), 
as well as a comprehensive and in-
depth look at the current array of 
diagnostic tests available for male 
sexual dysfunction (174). Libido 
is the biological need for sexual 
activity (i.e. the sex drive), and 
male sexual desire is regulated by 
past sexual activity, psychosocial 
factors, activation of brain and 
spinal cord dopamine receptors, 
and gonadal hormones. Little is 
known of the physiologic basis of 
libido, and assessments of libido, 
erection, ejaculation, orgasm and 
detumescence would be difficult to 
make in large-scale epidemiologic 
studies. There are electronic devices 
adapted for home use that monitor 
nocturnal penile tumescence 
(the penile erections that occur 
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spontaneously during rapid eye 
movement stages of sleep) (174,175). 
Though relatively little is known 
about the effect of occupational or 
environmental exposures on sexual 
desire in men, it has been suggested 
that lead, carbon disulfide, stilbene 
or cadmium exposure may have 
adverse effects (176). The few 
studies that have associated 
erectile dysfunction with exposure 
to hazardous environmental and 
occupational chemicals, and the 
fewer still that have incorporated 
biomarkers of exposure, have been 
carefully reviewed (175). Clearly, 
male libido and erectile dysfunction 
are important reproductive health 
outcomes requiring further 
epidemiologic research and 
biomarker development.

Hormones

Chemical analyses for male 
hormones are usually performed 
on serum or urine samples, and 
the latter are readily available for 
use in large-scale epidemiologic 
studies. Abnormal levels of male 
hormones in serum or urine are 
indicators of problems in the 
hypothalamic-pituitary-gonadal 
axis that underlie abnormalities 
observed in semen analysis (e.g. 
azoospermia and oligospermia) 
(177). As a modestly invasive 
procedure, requiring relatively little 
formal training, blood collection in 
males is fairly well tolerated and 
inexpensive. The National Institute 
for Occupational Safety and Health 
recommends a profile including 
FSH, LH, testosterone and prolactin 
to evaluate endocrine dysfunction 
in the male. Although LH and FSH 
can be measured in urine, prolactin 
is currently measured only in serum 
(173).

As high rates of refusal among 
study candidates has remained a 
major barrier to the assessment of 

semen quality in population-based 
epidemiologic investigations, the 
identification of alternative reliable 
biomarkers is a pressing need (20). 
In a recent comparison with the gold 
standard measurement of sperm 
concentration in semen, serum 
levels of inhibin B, the peptide 
hormone produced in Sertoli cells, 
looked promising as a potential 
surrogate biomarker for large-
scale epidemiologic research (178). 
Although serum FSH has also been 
used as a surrogate biomarker for 
semen quality, FSH levels may be 
less desirable on the biological 
grounds that they are affected by 
gonadotropin releasing hormone, 
estradiol and testosterone, and 
unlike inhibin B, FSH is not 
produced in the testes (178). In the 
future, serum biomarkers for other 
male hormones, such as activin and 
follistatin, may be explored for their 
utility in epidemiologic studies of 
male reproductive function (173).

Molecular epidemiology 
studies associating 
environmental exposures 
with male hormone levels

A recent, unique molecular 
epidemiology study compared serum 
prolactin and inhibin B levels in male 
welders with corresponding levels 
in an age-matched comparison 
group. The investigators reported 
significantly positive associations 
after adjusting for smoking and 
alcohol consumption (179). Whole 
blood manganese concentration 
was also positively associated with 
serum prolactin level. As the higher 
serum inhibin B concentrations in 
welders compared with the referent 
group were contrary to expectation, 
the findings of this novel study 
await confirmation (179). Several 
recent epidemiologic studies have 
examined the effects of exposure 
to environmental agents on both 

male hormones and semen quality, 
allowing for a more thorough 
assessment of the potentially 
complex environmental effects on 
male reproduction (180–182).

Semen characteristics

Despite conflicting reports and 
substantial geographic variation, 
the question of whether declines 
in semen quality and sperm counts 
over the past several decades 
have resulted from exposure to 
post-industrial age environmental 
toxicants remains a major unresolved 
public health concern. While the 
number of reports of declining sperm 
counts continues to grow, there is 
as yet no compelling evidence of 
decreased fertility in the human 
populations studied (173,183). The 
assessment of reproductive function 
in males usually begins with semen 
analysis (177). In addition to the 
challenges of recruiting participants 
willing to submit semen samples for 
large-scale epidemiologic studies, 
the samples must be collected in 
appropriate containers, analysed 
within one hour of collection, and kept 
warm during transportation (177).

The systematic analysis of 
semen includes macroscopic 
and microscopic evaluations and 
chemical assays. Samples are 
examined for liquefaction, viscosity, 
colour, pH (normal = 7.2–7.8), 
volume (normal = 2–5 millilitres), 
sperm concentration (normal = 20–
50 million per millilitre), morphology 
(e.g. size of the acrosomal cap and 
length of the tail, normal ≥ 50% of 
sperm have a typical acrosomal 
shape and size and a tail around 45 
µm in length), motility and velocity/
progression (normal ≥ 50% of 
observed sperm are motile and 
move forward rapidly in a straight 
line with little lateral movement), 
agglutination (clumping) and the 
presence of other cellular elements 
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(e.g. immature germ cells and 
leukocytes) (20,177).

Although automated semen 
analysis systems have been 
developed, visualization and 
interpretation of important subtleties 
in human sperm are difficult. 
Evaluation by manual methods 
remains the standard practice 
(177). Nevertheless, researchers 
should be aware that evaluations 
of sperm concentration and motility 
have demonstrated acceptable 
interlaboratory reliability and 
low coefficients of variation, but 
the assessment of other sperm 
characteristics (e.g. progression) 
has been more difficult to 
standardise (184). Semen contains 
a vast array of antigenically diverse 
proteins, including those carried on 
the surface of sperm, and the largely 
unknown influence of specific 
male reproductive proteins on 
human conception and pregnancy 
outcomes will be an important focus 
for future molecular epidemiology 
research (185).

Although semen has been 
used for biomonitoring of exposure 
to metals and xenobiotics (20), 
concerns have been raised that 
routine semen analysis may be 
an insensitive measure of many 
important reproductive health 
effects resulting from environmental 
exposures (19,20). A more 
comprehensive approach includes 
assessments for cytogenetic sperm 
abnormalities and DNA damage 
(19,20). The fluorescent in situ 
hybridization (FISH) technique 
has been widely used to detect 
aneuploidy, chromosomal breaks, 
and rearrangements in sperm 
cells. Although the FISH technique 
is efficient for large-scale use, an 
immense number of each subject’s 
sperm cells must be evaluated (up 
to 10 000) (20).

Sperm chromatin is extremely 
compact and stable relative to 

chromatin from somatic cells (20), 
and this property has led to the 
development of novel biomarkers 
of sperm DNA integrity. Damage 
to sperm from reactive oxygen 
species (e.g. oxygen ions, free 
radicals and peroxides) has been 
shown to contribute to reductions 
in male fertility (20,186). In fact, the 
production of free radicals due to 
oxidative stress was first reported 
in sperm cells (186). Oxidative DNA 
damage refers to the functional or 
structural alteration of DNA that 
contributes to many degenerative 
diseases of aging including cancer 
(20). Oxidative stress to sperm DNA 
integrity can arise endogenously 
or from exposure to environmental 
toxicants including xenobiotics (19). 
Oxidative stress leads to impaired 
sperm motility, reduced fertilization, 
and DNA damage.

Although there are over 30 
assays of oxidative stress available 
for sperm assessment, the cost 
and complexity, combined with 
difficulties in standardization across 
laboratories, limit their use especially 
for large-scale epidemiologic 
research (186). The level of the 
oxidative DNA adduct 8-hydroxy-
2'-deoxyguanosine (8-OHdG) in 
sperm is considered a sensitive 
and precise biomarker of oxidative 
DNA damage (19,20). High levels 
of 8-OHdG are positively correlated 
with abnormal sperm morphology 
and negatively correlated with 
sperm concentration, number 
and motility (19). In addition to the 
8-OHdG assay, a variety of methods 
to measure sperm DNA strand 
breaks have developed over the past 
25 years, leading to the four major 
tests of sperm DNA fragmentation 
in current use today (mostly in 
ART laboratories): the Comet, 
Tunel, sperm chromatin structure 
assay (SCSA) and the acridine 
orange test (AOT) (186,187). The 
Comet, Tunel, and AOT techniques 

use light microscopy; however, 
the Tunel technique can also be 
performed with flow cytometry. 
The SCSA method requires flow 
cytometry (187). Challenges remain 
in standardization, establishing 
thresholds and reference ranges, 
and achieving acceptable levels of 
interlaboratory reliability for these 
assays (187).

Molecular epidemiology 
studies associating 
environmental exposures 
with semen quality

The literature on epidemiologic 
studies relating semen quality to 
exposure to pesticides, and other 
endocrine disrupting chemicals 
has been thoroughly reviewed 
(188–190). The overwhelming 
consensus is that the studies have 
varied considerably in methods, 
exposures and outcomes, and the 
results have been equivocal. The 
need for further research in this area 
is compelling. Several molecular 
epidemiologic studies have begun 
to incorporate biomarkers of DNA 
damage to sperm (e.g. SCSA and 
the DNA fragmentation index) as 
more sensitive measures examine 
the effects of exposure to potentially 
toxic environmental compounds 
(191–194). Molecular epidemiology 
studies have also begun to examine 
the influence of gene–environment 
interactions on sperm DNA integrity 
(195,196).

The evidence for male-mediated 
reproductive and developmental 
toxicity has been reviewed (197). 
There is some evidence that 
irradiation and exposure to certain 
chemical compounds can be 
genotoxic to sperm in experimental 
animals, leading to the development 
of malformations and tumours in 
their offspring. On the other hand, 
paternal exposure to low levels of 
non-mutagenic compounds, such 
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as lead, has altered learning and 
mating behaviour in offspring, but 
has not led to obvious malformations 
or tumours (197). Evidence of 
male-mediated reproductive and 
developmental effects in humans 
has derived mostly from studies of 
children born to men exposed to 
environmental toxicants (e.g. methyl 
mercury, anaesthetic gases, lead, 
solvents and pesticides) through their 
occupations. These studies have 
been limited by the lack of objective 
and precise measures of exposure 
and by the failure to adequately 
account for exposures in the mother. 
The mechanisms proposed for 
male-mediated reproductive toxicity 
in humans involve direct effects 
from contaminated seminal fluid, as 
well as both genetic and epigenetic 
pathways. These pathways could 
involve germ cell mutation, sperm 
DNA instability, suppression of 
germ cell apoptosis, or interference 
with genomic imprinting (197). As 
available animal models may have 
reproductive systems and exposure 
regimens that poorly approximate 
conditions in humans, evidence 
for or against male-mediated 
reproductive toxicity and the 
hypothesized underlying molecular 
mechanisms will largely depend on 
the validity and precision of future 
epidemiologic investigations.

Strengths, limitations 
and lessons learned

There have been tremendous 
strides in the development and 
implementation of biomarkers in 
reproductive health studies over 
the past decade. These advances 
have greatly enhanced our ability to 
explore potential etiologies of and 
increased susceptibility to adverse 
reproductive outcomes. In addition, 
these new techniques have enabled 
us to identify precursor events and 
more subtle manifestations of these 

disorders, as well as to elucidate 
underlying mechanisms. This is of 
great benefit to public health, as we 
now are better positioned to identify 
early sentinels of exposure to 
toxicants and to intervene to reduce 
human exposures.

The capability of measuring the 
dose of exposure to a toxic agent in 
individuals greatly reduces exposure 
misclassification (e.g. recall bias), 
especially notable in scenarios 
where the individuals have little 
knowledge of their exposure. 
Biomarkers of exposure also enable 
more precise determinations of 
dose–response relationships, 
which can vary across age and 
gender. The recent focus on critical 
windows of susceptibility has 
also affected the risk assessment 
process, as evidenced by the use 
of age-dependent adjustment 
factors (ADAFs) by the EPA in risk 
assessment regarding early life 
exposures to carcinogens (198). 
For ages 0–2 years, the ADAF is 
10, indicating a 10-fold increase 
in carcinogenic potency during 
this period. For ages 2–16 years, 
the ADAF is 3, and for ages ≥ 16 
years, the ADAF decreases to 1. At 
present, there is no ADAF for the 
prenatal period, which is a limitation.

