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Summary

Global biological responses that 
reflect disease or exposure biology 
are kinetic and highly dynamic 
phenomena. While high-throughput 
DNA sequencing continues to 
drive genomics, the possibility of 
more broadly measuring changes 
in gene expression has been a 
recent development manifested by 
a diversity of technical platforms. 
Such technologies measure 
transcripts, proteins and small 
biological molecules, or metabolites, 
and respectively define the fields of 

transcriptomics, proteomics and 
metabolomics that can be performed 
at a cell-, tissue-, or organism-
wide basis. Bioinformatics is the 
discipline that derives knowledge 
from the large quantity and diversity 
of biological, genetic, genomic and 
gene expression data by integrating 
computer science, mathematics, 
statistics and graphic arts. Gene, 
protein and metabolite expression 
profiles can be thought of as 
snapshots of the current, poorly-
mapped molecular landscape. The 

ultimate aim of genomic platforms 
is to fully map this landscape to 
more completely describe all of 
the biological interactions within a 
living system, during disease and 
toxicity, and define the behaviour 
and relationships of all the 
components of a biological system. 
The development of databases and 
knowledge bases will support the 
integration of data from multiple 
domains, as well as computational 
modelling. This chapter will 
describe the technical platform 
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methods involving DNA sequencing, 
mass spectrometry, nuclear 
magnetic resonance combined 
with separation systems, and 
bioinformatics to derive genomic 
and gene expression data and 
include the relevant bioinformatic 
tools for analysis. These genomic, 
or omics platforms should have 
wide application to epidemiological 
studies.

Introduction

The sequencing of the human 
genome stands as one of the major 
scientific achievements of the 
twentieth century. It embodies a 
defining moment in modern biology 
by which most high-throughput 
technologies are compared for size 
scope, and complexity. Beginning in 
1990, it took roughly a decade for the 
first draft of the human genome to 
be completed. By 2003, about 99% 
of all gene-containing regions were 
described, numbering about 20 500 
genes (1), although some regions of 
the genome, such as centromeres, 
telomeres and gene deserts, 
continue to undergo characterization 
and study. Data from the human 
genome project has provided a 
generalized human map of the 
three billion nucleotides comprising 
the DNA of a few human subjects. 
However, studies on the variations 
(polymorphisms) in human DNA 
sequences are currently underway; 
samples from 270 individuals of 
multiethnic backgrounds are being 
used in a consortium called the 
International HapMap Project for 
haplotype mapping (http://www.
hapmap.org) (2). The goal is to 
identify the patterns of single 
nucleotide polymorphism (SNP) 
groups, called haplotypes or haps, 
among individual human beings. In 
addition, interpretation of the human 
genome has been greatly enhanced 
by the DNA sequencing of many other 

genomes that allow comparison of 
genetic organization, evolution and 
function. Nearly 300 genomes have 
been completely sequenced and 
range from unicellular organisms, 
like E. coli and S. cervisiae, to 
model invertebrate organisms, such 
as Drosophila melanogaster and 
C. elegans, to several mammalian 
species for which the completed 
and ongoing genome projects are all 
available online (3).

Although the conception of the 
idea for sequencing the human 
genome is relatively recent, the 
project could not have occurred 
without the preceding decades 
of biological and technological 
developments. Particularly 
noteworthy of these contributions are 
early cytogenetics and chromosomal 
studies at the beginning of the 
twentieth century by Morgan and 
colleagues, the discovery of DNA 
structure by Watson and Crick in 
1953, DNA cloning in 1973 by Berg 
and Cohen, the DNA sequencing 
reaction in 1975 by Sanger, reverse 
transcriptase in 1970 and restriction 
endonucleases in 1971, and the 
polymerase chain reaction (PCR) 
by Mullis in 1983 (4). A new century 
now begins with an era of “omics,” 
those fields describing a multitude of 
genomic functions aimed at further 
deciphering the biological meaning 
of sequences in the human genome.

The purpose of this chapter is 
to describe the technical platforms 
in genomics, transcriptomics, 
proteomics, metabolomics and 
bioinformatics that could be useful 
in epidemiologic studies. These 
analytical platforms favour high 
sample throughput and generation 
of large data sets.

Omes and omics

Gene expression constantly 
changes during health, adaptation, 
toxicity, disease and aging. While 

the genetic blueprint of an individual 
is relatively static, the various levels 
of gene expression to form and 
operate a complex organism are 
dynamically regulated, structurally 
complex and spatially determined. 
At any point in time, only a portion 
of a genome is expressed in 
specific cells and tissues. At the 
mRNA level of gene expression, the 
transcriptome represents all genes 
transcribed at any one moment, and 
the proteome is the complement of 
proteins making up cells and tissues. 
Small molecules and metabolites 
comprise the metabolome. The 
global study of each gene expression 
level is suffixed with “omics,” such 
as transcriptomics, proteomics and 
metabolomics. Figure 7.1 suggests 
a sequence of gene expression 
based on genomic DNA sequences 
that are dynamically reflected in 
changes of transcripts, proteins 
and metabolites. Each level of 
gene expression (represented by 
upward, curved, dotted lines) has 
the opportunity to feed back and 
influence other levels reflective 
of highly integrated, multicellular 
processes in cells, tissues and 
organisms. Studies of each gene 
expression area utilize very 
different technical platforms to 
maximize large scale coverage of 
the transcriptome, proteome and 
metabolome. Technical platforms 
may involve mass parallel analysis 
using robotics, miniaturization, 
automation