Studies in reproductive 
epidemiology that incorporate 
biochemical markers of exposure 
are only just beginning to address 
the “windows of susceptibility” 
issue. It is important to consider the 
independent and joint influences of 
age at initial exposure and intensity 
of exposure, as an environmental 
agent may have irreversible, long-
term reproductive health effects 
in addition to acute or immediate 
effects. Perhaps because the timing 
of exposure is an emergent area 
of inquiry for epidemiologic studies 
of environmental chemicals, this 
issue is not without controversy. 
Recent commentaries (199,200) 

following our report of a significant 
association between infant birth 
weight and mother’s age at initial 
exposure to PBBs, independent 
of the association with maternal 
serum PBB levels (201), highlight 
the need to consider the time-
dependency of maternal exposures 
and the potential for differential 
effects on pregnancy outcomes. 
For example, the effects of in utero 
exposure to a biological agent that 
remains in maternal circulation 
(due either to a single exposure 
event or long-standing cumulative 
exposure) during critical periods of 
embryogenesis and organogenesis 
may be very different from in utero 
effects mediated by the mother’s 
initial exposure to the agent during 
critical periods of her own childhood 
and reproductive development (202). 
Such complexities pose a significant 
challenge to occupational and 
environmental epidemiology, as well 
as to molecular epidemiology (203). 
As researchers further explore the 
underlying biological relationships 
among the growing number of 
measurable biomarkers, they must 
take care to operationally define all 
relevant variables, allow for time-
dependencies, and be prepared 
to reach beyond conventional 
statistical modeling strategies that 
may be oversimplified or poorly 
specified (204,205).

At the same time, epidemiologists 
have become more alert to the 
periods of heightened susceptibility 
during early human development; 
there is growing awareness of the 
uncertainties and complexities 
relating to the toxicokinetics of 
different environmental chemicals. 
There is greater appreciation that 
nonlinear dynamics may be involved 
and that many interacting factors 
can influence the rates of uptake, 
biotransformation, metabolism 
and elimination. An especially 
important development is the 
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recognition among toxicologists 
that the methodologic challenges to 
valid exposure assessment are not 
unique to epidemiologic research. 
As underscored in a recent thought-
provoking review (206), these 
challenges extend to experimental 
animal models as well. There is 
room for substantial improvement 
in biomonitoring that incorporates 
sensitive, repeated measures to 
better reveal biological variability 
both within and between subjects 
(whether human or animal).

Accurate exposure assessment 
for some of the most toxic 
environmental chemicals (e.g. 
dioxins and the most toxic congener, 
2,3,7,9 tetrachlorodibenzo-p-
dioxin (TCDD)), requires potentially 
uncomfortable or invasive specimen 
collection and highly expensive, 
technically complicated sample 
preparation and analysis (207,208). 
This may partially explain why, 
for example, specific reproductive 
health effects of dioxin congeners, 
including TCDD, have been studied 
extensively with biomarkers in 
animal models, but infrequently in 
population-based epidemiologic 
studies (209). The rarity of many 
specific adverse reproductive 
health outcomes in the general 
population (e.g. narrowing the broad 
class of reportable birth defects 
to diagnostic categories, such as 
neural tube defects, or to single, 
clinically-defined entities, such as 
spina bifida) has made conclusive 
findings difficult to compile from 
the few cohorts of highly exposed 
individuals that have been tested 
for serum TCDD levels and closely 
monitored for adverse reproductive 
outcomes (209). The expected 
number of cases of many of the 
single, well-defined reproductive 
health outcomes of interest in 
these exposed cohorts is relatively 
small. Results from well-designed 
epidemiologic studies in larger 

populations of individuals that are 
expected to have a gradient of dioxin 
exposure (due to the environmentally 
ubiquitous and persistent nature 
of these compounds) are eagerly 
awaited despite the methodologic 
and political challenges (210–
212). One strategy that has been 
proposed for biomarker studies of 
TCDD and other environmental 
chemicals that require either 
relatively large aliquots for each 
individual sample, expensive 
analytical methodologies, or both, is 
to design statistically powerful and 
cost-conserving protocols for the 
pooling of individual blood or serum 
samples (213–218).

The ability to utilize easily 
obtained biological specimens (e.g. 
urine samples and buccal swabs), 
rather than relying on collection of 
blood samples (often serially), will 
greatly improve the acceptability 
of biomarker studies in large 
population-based studies. A major 
limitation of biomarker studies is 
the reluctance of study participants 
to undergo serial blood draws, 
but as discussed above, there is 
considerable research focused 
on the development of alternative 
biological media that would be of 
huge benefit for researchers in this 
area. Use of home-based collection 
and storage protocols also improves 
compliance and reduces the costs 
associated with the transport and 
processing of the samples.

Despite the allure of 
inexpensive, high-throughput 
technologies, the appropriate 
application of biomarker assays to 
measure exposure, susceptibility, 
and reproductive health effects in 
large-scale epidemiologic research 
will require painstaking validation, 
comprehensive quality control 
procedures, and active participation 
of collaborating laboratories in 
regular programmes of proficiency 
testing. Detailed results from a 

comprehensive quality control 
programme should be thoroughly 
reviewed before selecting a 
collaborating laboratory. If at all 
possible, studies applying novel 
biomarkers or high-throughput 
technologies should incorporate a 
validation study comparing results 
using the new test (for at least a 
reasonably large random sample 
of participants) with results using a 
suitable gold standard methodology.

A validation study of a lower 
cost screening test for dioxin-
like compounds in serum (i.e. the 
chemically activated luciferase 
reporter gene expression (CALUX) 
assay) in a case–control study of 
neural tube defects in the children 
of US veterans of the Viet Nam 
War provides a striking example 
(219). Of interest was the potential 
use of the CALUX assay to reduce 
costs in large-scale molecular 
epidemiology studies that seek to 
examine the association between 
parental exposure to dioxin 
congeners, especially TCDD, and 
adverse pregnancy outcomes. To 
assess the validity of the CALUX 
assay, results were compared with 
results from the gold standard 
method of dioxin analysis—high 
resolution gas chromatography/
high resolution mass spectrometry 
(HRGC/HRMS). Figure 25.3 
shows a lack of correlation (and 
in the negative direction) between 
the CALUX results for dioxin-like 
activity in serum (in TEQs) and the 
serum TCDD levels measured by 
the gold standard, HRGC/HRMS, 
on paired serum samples. A recent 
epidemiologic study of the Seveso, 
Italy cohort of residents exposed to 
TCDD in 1976 (from an explosion 
in a plant that manufactured 
2,4,5-trichlorophenol) reported a 
similar lack of correlation in results 
from serum analyses comparing 
the CALUX assay with the gold 
standard, HRGC/HRMS (220). Had 
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the validity of this CALUX assay 
been assumed (e.g. on the basis 
of reports of its validity in matrices 
other than human blood (221)), the 
significant three-fold association 
between paternal serum TCDD level 
(measured by the gold standard 
methodology) and the occurrence 
of neural tube defects in the children 
of US Viet Nam War veterans (219) 
would have been missed.

The number of studies examining 
biomarkers of genetic susceptibility 
for adverse reproductive outcomes 
is growing rapidly, with important 
implications for prenatal screening, 
as well as for the detection of gene–
environment interactions. In addition 
to new challenges regarding the 

acquisition and ethical utilization 
of biological samples, there are 
longstanding constraints posed by 
the conventional approaches to 
data analysis that measure gene–
environment interactions on a 
multiplicative rather than additive 
scale (e.g. relative risk versus risk 
difference) and require extremely 
large sample sizes (222–226).

Future directions 
and challenges

In addition to the development of 
biomarkers using easily obtained 
biological samples, research into 
the identification of biomarkers 
that would enable detection when 

fertilization occurs would enhance 
our understanding of fecundability 
and fertility as related to 
environmental and lifestyle factors. 
Identification of additional genetic 
susceptibility markers will open 
multiple avenues of research in both 
the genetic screening area, as well 
as research into gene–environment 
interactions in the etiology of 
adverse reproductive outcomes. 
All of the advances will result in 
the increasing necessity to develop 
safeguards for the confidentiality 
and ethical use of the data obtained. 
It is also critical that effective means 
of communication of study results to 
participants be developed, so that 
important information regarding their 

Figure 25.3. Correlation between log-transformed serum values of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), measured by 
high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS), and serum values of dioxin-like activity 
measured by the chemically activated luciferase gene expression (CALUX) assay

Y axis = log TCDD values; X axis = log CALUX values; P=0.389.
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health status is provided to them 
while also taking into consideration 
situations in which the interpretation 
of the data and their relevance to 
reproductive health may not yet be 
understood.

To be sure, the vast and 
growing array of biomarkers 
and measurements that can be 
made at the molecular level fuels 
hope and raises expectations 
for breakthrough discoveries in 
reproductive epidemiology, with the 
potential for rapid translation and 
significant health benefits. At the 
same time, exciting developments 
in molecular epidemiology must be 
balanced by advances in research 
design and data analysis that foster 

methodologic rigor, replication 
and sustained scientific vigilance. 
Recent rulings by the US federal 
Vaccine Injury Compensation 
Program, highlighted by the Hannah 
Poling case alleging vaccine-
induced autism, raise concern for 
the temptation to accept biologically 
plausible molecular mechanisms 
on the perceived elegance of the 
argument over the weight of the 
empirical evidence (227).

Future molecular epidemiology 
studies of reproductive and 
developmental health will be 
shaped also by the increasing 
pressures to register clinical 
research (228) and to share data 
within a limited time frame (229). A 

socioeconomic exigency of modern, 
multidisciplinary, multicentre 
epidemiologic studies (e.g. genome-
wide association studies (26–33)) 
data sharing has broad and complex 
ethical implications for study 
participants, study investigators and 
other stakeholders ranging from 
corporate interests to the scientific 
community and the population at 
large. For future studies aiming to 
advance the fields of reproductive 
and molecular epidemiology, the 
ethical challenges of data sharing 
must be weighed against the growing 
demand for scientific synergies and 
public health benefit (229).
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unit 5.
application of biomarkers to disease

chapter 26.  

Studies in children
Frederica P. Perera and Susan C. Edwards

Summary

This chapter first discusses the 
urgent need for prevention of 
childhood diseases that impose 
a huge and growing burden on 
families and society. It provides a 
review of recent research in this 
area to illustrate both the strengths 
and limitations of molecular 
epidemiology in drawing needed 
links between environmental 
exposures and illness in children. 
For illustration, three of the 
major diseases in children are 
discussed: asthma, cancer and 
developmental disorders. All three 
impose significant difficulties, have 
increased in recent decades, and are 
thought to be caused in substantial 
part by environmental factors, such 
as toxic exposures due to lifestyle 
choices (i.e. smoking and diet), 

pollutants in the workplace, ambient 
air, water and the food supply. 
These exogenous exposures can 
interact with “host” factors, such as 
genetic susceptibility and nutritional 
deficits, to cause disease. Molecular 
epidemiology has provided valuable 
new insights into the magnitude and 
diversity of exposures beginning in 
utero, the unique susceptibility of the 
young, and the adverse preclinical 
and clinical effects resulting from the 
interactions between these factors. 
However, molecular epidemiology 
also faces certain constraints and 
challenges that are specific to 
studies of the very young, including 
ethical issues, technical issues due 
to the limited amount of biological 
specimens that can be obtained, 
and communication of results to 

parents and communities. These 
challenges are particularly apparent 
when incorporating the newer 
epigenetic and “omic” techniques 
and biomarkers into studies of 
children’s diseases.

Introduction

Molecular epidemiology, which 
combines epidemiologic methods 
and molecular/genetic techniques 
to measure biomarkers, has been 
a valuable tool in the study of 
environmental causes of diseases 
and disorders in children. Over the 
past 25 years, the field has made 
many notable contributions to 
intervention and prevention efforts 
that have significantly improved 
the health of children. These 
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contributions include the phase-
out of lead in gas in the 1970s, 
which was a result of studies on 
the negative effects of low-levels 
of lead on child neurodevelopment, 
and documentation of the benefits 
to fetal growth of a 2001 regulation 
which restricted the use of the 
pesticide chlorpyrifos (CPF). These 
positive changes provided the 
impetus for US federal policies 
that require agencies to explicitly 
address risks to children (e.g. the 
US Federal Insecticide, Fungicide, 
and Rodenticide Act (FIFRA)) and 
the revised US Environmental 
Protection Agency’s (EPA) Cancer 
Guidelines (1990s–2000s)).

In the context of studies of disease 
in children, molecular epidemiology 
has enhanced the power and 
capabilities of researchers to better 
delineate mechanisms and causal 
pathways involved in the exposure-
outcome pathway. It has also 
improved estimates of dose-biologic 
dosimetry; reduced misclassification 
of exposure and disease status; 
augmented the understanding 
of the variability in individual 
responses and risk, especially 
interactions between environment 
and genes or other susceptibility 
factors; identified preclinical cases 
for intervention, thereby enabling 
earlier interventions; and improved 
quantitative risk assessment and 
public policy.

However, molecular epidemiology 
also faces certain generic constraints 
and challenges, as well as others 
that are specific to studies of the 
very young, including ethical issues, 
technical issues due to the limited 
amount of biological specimens that 
can be obtained, and communication 
of results to parents and communities. 
These challenges are apparent in 
thinking about future directions, 
such as the incorporation of newer 
epigenetic and “omics” into studies 
of children’s diseases.

Context and public health 
significance: The need for 
prevention

Between 1980 and 1995, the 
percentage of children with asthma 
has doubled in the USA (from 3.6% 
in 1980 to 7.5% in 1995), and has 
also increased in other countries 
(1). An estimated 9 million (12.5%) 
children aged <18 years in the 
USA have had asthma diagnosed 
at some time in their lives (2); an 
estimated 8.7% (6.3 million) of 
children had asthma in 2001 alone 
(1). Rates vary by geographic area 
and ethnic group; a recent study 
found that over 25% of elementary 
schoolchildren in Harlem, New York 
had asthma (3).

The overall cancer incidence 
rate increased from the mid-1970s 
in the USA, but rates in the past 
decade have been fairly stable (4). 
Leukaemia is the most common 
diagnosis for those < 15 years of 
age, but the relative proportion of 
it decreases with age: from 36% 
for those < 5 years of age, to 22% 
for 10–14-year-olds, and 12% for 
adolescents 15–19 years of age. 
Incidence rates in Europe have 
shown an increase over time since 
the middle of the last century: the 
yearly increase averages 1.1% for the 
1978–1997 period and ranges from 
0.6% for the leukemias to 1.8% for 
soft-tissue sarcomas (5). According 
to the databases of population-
based cancer registries, which 
joined forces in cooperative projects 
such as Automated Childhood 
Cancer Information System (ACCIS) 
and EUROCARE, leukemias (34%), 
brain tumours (23%) and lymphomas 
(12%) represent the largest 
diagnostic groups among the < 15 
year olds in Europe.

Developmental disabilities, the 
name given to a broad group of 
conditions caused by learning or 
physical impairments, affect an 

estimated 17% of children in the 
USA under age 18 (6). The high 
rates of these childhood disorders 
have significant medical-related 
costs and social impact on individual 
families and the country as a whole.

Rising rates of asthma and 
certain cancers, the high rates of 
developmental disabilities, and the 
growing evidence that the risk of 
certain adult diseases is influenced 
by in utero and childhood exposures, 
indicate that maintaining an “early 
focus” can have a significant impact 
on the overall burden of disease (1,7).

Exposures of concern

Environmental factors, such as toxic 
exposures due to lifestyle choices 
(i.e. smoking and diet), pollutants in 
the workplace, ambient air, water, 
and the food supply, can interact 
with ‘host’ factors, such as genetic 
susceptibility and nutritional deficits, 
to cause disease. Therefore, 
there is a need to understand the 
role of both environmental and 
susceptibility factors in childhood 
disease and neurodevelopmental 
disorders, and to identify the primary 
environmental toxins affecting them 
so that preventive measures can be 
taken.

A focus of this research must be 
early exposure to toxic chemicals, 
which has risen exponentially in 
the past 50 years. Over 80 000 
synthetic chemical compounds 
have been created and registered 
for commercial use with the US 
Environmental Protection Agency 
(EPA) (8), and 2000–3000 new 
chemicals are submitted for review 
by the EPA every year (9). Nearly 
3000 registered substances are 
produced in quantities of almost 
500 000 kg every year, yet no 
basic toxicity information is publicly 
available for 43% of the high 
volume chemicals manufactured in 
the USA; a full set of basic toxicity 
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information is available for only 7% 
of these chemicals, and there is no 
information about developmental or 
paediatric toxicity for 80% (8).

The exposures of concern 
include genotoxic and non-
genotoxic chemicals, as well as 
chemicals that exert both types of 
effects. Recent research suggests 
that endocrine-related cancers, or 
susceptibility to cancer, may be a 
result of developmental exposures 
(10). There is differential exposure 
of the young to diverse toxic 
chemicals. During pregnancy and 
lactation, certain toxicants stored in 
the bodies of mothers can become 
bioavailable, exposing the fetus and 
child. In addition, the fetus and child 
clear toxicants less readily than 
an adult (11–15). Young children 
breathe air closer to the ground, 
exposing them to particles and 
vapours present in carpets and 
soil. While playing and crawling 
on the floor, children can inhale or 
dermally absorb toxicants, which 
are subsequently absorbed more 
efficiently in children than in adults 
(16). Compounding the effects of 
these behaviours is the fact that 
infants have twice the breathing rate 
of the average adult. Hand-to-mouth 
behaviour and thumb sucking habits 
can also increase exposure.

Dietary habits of children also 
cause increased exposure to 
foodborne toxicants. In the USA, 
children under five years of age eat 
3–4 times more food per unit of body 
weight than the average adult; the 
average one-year-old drinks 10–20 
times more juice than the average 
adult (17). Dermal exposures may 
also be higher, as a typical newborn 
has more than double the surface 
area of skin per unit of body weight 
than an adult (18).

Susceptibility of the young

The biological susceptibility of the 
young is another important research 
area. Experimental and human data 
indicate that the fetus and young child 
are especially vulnerable to the toxic 
effects of environmental tobacco 
smoke (ETS), polycyclic aromatic 
hydrocarbons (PAHs), particulate 
matter, nitrosamines, pesticides, 
polychlorinated biphenyls (PCBs), 
metals and radiation (11). There is 
mounting evidence, much of it from 
molecular epidemiologic studies, 
that the fetus, infant and child are 
biologically more sensitive to a 
variety of environmental toxicants 
than adults (7,11,19). Specifically, 
the in utero and childhood periods 
are characterized by rapid physical 
and mental growth, and gradual 
maturation of major organ systems. 
In fact, typical newborns double their 
weight within six months of birth, 
while integral parts of the nervous 
and immune systems are formed 
during the first six years of life (20). 
Additionally, sex organ development, 
myelination, and alveoli formation 
begin late in pregnancy and continue 
until adolescence (16). Since cells 
are proliferating rapidly and organ 
systems are immature, they are 
sensitive to the potentially harmful 
effects of environmental toxins.

Absorption, metabolism and 
excretion pathways in infants 
and children differ from those in 
adults. These pathways dictate 
the amount of a toxicant, in its 
various forms, that is present in 
the body. Epidemiological studies 
with biomarkers have demonstrated 
placental transfer of toxicants, 
and in some cases slower fetal 
clearance of chemicals such as 
PAHs, PCBs and mercury (21–
23). An infant’s kidney filtration 
rate is lower than an adult’s, thus 
increasing potential susceptibility 
(16). DNA repair systems are also 

immature in the fetus and young 
child, leading to higher levels of 
genetic damage per unit of exposure 
in cord blood leukocytes compared 
to maternal blood leukocytes (24). 
Studies have also shown a 65-fold 
range of variability in sensitivity to 
the pesticide chlorpyrifos between 
the most sensitive newborn and the 
least-sensitive mother (based on 
paraoxonase 1 (PON1) status) (25).

Finally, infants and children 
have more years of future life 
than most adults. Thus, there is 
more time for early exposures to 
trigger diseases that have long 
latency periods. For example, early 
exposure to carcinogens will more 
likely lead to cancer than the same 
exposure experienced later in life. In 
addition, it has been hypothesized 
that fetal growth restriction due to 
nutritional deprivation in early life is 
an important cause of some of the 
most common, costly and disabling 
medical disorders of adult life, 
including coronary heart disease and 
the related disorders hypertension, 
stroke and type 2 diabetes (26). It 
has been proposed that individuals 
with a ‘thrifty phenotype’ will have 
“…a smaller body size, a lowered 
metabolic rate and a reduced level 
of behavioural activity… adaptations 
to an environment that is chronically 
short of food” (27). This hypothesis, 
now widely (though not universally) 
accepted, is known as the Barker 
Early Origins Hypothesis or thrifty 
phenotype hypothesis; it is a source 
of concern for societies undergoing 
a transition from poor to better 
nutrition (28). All in all, there is 
increasing evidence that exposures 
in early life strongly influence risk 
of chronic diseases in adulthood, 
including heart disease and cancer 
(29).
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Additional susceptibility 
factors

The differential susceptibility of 
the fetus, infant and child can be 
influenced by nutritional deficits, 
genetic predispositions, and 
psychosocial stressors that can 
modify (i.e. reduce or increase) the 
toxic effect of exposures.

Nutritional factors

Micronutrients are known to have 
major effects on child health and 
development, and there is evidence 
that they interact with environmental 
exposures. Certain micronutrient 
deficiencies have been associated 
with childhood asthma, adverse 
birth outcomes, child development 
and childhood cancer. For example, 
essential fatty acid deficiencies are 
associated with low birth weight, 
smaller head circumference, and 
reduced cognitive and motor 
function (30–32). Antioxidants 
modulate inflammatory response 
to air pollution and its effects 
on childhood asthma (33–35). 
By removing free radicals and 
oxidant intermediates, antioxidants 
protect DNA from the genotoxic, 
procarcinogenic effects of chemicals 
that bind to DNA (36,37). Nutritional 
deficiencies are often closely 
related to lower socioeconomic 
status, although variations exist 
within each socioeconomic bracket.

Genetics

Genetic susceptibility can take the 
form of common polymorphisms 
or haplotypes that modulate the 
individual response to a toxic 
exposure. For example, two genes 
have been identified that can 
increase an individual’s vulnerability 
to organophosphates (OPs), such as 
chlorpyrifos (CPF), by reducing the 
reservoir of functioning protective 

enzymes (38). The first gene has 
a prevalence of 4% and results 
in a poorly functioning form of the 
enzyme acetylcholinesterase. The 
second gene results in a relatively 
inactive form of the enzyme 
paraoxonase (PON1) (prevalence of 
30–38%), an enzyme that detoxifies 
CPF before the toxin can inhibit 
acetylcholinesterase (39–41). The 
effect of CPF on head circumference 
at birth was significant only among 
women with low PON1 activity, 
which could be evidence of an 
interaction between the PON1 
genotype and OP pesticides (42). 
However, there are still limited data 
relating PON1 to clinical outcomes 
in individuals exposed to OPs. Other 
examples of gene–environment 
interactions of interest include the 
gene coding for the d-ALA enzyme 
that affects lead metabolism and 
storage (39,43), and a genetic 
polymorphism in the dopamine 
transporter that is associated with 
increased behavioural problems 
in children prenatally exposed 
to tobacco smoke (44). Other 
research has found that the P450 
and glutathione-S-transferase 
gene families play a role in the 
activation and detoxification of 
various xenobiotics. They are 
involved in the metabolism of 
PAHs and can influence the level 
of PAH–DNA damage. PAH-DNA 
adduct levels in human placenta 
were significantly higher in infants 
with the CYP1A1 MspI restriction 
site, a genetic marker associated 
with lung cancer risk, than in infants 
without the restriction site (45). The 
GSTT1 genotype was also shown 
to be a susceptibility marker for 
lower birth weight and pre-term 
birth among babies of pregnant 
women who actively used tobacco 
(37,46). Children with the GSTM1 
genotype who were exposed 
in utero to tobacco smoke had 
increased risk for persistent asthma 

and wheezing (47,48). The GSTM1 
genotype in asthmatic children is 
also associated with increased 
susceptibility to the harmful effects 
of ozone, such as reduced forced 
expiratory flow (49).

Individual- and community-level 
psychosocial stressors

The notion that individual- and 
community-level conditions can 
produce profound effects on host 
susceptibility to disease is derived 
from the long-standing existence 
of strong social class gradients in 
health (50). Recent studies have 
shown that women who live in 
violent, crime-ridden, physically 
decayed neighbourhoods are more 
likely to experience pregnancy 
complications and adverse 
birth outcomes, after adjusting 
for a range of individual-level 
sociodemographic attributes and 
health behaviours (51,52). Other 
studies have suggested that the 
stresses of racism and community 
segregation are associated with 
lower birth weight (53). The effects 
of individual poverty on birth 
outcomes have been shown to 
be exacerbated by residence in 
a disadvantaged neighbourhood 
(54). In one of the few studies 
that has measured interactions 
between physical toxicants and 
individual psychosocial stressors, 
a prospective cohort study of 
Northern Manhattan (New York, 
USA) mothers and toddlers (by 
the Columbia Center for Children’s 
Environmental Health (CCCEH) 
cohort) found that the risk of 
developmental delay among 
children exposed prenatally to 
maternal ETS was significantly 
greater among those whose 
mothers experienced material 
hardship during pregnancy (55).
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Examples/case studies: 
Molecular epidemiology 
and children’s diseases 
related to environmental 
factors

The research reviewed in this 
article is based on the paradigm of 
a continuum of molecular/genetic 
alterations between exposure to 
an external agent and an adverse 
outcome that can be accessed using 
biomarkers to provide links in the 
chain of causality (Figure 26.1). The 
following is not an encyclopaedic 
review; rather, examples are 
provided for illustration of the 
methodology (Table 26.1).

Based on the growing 
understanding that children may 
be more susceptible to toxicants 
than adults, the last few decades of 
molecular epidemiologic research 
have provided a new perspective 
on studying environmental risks in 
paediatric populations. As such, the 
emphasis in conducting studies of 
disease in children has been placed 
on identifying less-invasive methods 
of biological specimen collection; 
specific approaches to interpretation 
and validation of biomarkers; 
methods for translating biomarker 
results into intervention strategies, 
and for integrating them with 
environmental monitoring and health 
data; optimal ways to obtain consent 
and provide information to children 
and/or their parents participating in 
the studies; and techniques for the 
effective communication with policy-
makers and the public (56).

Respiratory disease/asthma

Air pollution and allergens are among 
the best-studied environmental 
risk factors, and have been 
established as important triggers 
for asthma and respiratory disease 
in childhood. There appears to be 
a critical window in both prenatal 

and postnatal development during 
which exposure to irritants and other 
toxicants can modify the formation 
and maturation of the lung, which 
occurs through years six to eight 
of life (57). Most of the research 
on air pollution has focused on 
the postnatal window of exposure 
and has not used biomarkers. 
For example, an association of 
poorer air quality with increased 
prevalence of respiratory symptoms 
in children has been documented in 
the Netherlands and in Indonesia 
(58,59). Moreover, increased 
levels of fine ambient particulate 
matter have been associated with 
decreased peak expiratory flow 
rates among inner-city children with 
asthma (60). These studies seem to 
implicate vehicle exhaust emissions 
and/or ambient particulate matter, 
especially diesel exhaust particles 
(DEP) and PAHs, in the exacerbation 
of asthma. Moreover, a community 
study of exposure to traffic evaluated 
5–7 year old schoolchildren in 
southern California, USA, and found 
that residing near a major road 
was associated with asthma (61). 
Experimental studies have shown 
that DEP was associated with a 
greater risk of becoming sensitized 
to allergens (62,63). Importantly, 

a prospective study in southern 
California detected significant 
declines in lung function (FEV1) 
in association with exposure to 
nitrogen dioxide, acid vapour, PM2.5, 
and elemental carbon (EC) among 
children ages 10–18 (64).

The very early causal role of air 
pollutants in childhood asthma has 
been less well understood, but has 
recently benefited from prospective 
molecular epidemiologic studies that 
have enrolled pregnant women and 
assessed in utero exposures resulting 
from the maternal environment. 
Recent results from such a study in 
New York City (the CCCEH cohort 
study) highlight the importance of 
the prenatal period of development, 
showing that adaptive immune 
responses may begin in utero, as 
evidenced by the occurrence of cord 
blood T-cell proliferation in response 
to specific allergens, independent 
of maternal sensitization (65). 
Moreover, high prenatal exposure to 
certain airborne PAHs (e.g. pyrene) 
was found to increase the likelihood 
of children’s allergic response to 
cockroach, mouse and dust mite 
allergens as measured by elevated 
IgE (a biomarker of preclinical effect 
and a known asthma predictor) at 
two years of age (66).

Figure 26.1. Molecular epidemiology paradigm. Figure compiled from 136–138
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Laboratory studies have 
suggested possible mechanisms for 
the effects observed in children. In 
vitro studies have shown that nasal 
challenges with DEP, combined 
with ragweed allergen, heightened 
the production of the Th2 cytokine 
IL-4 and isotype class switching to 
IgE (67–69). In addition, DEP has 
been shown to upregulate the Th2 
chemokines, including I-309 and 
PARC, even among non-atopic 
subjects (70,71). Combined, these 
studies suggest that DEP may 
promote asthma by upregulating 
IL-4-mediated IgE pathways in 
response to allergen exposure. 
DEP exposure has also been 
shown to increase procollagen gene 
expression and tissue hydroxyproline 
levels in explanted rat tracheas (72), 
which suggests that it may trigger 
airway remodeling, a pathological 
phenotype associated with severe 
asthma (73).

While it is clearly established 
that ETS exposure is associated 
with respiratory infections, reduced 
lung function, and asthma in children 
(74,75), recent studies suggest that 
ETS exposure may modulate the 
respiratory response to other toxic 
exposures, such as PAHs. There 
is evidence that cigarette smoke 
may delay pulmonary clearance of 
inhaled insoluble particles (76,77). 
ETS exposure has been shown 
to exacerbate the IgE-promoting 
effects of ragweed exposure (78), 
providing another mechanism 
whereby ETS can worsen airway 
disease. In the CCCEH cohort, 
more cough and wheeze were 
reported by 12 months of age among 
children exposed to prenatal PAH 
in concert with ETS postnatally. By 
24 months, difficulty breathing and 
probable asthma were reported 
more frequently among children 
exposed to prenatal PAH and ETS 
postnatally (66). Most recently, a 
parallel cohort study in Poland has 

assessed PAH exposure during 
pregnancy by personal air monitors 
worn by women (n = 333) for 48 hours 
during the second or third trimester 
of pregnancy. After delivery, the 
mothers were interviewed every 
three months over the course of a 
year. Prenatal PAH exposure was 
associated independently with 
an increased risk for respiratory 
symptoms including wheezing 
without cold (RR = 3.8; 95% CI = 
1.2–12.4) during the course of the 
infants first year of life (79). The 
data were adjusted for confounders 
including ETS, which was verified 
by cotinine, a biomarker of ETS 
exposure. These results suggest 
an independent effect of urban PAH 
exposure on respiratory outcomes 
in children (79).

Cancer risk/genetic damage

Environmental exposures are 
recognized as potentially important 
risk factors for childhood cancer 
(80), and again biomarkers are 
proving useful in assessing 
causal relationships. For example, 
carcinogen-DNA adducts are 
considered a biomarker of the 
biologically effective dose of PAHs 
and increased cancer risk (81). 
Experimental evidence shows that 
the amount of PAHs crossing the 
placenta and reaching the fetus 
is on the order of one-tenth of the 
dose to the mother (12,13), yet 
the levels of PAH–DNA adducts 
measured in rodent fetal tissue are 
higher than expected based on 
transplacental dose (14). Similarly, 
research in mothers and newborns 
has consistently shown that PAH–
DNA adduct levels in the white 
blood cells (WBC) of newborns 
were similar to or exceeded those 
in paired maternal samples, despite 
the estimated 10-fold lower dose of 
the parent compound to the fetus 
(82,83). This research indicates that 

the differential effect of exposure 
to PAHs in the fetus is not limited 
to a particular ethnic or geographic 
group (84). Increased adducts in 
the fetus relative to the adult could 
result from lower levels of phase 
II (detoxification) enzymes and 
decreased DNA repair efficiency in 
the fetus (19,82,85,86). In addition, 
fetal plasma cotinine levels were 
higher than in paired maternal 
samples, suggesting reduced ability 
of the fetus to clear carcinogenic 
cigarette smoke constituents 
(82,83).

Chromosomal aberrations have 
been associated with increased risk 
of cancer in multiple studies, and 
are a well-validated biomarker of 
the preclinical effect of carcinogens 
(87,88). In New York City newborns, 
maternal exposure to airborne PAHs 
during pregnancy was associated 
with increased frequency of 
chromosomal aberrations in WBCs, 
suggesting that risk of cancer can 
be increased by exposure in utero 
(89). Studies have also linked 
maternal tobacco smoking to 
increased chromosomal aberrations 
in the WBCs of newborns (90). 
Other research has shown an 
approximately 10-fold higher risk 
of infant acute myeloid leukaemia 
(AML) with increasing maternal 
consumption of DNA topo 2 
inhibitor-containing foods, raising 
concerns about benzene, a topo 2 
inhibitor (91).

There is a growing body of 
evidence from studies of adults 
that polymorphisms of the DNA 
repair genes X-ray repair cross-
complementing group 1 (XRCC1) 
and xeroderma pigmentosum 
group D (XPD) may constitute 
susceptibility factors to cancer. The 
results of a case–control study in a 
Chinese population suggested that 
XRCC1 194 Trp/Trp and XPD 751 
Lys allele might be risk genotypes 
for lung cancer in this population 
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(92). XPD polymorphisms at codons 
312 and 751 were both significantly 
associated with elevated levels 
of PAH–DNA adducts in tumour 
tissue from breast cancer cases, 
suggesting that by increasing DNA 
damage that may lead to further 
mutations and contribute to genetic 
instability in the tumour, XPD may 
play a role in tumour progression 
(93). While no studies are available 
in children, it is possible that 
decreased ability to repair early 
genetic damage from environmental 
carcinogens may render children 
more susceptible to cancer later in 
life.

Recent reports have established 
the prenatal origin of leukaemia 
translocations and resultant fusion 
genes in some patients, including 
MLL-AF4 translocations in infants 
and TEL-AML1 translocations 
in children. Using twins with 
concordant leukaemia, it was found 
that a hallmark genetic event in these 
acute leukemias (i.e. chromosomal 
translocation) can have a prenatal 
origin (94–98). More explicit 
evidence is provided by the finding 
of clonotypic chromosomal fusion 
sequences in archived neonatal 
(Guthrie) heel-prick spots matched 
to children who later contracted 
leukaemia (98–100). Additional 
indirect support for prenatal origin 
of leukaemia clones is derived from 
the demonstration of the presence 
of clonotypic rearrangements at the 
IGH and TCR loci in Guthrie spots 
(101,102).

Furthermore, new evidence for 
the prenatal origin of a translocation 
in childhood AML was reported 
(100). The t(8;21) AML1-ETO 
translocations in childhood AML 
can arise in utero, possibly as an 
initiating event, and may establish 
a long-lived or stable parental clone 
that requires additional secondary 
genetic alterations to cause 
leukaemia.

While progress in this field is 
substantial, a basic understanding of 
the timing of the origin of the crucial 
molecular abnormalities, or the 
natural history of leukaemic clones, 
is incomplete. The recognition of 
crucial temporal and developmental 
windows for the formation of 
leukemogenic genetic alterations 
will help to focus epidemiologic 
analysis as well as to prompt 
preventive strategies (103).

Neurobehavioural disorders

The exquisitely sensitive process 
of the development of the human 
central nervous system involves 
the production of 100 billion nerve 
cells and 1 trillion glial cells, 
which then must follow a precise 
stepwise choreography involving 
migration, synaptogenesis, 
selective cell loss, and myelination 
(104). A mistake at any point in 
the process can have permanent 
consequences. Experimental 
studies of prenatal and neonatal 
exposure to the organophosphate 
CPF have demonstrated, for 
example, neurochemical and 
behavioural effects, as well as 
selected brain cell loss (105–109). 
The behavioural and morphologic 
effects of developmental toxicants 
are highly dependent on the timing 
as well as on the dose and duration 
of exposure. This is illustrated by 
both rodent and human studies 
showing that the effect of irradiation 
on brain malformation is heightened 
during the window of susceptibility 
throughout fetal development (104). 
Adverse neurological development, 
including lowered intelligence, 
diminished school performance, 
and increased rates of behavioural 
problems have been associated 
with exposure to low-levels of 
several environmental toxicants and 
pollutants.

Cohort studies have 
demonstrated that low-level 
exposure to lead (even below 10ug/
dL in blood) during early childhood 
is inversely associated with 
neuropsychological development 
through the first 10 years of life (110–
114). Prenatal exposure to PCBs and 
methylmercury, predominantly from 
maternal seafood consumption, has 
been associated with neurocognitive 
deficits (115). In these studies, 
biomarkers (including levels of blood 
lead, tooth lead concentrations, 
blood mercury levels and cord 
tissue PCB) have been instrumental 
in quantifying the internal dose of 
the pollutants. Taking the recent 
example of pesticides, New York 
City children in the CCCEH cohort 
who were prenatally exposed to 
high levels of CPF, as measured by 
high cord plasma CPF levels, were 
significantly more likely than children 
with low cord levels to experience 
delay in both psychomotor and 
cognitive development at three 
years of age (116). In addition, 
the highly-exposed children were 
significantly more likely than less-
exposed children to manifest 
symptoms of attention disorders, 
at tent ion - def ic i t /hyperac t iv i t y 
disorder (ADHD) and pervasive 
personality disorder at age three. 
Although the EPA banned residential 
use of CPF in 2001, this pesticide 
is still widely used in agriculture. In 
addition, children with high prenatal 
exposure to airborne PAHs also had 
significantly lower test scores at age 
three on the Bayley test for cognitive 
development, after controlling for 
pesticide exposure (plasma CPF) 
(117), and at age 5 had significantly 
lower IQ (118). Moreover, in the 
same study, children prenatally 
exposed to ETS (cotinine-verified), 
especially children whose mothers 
experienced material hardship 
(unmet basic food, clothing and 
housing needs) had significantly 
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reduced scores on tests of cognitive 
development at two years of age 
(55). Finally, cohort children with 
high prenatal exposure to PAHs 
were more likely to experience 
developmental delays in childhood, 
after controlling for ETS and CPF 
(119).

Table 26.1 lists a few hand-
picked examples from the literature 
of biomarkers that have been used 
to study relationships between 
exposure and disease in children.

Strengths, limitations 
and lessons learned: 
Special considerations 
in mounting children’s 
studies

Long-term studies that follow 
participants from the prenatal period 
into adolescence and early adulthood 
are considered essential to assess 
the full range of developmental 
consequences of exposure to 
environmental chemicals. (The 
advantages of prospective cohort 
studies and their logistical, ethical, 
and financial challenges are 
discussed in Chapter 17.)

To address some of the important 
lessons from prior research 
regarding the logistics, ethics, and 
the financing of these long-term 
studies in children, the platform in 
which many of these challenges 
were encountered, tackled and, 
for the most part, overcome is 
introduced.

National centers for children’s 
environmental health

In 1998, the US National Institute 
of Environmental Health Sciences 
(NIEHS) and the EPA collaborated 
to develop a research programme 
(the Children’s Centers) that 
would coordinate efforts to better 
understand toxic exposures to 
infants and young children, study 

the health effects of such exposures 
to clarify the mechanisms by which 
they work, and explore intervention 
strategies for reducing such 
exposures in a way that would 
provide evidence for practice. 
Each centre is designed around a 
central theme focusing on important 
questions regarding the role of 
exposures in one of the following 
health outcome areas: respiratory 
disease, childhood learning, and 
growth and development, including 
developmental disabilities. The 
purpose of the Children’s Centers 
programme was to create local 
research environments that promote 
multidisciplinary interactions among 
basic, clinical and behavioural 
scientists through university/
community partnering, to accelerate 
translation of basic research 
findings into clinical prevention or 
intervention strategies. Additionally, 
it was designed to support a 
coordinated, nationwide network of 
scientists and community advocacy 
groups synergistically sharing their 
experiences to address relevant 
questions related to the role of 
environmental exposures in the 
health of children, to enhance 
community-level capacity to identify 
and address environmental threats 
and prevention opportunities (120). 
(A full description of the Children’s 
Centers can be found on the NIEHS 
web site (121), and a summary of the 
first eight centres has been more 
fully discussed by (122) and (123).)

The Children’s Centers have 
addressed and overcome many 
hurdles in their efforts to understand 
the link between environmental 
exposures and health outcomes, 
as well as interactions between 
exposures, and a variety of social 
and cultural factors. Out of their 
enterprise, several lessons have 
been learned on the practicalities 
of conducting longitudinal birth 
cohorts, such as the critical 

importance of long-term studies 
for assessing the full range of 
developmental consequences 
of environmental exposures, 
recognition of the unique challenges 
presented at different life stages 
for both outcome and exposure 
measurement, and the importance 
of ethical issues that must be dealt 
with in a changing medical and 
legal environment (120). In the 
following section, some of the more 
specific shared experiences are 
paraphrased as they pertain to the 
methodological, logistical, ethical 
and communication issues (124).

Successes, challenges 
and lessons learned

Logistical issues 
in children’s studies

Barriers to recruitment. The most 
common and important barriers to 
recruitment into prospective cohort 
studies, especially for working 
women, is the time required for 
each visit and the length of the 
follow-up period. Many members 
of a population are also distrustful 
of Western medicine and research. 
Solutions to these obstacles 
include hiring study staff familiar 
with or from the target population, 
recruitment by or at clinics known 
by the community to respect patient 
confidentiality, and allowing time 
for potential participants to discuss 
the study with their families before 
enrolment.

Staffing issues. Building trusting 
relationships with participants in 
the cohort is best accomplished 
by hiring bilingual, bicultural staff 
from the local community, who are 
assigned to follow particular families 
ideally from pregnancy through 
the child’s assessments. Although 
this is helpful, it can introduce 
systematic bias. Often, more in-
depth training on data collection 
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techniques is needed than when 
hiring from within the academic 
community. In addition, the number 
of staff required to maintain a birth 
cohort, which includes conducting 
weekday, weeknight and weekend 
assessments, as well as completing 
quality control tasks, is often much 
larger than projected. Gaps in 
funding are extremely detrimental.

Retention. Besides the decrease 
in cohort size, one of the main 
issues with retention of participants 
is that loss to follow-up often differs 
from continuing participants with 
some demographic characteristics, 
such as age, marital status, medical 
insurance status, race and ethnicity. 
The most common reason for attrition 
is the inability to locate participants 
due to disconnected phones and/or 
frequent moves, regularly missed 
appointments leading to exclusion 
from the study, refusal to continue, 
or in a few cases, infant deaths. 
Different incentives that have been 
successful in improving retention 
rates include payments, often 
times incremental over the course 
of enrolment, gift certificates (e.g. 
to grocery stores), and bonus 
incentives for certain activities (e.g. 
calling study staff when in labour, 
returning on a separate day to 
finish an assessment or provide an 
additional sample, or providing new 
contact information upon moving). 
Incentives remain a major budget 
item to be considered in the planning 
stages of such a study. Maintaining 
contact every few months with 
birthday cards, brief telephone 
interviews about the child’s health, 
or simple check-ins with the family 
to remind them of the next phases of 
the study, is also critical.

Environmental assessments. 
Home inspections to assess 
housing quality are time-consuming 
and require extensive training. 
It might be necessary to visit 
homes multiple times to reassess 

household exposures, which may 
vary by season or change when 
families relocate (125). Collecting 
environmental measurements 
often requires the purchase of 
expensive, specialized collection 
equipment (e.g. air monitors) and a 
delay between home assessments 
to allow for cleaning of equipment. 
In addition, standard practices for 
interpreting ambient measurements 
are not yet fully developed; for 
example, it is unclear for most 
contaminants whether house dust 
concentration (μg per gram of dust) 
or loading (μg of surface area) 
is a better predictor of children’s 
exposure or body burden.

Delivery events. Shortened post-
delivery hospital stays in the United 
States leave a limited window of 
opportunity to collect information 
and samples from mothers and 
neonates in the hospital. Because of 
the slow notification of participants’ 
admission for delivery, a large 
proportion of women fail to be 
tracked at the time of delivery. For 
efficient notification, researchers 
must rely on both participating 
women and delivery ward staff. 
Some of the solutions developed by 
researchers include: distributing cell 
phones to enable mothers without 
home phones to call the research 
team, or alternatively, distributing 
t-shirts or socks to wear to the 
hospital, which will alert the delivery 
staff; providing lists of participants 
approaching their due date to 
medical stations; and checking 
delivery logbooks daily. Cord blood 
samples are particularly difficult 
to obtain. Most missed collections 
occur when women’s delivery 
admissions are not reported to 
research staff; additional samples 
are missed from high-risk children 
with emergency deliveries. The 
greatest collection rate tends to 
be reported by the research teams 
that involve physicians in collecting 

the samples. Conducting neonatal 
assessments is also a difficult task. 
Few tests are available to assess 
newborn behaviour, and their 
predictive validity is not high. Many 
assessment tests require trained 
evaluators, who are not easily 
replaced when they leave projects, 
which can create gaps in cohort 
assessment. Within the context of 
shortened post-delivery hospital 
stays, post-delivery assessments 
have to be scheduled both after the 
effects of delivery medications wear 
off, and between the child’s sleeping 
and eating schedule. Finding a quiet 
assessment room in the hospital can 
also be a challenge. Due to these 
various impediments, assessments 
intended for the neonatal period are 
in many cases conducted several 
weeks after delivery. Early-morning 
assessments and assessment of 
the child both soon after delivery 
and again one month later tend 
to increase success with hospital 
assessments.

Child assessments. Conducting 
assessments on small children in the 
home is nearly impossible, thus the 
provision of a standardized testing 
facility may be essential. Minimizing 
distractions to children during 
neurobehavioural assessment is 
particularly challenging. For children 
> 12 months of age, it is desirable 
to assess the child separately from 
the mother to reduce interference; 
this requires additional time for the 
tester to build a rapport with the child. 
Siblings can also be a source of 
distraction during assessments. On-
site childcare, giving reimbursements 
for off-site childcare, and/or using 
videos or games to busy these 
children are some handy options; 
however, the ideal arrangement is 
on-site childcare with dedicated 
space and personnel.

Problems in sample collection. 
Blood collection from children is 
a challenge. Collecting research 
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blood samples at the same time 
as clinical samples helps to avoid 
participant concerns about taking 
blood from children and pregnant 
women, especially in certain 
cultural groups. Consulting with 
community physicians to determine 
the amount of blood collection 
that is both clinically and culturally 
acceptable to the target population 
is also helpful. Collecting breast 
milk samples soon after delivery, 
although most convenient for the 
research team, can be daunting for 
mothers, as the milk supply may 
not yet be fully developed. Later 
collection of breast milk avoids 
some of these problems, but timing 
issues may arise for other sample 
types as well. Studies conducted 
in rural areas face additional 
barriers to successful collection 
and processing of samples, such as 
limited laboratory facilities that are 
not adequately equipped to process 
samples (e.g. to separate whole 
blood into blood products). In this 
case, it is necessary to transport 
samples over long distances, which 
increases costs. In locations where 
necessary goods and services (e.g. 
dry ice or courier services) are in 
short supply, it can also be difficult 
to ensure the prompt stabilization 
of samples. Finally, some rural 
areas may lack skilled paediatric 
phlebotomists.

Participant fatigue. Longitudinal 
studies are demanding for families. 
To minimize participant fatigue, 
researchers should aim to optimize 
contact frequency such that attrition 
is prevented, but participants are not 
overly burdened. It is important to 
design contact between researchers 
and study participants to be as 
brief and efficient as possible; 
respect for participants’ time may 
require that the focus of research 
be narrowed down. Strategies 
employed to minimize the impact 
of participant fatigue include using 

multiple workers to simultaneously 
collect information at each visit. This 
requires that each research worker 
is trained in multiple aspects of the 
study protocol (sometimes though, 
multiple short visits were preferred to 
one long visit, both for convenience 
and to prevent child fatigue). Other 
approaches were to provide snacks 
in case of lengthy and demanding 
assessments; develop qualitative 
assessments that allowed study staff 
to document participants’ level of 
fatigue, cooperation, and attention; 
and to record any changes made to 
the usual study protocol.

Quality control of assessments 
and interviews. Proper staff training 
is critical. Adequate pilot testing is 
important, but often hindered by 
time, cost and the need for prior 
Institutional Review Board (IRB) 
approval. Insufficient time and 
resources are the main reasons 
why clear quality control protocols 
(e.g. direct observation, review of 
videotapes by the other evaluators 
and lead psychologists) fall short. 
Even after extensive staff training, 
inter-rater differences and reliability 
issues also remain a concern.

Lack of transportation. 
Transportation can be a barrier 
to successful completion of 
assessments. Paying for taxi 
services, reimbursing participants 
for alternate travel costs, 
transporting participants to the office 
for an assessment after completing 
a home visit, purchasing and 
outfitting an RV that could be driven 
to participants’ homes and used 
as a roving assessment room, or 
simply purchasing a car for the study 
to reduce mileage reimbursement 
costs and wear and tear on staff 
cars, are a few of the solutions 
to which Children’s Centers have 
turned to address this problem.

Issues of literacy, language 
and culture. The wording and 
phrasing of all study documents, 

including consent forms, must be 
simple; in addition, most study 
instruments, including those 
designed for self-administration, 
must be administered orally to 
attend to the issue of participants 
with limited education and low 
literacy. Potentially embarrassing 
topics that evade translation (e.g. 
specific birth control methods) may 
have to be described graphically. 
Other culturally sensitive issues to 
be attentive to include participants 
not knowing or not sharing their 
exact date of birth, being hesitant 
to provide biologic samples, and 
reporting pregnancy relatively late 
in gestation. Understanding these 
types of issues and planning the 
research accordingly relies heavily 
on focus groups with community 
members. Because young 
children cannot precisely answer 
questionnaires regarding behaviour 
or habits, researchers must often 
ask the child’s mother for a specific 
answer in a follow-up.

In terms of the logistics of a 
longitudinal birth cohort study, it is 
critical that funding be adequate 
for the start-up period, continuous 
without gaps, and extend for 
the long-term. Costs are often 
underestimated for labour intensive 
activities, such as tracking and 
maintaining study participants.

Ethical issues

The ethical issues in a longitudinal 
birth cohort study are likely to 
become increasingly more complex 
in the changing medical and legal 
environment, and must be carefully 
considered in designing research 
protocols and following the cohort. It 
is particularly necessary to develop 
clear plans of referral when children 
with disease, developmental 
difficulties, or adverse social 
situations emerge.
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Increasing ethical complexity. 
Since the implementation of the 
Health Insurance Portability and 
Accountability Act (HIPAA), it has 
become more time-consuming 
to obtain participants’ informed 
consent for studies in the USA. 
Concerns about potential lawsuits 
have increased, and conflicting 
ethical issues are routine (e.g. 
deciding when the health and safety 
of a child takes precedence over a 
promise of confidentiality).

Consent and assent. Because 
longitudinal studies demand lengthy 
and complex consent forms, 
ensuring that participants are 
well informed is challenging and 
requires the allocation of adequate 
time and resources. For studies 
using medical records in the USA, 
the completion of HIPAA subject 
authorization forms adds time to 
the consent process. It has been 
found to be important to inculcate in 
staff an understanding that consent 
is an ongoing process; instead 
of training staff to simply procure 
participant signatures, centres have 
trained staff to solicit and answer 
participants’ questions so that they 
can make informed decisions. 
Clearly, writing consent forms at a 
reading level understandable to all 
is critical. In cases where the level is 
suspected to be too high to assure 
comprehension, research workers 
have the option of reading consent 
forms aloud to participants to ensure 
that everyone, including participants 
who are embarrassed to admit their 
low literacy level, fully understands 
the information. Solicited feedback 
from community partners, 
community board members and 
community-based staff (in addition 
to the IRB) also helps ensure that 
appropriate language is used. 
Additional measures to enhance 
understanding of consent forms 
include providing study participants 
with timetables and schedules to 

communicate study procedures, or 
lists outlining the important items 
on the consent. Providing short 
checklists to verify that participants 
understand the key aspects of the 
study is also effective. All solutions 
that decrease the amount of complex 
information that participants have to 
digest at each visit and give them 
an opportunity to re-evaluate their 
participation at a midway point are 
helpful. While studies often operate 
with uncertainty about funding and 
the future direction in the long run, 
continuing requests for participation 
can be a source of frustration; full 
disclosure of the protocol up-front 
is thus preferable. Careful thought 
must be given to who must consent 
to participate at each stage of the 
research. In all cases, a pregnant 
woman or mother should be asked 
to consent to her own participation 
and that of her child. However, 
once children reach a certain age 
(generally 5–9 years), child assent 
is typically also required by the IRB, 
leading to new challenges.

Banked samples and informed 
consent. The process of banking 
samples for future studies requires 
special consideration, as participants 
must be informed about and consent 
to future uses of these samples. 
Consent forms may allow participants 
the option of either not having 
samples banked and/or not allowing 
future analysis of samples for 
unrelated studies. IRB re-approvals 
may additionally be required for each 
new analysis of banked samples.

Confidentiality and consideration 
of children at risk. Protecting the 
identity and personal information 
of all participants can be difficult 
in small or close-knit communities, 
especially when the research staff 
was hired from the local community.

Confidentiality within 
computerized databases also 
requires particular attention. All 
computerized files should be 

password-protected with knowledge 
of passwords restricted to a small 
number of staff. The number of 
computer or paper files containing 
both the participant study number 
and identifying information (e.g. 
name) should be limited. In complex 
studies with multiple contacts, it 
can be necessary to work with 
both the IRB and the research 
staff to identify the types of linked 
information necessary for day-to-
day operations, and to provide that 
information with the least possible 
risk to participants.

Protocols on intervening in 
cases of clear developmental delays 
or undiagnosed physical health 
problems are compulsory. Most 
protocols include timely screening 
of developmental assessments and 
questionnaires to ensure prompt 
referral or treatment. Reporting 
some exposure measures, such 
as lead results, to public health 
authorities when they exceed 
certain action levels is also 
essential. Lastly, certificates of 
confidentiality, which protect 
identifiable research information 
from forced disclosure, including 
in the case of legal action, are an 
important component in protecting 
participant confidentiality. However, 
an investigator might need to break 
the promise of confidentiality without 
participant consent, for example, in 
cases where child abuse, severe 
depression, drug use or traffic in 
the home, and other potentially 
dangerous conditions are observed. 
Disclosure of such requirements 
(e.g. the need to report child abuse) 
is typically incorporated into consent 
forms, despite concern that it would 
deter some participants.

Communication issues

Communicating study results is a 
key step in any research project. 
In addition to publishing results 
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in scientific journals, centres 
should seek to share findings 
with participants and community 
members. Researchers may benefit 
from soliciting the guidance of 
community collaborators to decide 
when and how to disseminate 
results, including how to clearly 
craft messages so they would 
be understood and of interest to 
the community. In some cases, 
communities expect interventions 
and actions that are outside the 
scope of the research; therefore it is 
important to concisely communicate 
the purposes and limitations of the 
research beforehand to prevent 
false expectations.

Timing of the results 
communication. It is advisable to 
disclose findings to participants 
and/or community advisory boards 
before their publication in journal or 
newspaper articles. This disclosure 
is an important step in building trust 
between researchers, participants, 
and communities. Community 
members resent hearing findings for 
the first time in the media.

Communication tools. Strategies 
to disseminate information, 
developed in collaboration with 
community advisory boards, have 
included newsletters, fact sheets, 
pamphlets, press releases in local 
papers, pay-stub inserts, radio 
programmes (particularly useful in 
rural areas), town hall meetings, and 
internet sites. Ideally, researchers 
concerned with children’s health 
would also like to communicate 
results to children themselves. 
Based on results from their study of 
pesticide exposure in children, the 
University of Washington’s Center 
for Children’s Environmental Health 
(Center for Child Environmental 
Health Risk Research) created 
colouring books and curricula to 
educate preschool and school-age 
children on how to prevent exposure 
to pesticides. Specialized tools are 

sometimes needed for studies that 
target low-literacy or non-majority-
language-speaking communities. 
Publishing information in more 
than one language is essential, 
and successful attempts to develop 
pictorial rather than verbal messages 
have also been made (126) (http://
www.checnet.org/healthehouse/
education/articles-detail.asp?Main_
ID=644).	

Group- versus individual-
level results. Perhaps the biggest 
communication issue has to do with 
whether to provide individual-level 
results, particularly for measures 
of exposure or internal dose. The 
argument in favour of providing such 
results is that participants have the 
right to know; the counterargument 
is that participants may be 
unnecessarily alarmed by results 
with no interpretable meaning. 
Generally, results with a clear clinical 
implication (e.g. blood lead levels) 
have been reported to participants, 
whereas results without clear clinical 
implications (e.g. urinary pesticide 
metabolite levels) have not been 
shared. One centre, however, on the 
basis of community advisory board 
input, decided to offer participants 
the option of requesting their 
individual pesticide levels. That 
centre is currently in the process of 
developing materials to provide these 
results and will work closely with 
community health care providers 
when clinical questions arise (124). 
Regardless of whether group- or 
individual-level results are returned, 
it is important to provide participants 
a context for these results. Providing 
a comparison, either to other study 
participants or nationwide data, 
has been particularly helpful. In 
communicating results, centres aim 
to clearly describe their implications 
for health and well-being; when 
these implications are not known (as 
in the case of pesticides), centres 
state this honestly (104).

Active and meaningful 
participation of the community is 
essential for determining the relevant 
research questions, enrolling and 
retaining the cohort in an intensive 
investigation over the long term, and 
contributing to translation of scientific 
principles and research results for 
communities and the public at large. 
This requires establishing trust and 
respecting differences in culture 
and knowledge of the community. 
Sufficient time and resources are 
necessary to develop community 
partnerships.

Future directions and 
challenges: Looking ahead

Summary

Recent molecular epidemiologic 
research has helped identify 
etiologic factors in childhood 
diseases. Exposures of particular 
concern for the fetus and young 
child are environmental tobacco 
smoke (ETS); polycyclic aromatic 
hydrocarbons (PAHs); particulate 
matter; nitrosamines; pesticides; 
polychlorinated biphenyls (PCBs); 
metals and radiation, which may be 
involved in respiratory disease and 
asthma; cancer risk and genetic 
damage; and neurobehavioural 
disorders. Molecular epidemiology 
has also been a useful tool in 
identifying the interactions between 
exposures and certain “host” factors, 
such as genetic susceptibility, 
nutritional deficits, and psychosocial 
stressors that can lead to disease. 
It has also provided compelling 
new evidence that early exposure 
to environmental factors is a likely 
contributor to disease in later years 
of life.

The powerful need for 
prevention, as directed by current 
trends in disease incidence, 
requires that strong, collaborative 
research be performed, especially 
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on populations most at risk. The 
logistics involved in designing and 
conducting such observational 
research, adequate communication 
of the research findings to 
populations enrolled in the study, as 
well as the ethics at stake, present 
real challenges. Strategies for 
conducting cutting-edge yet safe 
and responsible research must 
therefore be widely shared and 
understood.

Future directions: Suggestions

New epigenetic and “omic” 
biomarkers 

The previous generation of 
biomarkers has contributed to 
our understanding of risk and 
susceptibility related to genotoxic 
carcinogens. As a result, 
interventions and policy changes 
have been mounted to reduce risk 
to children from several important 
environmental carcinogens. More 
recently developed biomarkers have 
considerable potential in molecular 
epidemiology, as they reflect another 
equally important mechanism 
of carcinogenicity: epigenetic 
alterations that affect the expression 
of genes and proteins. These can 
be measured by high-throughput 
methods, allowing large-scale 
studies that are ‘discovery-oriented.’ 
Research using these techniques 
is needed to study the effects 
of multiple exposures and their 
interactions both with each other and 
in combination with different types 
of susceptibility factors. Gene–
environment interactions should 
be a major focus, but interactions 
with nutritional and psychosocial 
factors also deserve emphasis in 

future research. Studying the low-
level exposure effects of global 
pollutants and their interactions with 
susceptibility factors in different 
geographic locations, exposure 
scenarios, and ethnic/racial groups 
will help in understanding etiology 
and confirm findings. However, 
most of these markers have not yet 
been validated, and their role in the 
causal paradigm is not clear. There 
is an urgent need for validation of 
these newer biomarkers so that 
they can be combined with the 
more traditional ones in hypothesis-
testing studies. Large-scale, long-
term prospective studies will be the 
key to achieving this.

National Children’s Study

In the USA, studies under way at 
the National Centers for Children’s 
Environmental Health were among 
the first in line to meet these needs. 
The National Children’s Study 
(NCS) (a programme that will follow 
100 000 children across the US 
from before birth until age 21) will 
examine the effects of natural and 
man-made environment factors, 
biological and chemical factors, 
physical surroundings, social 
factors, behavioural influences 
and outcomes, genetics, cultural 
and family differences, and 
geographic location on the health 
and development of children in the 
cohort (127). (A summary of the 
participating cohorts and links to 
their web pages, as well as links to 
updates on the NCS, can be found at: 
http://www.nationalchildrensstudy.
gov/studylocations/Pages/websites.
aspx.)

Conclusion

Molecular epidemiology has 
contributed much to our knowledge 
of risk factors for environmental 
health-related diseases in children. 
The high rates of asthma, certain 
cancers and developmental 
disabilities, and the growing 
evidence that risk of certain adult 
diseases is associated with in utero 
and childhood exposures, indicate 
that maintaining an early focus in 
molecular epidemiology can have 
a significant impact on the overall 
burden of disease. When preventive 
measures have been enacted 
based on this knowledge in the past, 
children’s health has benefited. 
Incorporating strategic principles to 
translate existing and future data 
into public health policy will ensure 
benefits in children’s environmental 
health.
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Stephen J. Chanock, and Nathaniel Rothman

The current status of 
molecular epidemiology

As witnessed in the previous 
chapters, since the development 
of molecular epidemiology in 
the early 1980s (1), the field has 
advanced so that large-scale, in-
depth studies have been performed 
or are ongoing. These studies have 
not only monitored the external 
environment and ascertained 
clinical disease status, but have 
also collected data on biomarkers 
of exposure, biologically effective 
dose, preclinical effects, and 
susceptibility within population 
studies. Links have been drawn 
between various environmental 
and nutritional factors and diseases 
as diverse as childhood asthma, 
cardiovascular disease, cancer, 
developmental disorders, obesity 

and metabolic disorders. In some 
cases, educational or regulatory 
interventions have been mounted as 
a result of these studies.

As described throughout this 
book, non-genetic environmental 
factors, broadly defined to include diet, 
lifestyle, infections, stress, ionizing 
radiation, and chemical pollutants 
in the air, water, food supply and 
workplace, are important contributors 
to chronic disease. Adverse gene–
environment interactions (GxE) 
probably influence most chronic 
diseases, including neurological 
disorders and cancer. The genetic 
(G) contribution to different diseases 
varies, but several lines of evidence, 
including classic studies of migrant 
populations in which the genetics 

remain essentially the same but 
the incidence of disease changes 
because of the new environment, 
clearly show that non-genetic factors 
have high attributable risks (2). For 
some diseases, incidence rates 
increase or decrease dramatically 
within the first or second generation 
of immigrants, with disease patterns 
becoming more similar to the 
adoptive country and less similar to 
the country of origin. This highlights 
the fact that environmental factors 
(E) can contribute to a large portion 
of at least some chronic diseases 
(3,4).

Genomic tools arising from the 
Human Genome Project combined 
with bioinformatics have allowed 
scientists to begin to examine the 
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genetic component of many chronic 
diseases. Initially, variations in 
candidate genes were examined 
in great detail, most notably in 
xenobiotic metabolizing and DNA 
repair genes (5–7). More recently, 
genome-wide association studies 
(GWAS) have been increasing 
in number and scope and have 
provided important insights into the 
roles that particular genes, gene 
regions, regulatory elements, and 
other parts of the genome with 
function yet to be defined play in 
disease development (8). Thus, a 
key focus of most current molecular 
epidemiology studies is on the 
genome and genetic variation. The 
reason for this focus on genetics, 
even though the environment may 
be more critical, is simply that we 
have extremely precise, accurate, 
and global tools to examine the 
genome, either measured as 
external factors or biologically as 
reflected by the “exposome”. Such 
tools are not available to examine 
the environment. At the same time, 
by examining the G component of 
GxE we may find clues as to where 
to look for E factors (9,10), although 
success in this regard is very limited 
to date.

The most productive approach 
to assessing the environmental 
contribution to disease may be to 
examine environmental exposures 
agnostically (11). Unfortunately, 
compared to genomics, the tools for 
assessment of exposures, based 
upon measurements of chemicals in 
air, water, food and the human body, 
have undergone a more gradual 
evolution in the past 30 years and 
have not experienced the same 
exponential gains. This is due to 
both lack of technological progress 
in the tools available for exposure 
assessment, as well as the more 
challenging task of obtaining 
data on, or estimates of, non-
fixed exogenous and endogenous 

individual exposures. These 
exposures can vary day-to-day as 
well as over time, as individuals 
age and secular changes occur 
in a given population. The use of 
questionnaires has been the core 
approach for assessing exposure 
in studies of chronic diseases in the 
general population that arise, in part, 
from exposure patterns present over 
many years. This approach relies on 
self-reports, which can be imprecise 
and inaccurate. However, they have 
been successfully used to identify 
consistent patterns of chronic 
disease risk for several exposures 
such as tobacco, alcohol, obesity, 
components of the reproductive 
history, air pollution, and some 
aspects of diet (e.g. intake of 
cruciferous vegetables). Also, the 
increased ability to obtain objective 
occupational and residential 
histories from study subjects, 
linked by sophisticated methods 
to comprehensive exposure 
databases, has allowed advances 
in identifying associations between 
certain chemical exposures and 
disease risk. At the same time, 
methods to measure chemicals 
in biologic samples have steadily 
evolved to measure a wider array 
of compounds in smaller amounts 
of samples. Nevertheless, these 
advances are not comparable to the 
quantum leap that has occurred in 
genomics.

The Human Genome Project and 
at least 20 years of investment in 
genetics are very helpful to molecular 
epidemiologists in understanding 
the genetic determinants of 
diseases, but we remain much more 
limited when it comes to quantifying 
human exposures. This disparity in 
current knowledge between genetic 
contributions and environmental 
exposures was recognized by 
Wild, who defined the exposome, 
representing all environmental 
exposures and lifestyle factors from 

conception onwards, as a quantity 
of critical interest to disease etiology 
(12). If we expect to have any 
success at identifying the effects of 
G, E and GxE on chronic diseases, 
we must develop 21st century tools 
to measure exposure levels in large 
human populations (11). That is, we 
need to quantify the exposome, a 
topic we will return to later.

Many lifestyle factors such as 
exercise levels, dietary choices 
and stress levels also contribute to 
the environmental component of 
disease, but are hard to quantify 
retrospectively and prospectively. 
Modern tools to capture, store and use 
information about physical activity, 
diet and stress levels are needed for 
epidemiological studies. Such tools 
are being developed. For example, 
it soon may be possible to perform 
population-scale, longitudinal 
measurement of physical activity 
using common cell phones that 
include internal accelerometers and 
low-power wireless communication 
capabilities (13). Dietary assessment 
methods suitable for use in large 
epidemiologic studies (e.g. dietary 
recall, food diaries and food 
frequency questionnaires) are 
subject to considerable inaccuracy. 
More accurate methods (e.g. 
metabolic ward studies and doubly-
labelled water) are prohibitively 
costly and/or labour-intensive for use 
in population-based studies. Several 
research groups are assessing 
methods that use cell phones to 
capture both voice recordings and 
photographs of dietary intake in real 
time that, along with computerized 
analysis, may revolutionise 
nutritional epidemiology studies (14).

Accumulating evidence is 
also consistent with the role of 
psychosocial stress in moderating 
the effects of genetic and other 
environmental factors on health 
outcomes. Further advances in this 
area will require the development 



  Unit 5 • Chapter 27. Future perspectives on molecular epidemiology 495

U
n

it
 5

C
h

a
p

te
r

  2
7

of standardized, psychometrically 
sound instruments for quantifying 
exposures to psychosocial stress. 
Again, progress is being made in this 
area using, for example, colorimetric 
test strips to rapidly detect and 
quantify salivary α-amylase, a 
biomarker of the body’s adrenergic 
stress response (15,16). The 
measurement of telomere length 
is another stress biomarker that is 
gaining acceptance (17,18).

The potential contributions 
of genomics to molecular 
epidemiology

Genomics is the study of all of the 
nucleotide sequences, including 
structural genes, regulatory 
sequences, and noncoding DNA 
segments, in the chromosomes of 
an organism. Because of the tools 
provided by the Human Genome 
Project, the current focus of many 
molecular epidemiological studies 
is on genomic variation. GWAS and, 
most recently, examinations of copy 
number variation have revealed 
many surprising insights. Results 
from these studies show that many 
common causal variants, each 
of small, additive effect, probably 
contribute to complex disease risk.

As of 2010, GWAS had identified 
over 750 regions in the genome 
strongly associated with more than 
125 traits and diseases (http://www.
genome.gov/gwastudies) (19). In 
chronic complex diseases, such 
as type 2 diabetes and Crohn's 
disease, over 40 genetic regions 
have been associated with each 
disease. For certain heritable traits 
such as height, recent studies have 
identified several hundred regions, 
each of which contributes to their 
heredity (20). In cancer alone there 
are over 135 regions associated 
with 21 cancers (21). However, the 
early GWAS have not sufficiently 
explained the heredity of any 

given common disease. This is not 
surprising since GWAS interrogate 
only common variants, which 
represent only a proportion of genetic 
variation in the human genome. For 
example, despite the addition of 10 
positively-associated SNPs, the 
performance of breast cancer risk 
models only improved modestly; 
the area under the curve of the 
receiver operating curve increased 
from 58% to a mere 61.8% (22). 
Thus far, GWAS have been most 
successful in identifying regions 
that harbour genetic variants that 
are directly associated with risk for a 
complex disease, such as cancer or 
inflammatory bowel disease. For the 
latter, GWAS have pointed towards 
a region on chromosome 2q37.1 
and identified a novel mechanism 
of autophagy previously not well 
described in the pathogenesis 
of inflammatory bowel disease, 
specially as it relates to the genes 
in this pathway (23). Fine mapping 
of regions together with functional 
work is required to elucidate the 
biological underpinnings of the 
direct association of common 
variants with complex diseases such 
as cancer (24). Certainly, the advent 
of new technologies, in conjunction 
with computational resources, will 
enable investigators to use next 
generation sequencing to explore 
the contribution of uncommon and 
rare variants in the near future.

The potential contributions 
of molecular epidemiology 
in the near future

In the near future, there will also likely 
be a maturing of omic applications 
and the incorporation of systems 
biology into molecular epidemiology, 
which will produce what some have 
called systems epidemiology (25). 
Studies of epigenetic changes are 
already coming to the forefront of 
molecular epidemiology, and studies 

of changes in DNA methylation, 
histone modifications and microRNA 
(miRNA) expression, both in cells 
and body fluids, have recently been 
published (26–28). ChIP-on-Chip 
(chromatin immunoprecipitation 
with microarray analysis) and ChIP-
seq (chromatin immunoprecipitation 
with sequencing) will help in 
understanding epigenetic effects 
on gene–protein interactions. 
Advances in mass spectrometry will 
soon make it possible to measure 
post-translation modifications of 
proteins such as histones in small 
volumes of biological sample, 
adding to our repertoire of epigenetic 
changes that can be studied in 
human populations.

Advances in mass spectrometry 
and in laboratory-on-a-chip devices 
that use nanotechnology may also 
soon permit us to profile all the 
major protein and DNA adducts in 
humans using adductomics. This will 
allow for the examination of multiple 
biomarkers in very small sample 
volumes, such as a few microlitres 
of serum, a drop of blood, or a dried 
blood spot.

These tools are expected 
to have great application in 
molecular epidemiology studies 
in the near future. There are 
emerging opportunities to apply 
these technologies in molecular 
epidemiologic studies with banked 
biological samples, including 
cross-sectional, case–control, and, 
in particular, prospective cohort 
studies, to study a wide range of 
diseases.

This should advance the ability 
of molecular epidemiology to more 
broadly explore exposure–disease 
relationships, to study effect 
modifiers, and to obtain insight 
into the fundamental underlying 
pathogenesis of these conditions. 
Further, beyond providing etiologic 
insights, it is expected that 
molecular epidemiology will be 
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newly positioned to make important 
contributions to translating these 
findings into primary, secondary and 
tertiary prevention strategies. This 
would begin with broad public health 
practices that could include removal 
or substantial reduction of exposure 
to hazardous environmental 
compounds, making available 
healthier food in schools and better 
education on lifestyle risk factors.

At the same time, molecular 
epidemiology is likely to play an 
important role in the upcoming 
revolution in personalized medicine 
(29). At present, identifying individual 
genetic risk is at the forefront of this 
personalization of health care. But 
given the limited role for genetics 
in comparison to the environment 
in causing disease, the focus must 
eventually shift to include individual 
environmental risk factors, again 
broadly defined to include toxic 
exposures, lifestyle, diet, drugs, 
etc. This could help bring about not 
only lifestyle modification to prevent 
disease and improve drug treatment, 
but it could also help individuals 
gain an understanding of their prior 
and current chemical exposures 
and other risk factors, leading to 
personalized risk assessment. 
Molecular epidemiologists may 
be able to identify not only broad 
subgroups of the population with 
a higher probability of developing 
disease given genetic and other 
risk factors, but also move to 
further develop predictive models 
that can be applied to individuals 
by preventive and clinical medicine 
practitioners. An example of this is 
the Gail Model for predicting breast 
cancer, which is based on all known 
risk factors including BRCA1 and 
BRCA2 mutations (30). Genetics is 
now poised to augment this model 
and provide even greater sensitivity 
and specificity, but as mentioned 
previously, success to date using 
GWAS data is limited.

Additional profoundly important 
steps taking place in molecular 
epidemiology are the increased 
size of studies and the formation of 
dozens of international consortia, 
including those that focus on specific 
diseases as well as those that are 
based on study design (e.g. various 
cohort consortia). There are now a 
large number of prospective cohort 
studies in North America, Europe, 
Asia and Australia that have enrolled 
or are continuing to enrol several 
million study subjects. These cohort 
studies have millions of samples 
of DNA, serum, blood cells, and 
other biological material stored at 
low temperatures. Some studies 
are tracking individuals in utero 
through adolescence, providing an 
opportunity to assess the earliest 
determinants of disease. These 
samples are precious as well as 
numerous. Efficient, high-throughput 
methods that work on minute 
amounts of sample are needed to 
analyse nested case–control or 
case–cohort studies carried out 
within them. The combination of 
new nanotechnology/laboratory-
on-a-chip methodologies with large 
prospective cohort studies holds 
great promise for new research 
findings. At the same time, there 
will still be a need for focused, 
hypothesis-testing studies carried 
out within these cohorts, in addition 
to the application of discovery 
technologies. Such studies can often 
be carried out on smaller sample 
sizes, as they generally do not 
need to contend with the low prior 
hypothesis/multiple testing problem.

In addition, there is still a need 
for focused, cross-sectional studies 
of well-defined populations with 
particular exposure or lifestyle 
patterns of interest, such as new 
exposures recently introduced into 
the environment, high or low levels 
of exposures, etc. (e.g. (31,32)). 
These studies can use extensive 

and complicated protocols as 
sample sizes are generally small (a 
few hundred subjects). Often they 
can have very detailed assessment 
of the target exposure, evaluate 
potential confounders, modifiers, 
and other contributors to endpoints 
under study in greater detail (e.g. 
nutritional, genetic, psychosocial 
factors) (33), and arrange for 
samples to be transported and 
processed very quickly, allowing 
specialty assays to be carried out. 
They can incorporate both state-of-
the-art omics platforms as well as 
in-depth hypothesis-testing (34).

Future use of omic 
technologies in molecular 
epidemiology

The field of molecular epidemiology 
is entering an exciting new phase in 
which the innovative tools of omics, 
such as microarrays and metabolic 
and peptide profiling, are being 
applied along with novel laboratory-
on-a-chip microdevices that can act 
as biosensors of everything from 
glucose levels to protein adducts 
(Figure 27.1). The term omics has 
come to mean any field of study 
in biology in which the totality of 
something is studied, beginning with 
genomics which surveys across the 
genome. The tools of genomics, 
developed as a consequence 
of the Human Genome Project, 
include microarrays allowing the 
examination of gene variation and 
expression and high-throughput 
sequencing. The latter is now being 
used not only to sequence DNA but 
the RNA transcriptome to give a 
more complete picture of gene and 
siRNA expression. Transcriptomics 
is the study of all forms of RNA 
that are transcribed from the DNA 
and includes mRNA and miRNA 
expression.
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Recent and near-future 
contributions 
of transcriptomics

Distinctive blood transcriptional 
profiles have been demonstrated 
for over 35 human diseases (35). 
As more data become available 
on global gene expression in 
the blood of humans following 
exposure, it will become easier to 
identify molecular mechanisms by 
which environmental chemicals 
promote/cause human disease. 
Initiatives such as the Comparative 
Toxicogenomics Database (http://
ctd.mdibl.org/) (36) have been 
developed towards this goal.

A broad array of environmental 
exposures including 
pharmaceuticals, pesticides, air 
pollutants, industrial chemicals, 
heavy metals, hormones, nutrition 
and behaviour can change gene 
expression through several gene 
regulatory mechanisms (37). The 
potential of toxicogenomics in the 
discovery of biomarkers of complex 
environmental exposures was 
illustrated by a study in which gene 
expression profiling of leukocytes 

was shown to distinguish individuals 
exposed to cigarette smoke (CS) 
from unexposed individuals (38). An 
association between CS-induced 
gene expression and DNA adduct 
formation was later shown in a study 
of monozygotic twin pairs (39). The 
impact of air pollution on children 
at the transcriptional level in blood 
cells was investigated by comparing 
children from urban and rural regions 
of the Czech Republic (40). Several 
genes were differentially expressed 
and a correlation with micronuclei 
frequencies was shown. Further, 
the effects on children and adults 
at the transcriptional level differed 
(41). A small study of children in 
New York City found that a gene-
specific methylation change in 
umbilical cord white blood cell DNA 
was associated both with prenatal 
exposure to PAH air pollutants and 
with reported asthma in the children 
by age 5 years (42).

More recently, many groups have 
begun profiling miRNA expression. 
A role for miRNAs in mediating 
the response to environmental 
exposures has been demonstrated 
by a study showing that smoking 

induces gene expression changes in 
the human airway epithelium (43) with 
some genes modulated by miRNA 
(44). Expression profiling analyses 
have revealed characteristic miRNA 
signatures in certain human cancers 
(45) and other diseases. The study 
of miRNA in molecular epidemiology 
will likely explode in the near future 
as new tools become available and 
the biology is better understood.

Applications of proteomics

While toxicogenomics studies 
using global transcriptional analysis 
have enormous potential, the 
transcriptome does not always 
reflect the functional proteome. 
Further, proteins may be subject to 
post-translational modification and 
translocation. However, proteomics, 
the analysis of the total protein 
output encoded by the genome 
using techniques such as mass 
spectrometry and antibody arrays, is 
more challenging and less amenable 
to application in a high-throughput 
capacity due to differences in protein 
properties, location and abundance. 
Recently, a multilaboratory study 
has attempted to dispel some of 
the notions of the irreproducibility 
of mass spectrometry-based 
proteomics by pinpointing where the 
methodological problems are and 
where challenges remain (46). By 
addressing these methodological 
issues researchers hope to bring 
proteomics to the forefront of 
biomarker research.

Applications of metabolomics

Metabolomics is defined as the 
study of metabolic profiles in easily 
collected biological samples such 
as urine, saliva or plasma. The 
metabolome is highly variable 
and time-dependent, and consists 
of several thousand chemical 
structures. Since it is sensitive to 

Figure 27.1
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age, gut microbial composition, 
and lifestyle, metabolomics is ideal 
for the characterization of dietary 
and therapeutic interventions, 
metabolism and metabolism-related 
disorders (47). While successfully 
established in the screening 
of inborn errors in neonates, 
metabolomics is being increasingly 
applied to several diseases. For 
many years specific metabolites 
have been measured in body fluids 
to diagnose particular diseases 
such as diabetes, by measurement 
of glucose, and vascular diseases, 
by determination of cholesterol. 
Metabolomics, with its ever-
increasing coverage of endogenous 
compounds and its high-throughput 
capacity, now provides a much 
more comprehensive assessment 
of health status and can be used in 
the identification, qualification, and 
development of biomarkers.

An important challenge in 
metabolomics is the acquisition 
of qualitative and quantitative 
information concerning the 
metabolites that occur under normal 
circumstances to be able to detect 
perturbations in the complement 
of metabolites as a result of 
changes in environmental factors. 
Technologies that rely on UPLC-
MS/MS, FT-ICR-MS, Orbitrap, 
and asymmetric waveform ion 
mobility analysers are emerging 
as dominant analytical methods 
for metabolomic studies because 
of the accuracy, high throughput 
and coverage (>1000 unique 
metabolites) that can be achieved 
(48). However, even though these 
methods provide accurate mass 
values that may reduce the number 
of potential molecular formulas 
down to a few candidates, further 
development is needed to provide 
complete structural information. The 
exchange of chemical and analytical 
information must be encouraged for 
metabolomics to expand.

Importantly for epidemiologists, 
metabolomics is relatively easy 
to apply in large-scale human 
studies. For example, a large-
scale exploratory analytical 
approach investigated metabolic 
phenotype variation across and 
within four human populations 
using 1H NMR spectroscopy (49). 
Metabolites discriminating across 
populations were then linked 
to data for individuals on blood 
pressure. Spectra were analysed 
from two 24-hour urine specimens 
for each of 4630 participants from 
the INTERMAP epidemiological 
study, which involved 17 population 
samples in China, Japan, the United 
Kingdom, and the USA. It was shown 
that urinary metabolite excretion 
patterns for East Asian and western 
population samples, with contrasting 
diets, diet-related major risk factors, 
and coronary heart disease/stroke 
rates, were significantly differentiated 
(P < 10(−16)). Among discriminatory 
metabolites, four were quantified 
and showed associations with blood 
pressure.

Potential impact of molecular 
epidemiology on public 
health and regulatory policy

A bioinformatics database could 
be built of the human response to 
different chemical exposures and 
associated chronic diseases. This 
database may well be useful in 
many ways for risk assessment. 
For example, by comparing the 
molecular effects of newly tested 
chemicals to those of established 
carcinogens, we could identify 
potential carcinogens (hazard 
identification) and establish modes 
of action by studying the effects of 
the same chemicals in experimental 
animals and on human cells in 
vitro. This would allow for better 
prediction of human carcinogenicity 
and assessment of carcinogenic 

mechanisms (50). Given the 
sensitivity of omic analyses, low-
dose adverse effects can also be 
observed and distinguished from 
high-dose phenomena, if exposure 
is accurately assessed, allowing for 
dose–response data from molecular 
epidemiology studies to be 
incorporated into risk assessments.

For additional public health 
impact, molecular epidemiology must 
continue to expand its contributions to 
surveillance, mechanistic research, 
efficacy trials, translational research 
and health policy. We must assemble 
and communicate information to 
decision-makers, medical and health 
professionals, and the public. If 
molecular epidemiology is to make 
a major impact on population health, 
it must be preventive and have a 
global as well as a local focus. A life-
course approach is also important in 
establishing the earliest causes of 
diseases both in children and adults. 
We must expand our horizons to 
develop affordable population-
wide tools for combating common 
diseases.

Serving as the linking hub 
for laboratory and population, 
problem and solution, molecular 
epidemiology can help translate 
research to practice. To do this, there 
will be a need to continue current 
trends in the discipline and establish 
new ones. Continuation of the trend 
towards large-scale consortia and 
biobanks, use of bioinformatics, and 
attention to individual and collective 
ethical issues will serve to move 
the field forward, as will in-depth 
hypothesis-driven studies of at-risk 
populations. Powerful impacts will be 
achieved by incorporating epigenetic 
and biological systems theory in 
research and by expanding skill 
sets and professional knowledge 
to complement translation research 
and risk communication and to 
foster public health perspectives. 
A broad population-wide vision for 
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using biological markers is required 
to leverage the power of molecular 
scale insight to give beneficial 
macro-scale impacts on public 
health.

Future challenges: 
Dealing with complexity 
and lack of resources

A major challenge to many of the 
novel approaches described above 
is the size and complexity of the 
data generated. Currently, it is a 
major biostatistical undertaking to 
analyse terabytes of data, and the 
emerging results require extensive 
further analysis by bioinformatics. 
Efforts must be made to simplify the 
analysis and reduce the data. New 
statistical approaches and computer 

programs are urgently needed to 
assist in the analysis.

Exposure assessment must 
also be able to address low-level 
exposure to complex mixtures. The 
current cost of analysis for most 
chemicals in blood and other fluids 
is prohibitive if one wishes to assess 
multiple compounds. New analytical 
chemical approaches are needed to 
assess the thousands of chemicals 
and their metabolites to which we 
are exposed.

One method to overcome 
resource difficulties may be to pool 
samples. Recently, this approach 
has been used with considerable 
success in GWAS and in studies of 
the plasma proteome (51,52).

Conclusion

Molecular epidemiology is poised 
to make ever-greater contributions 
to understanding the genetic and 
environmental causes of human 
disease. Both agnostic and 
hypothesis-driven approaches to 
both categories of risk factors could 
lead to leaps in our understanding. 
Investment in new methods and 
approaches will be needed, 
however. Strong links between 
population scientists, bench 
scientists, bioinformaticians and 
engineers must also be forged if 
progress is to be made.

Disclaimer: The findings and conclusions 
in this chapter are those of the author 
and do not necessarily represent the 
views of the Centers for Disease Control 
and Prevention.
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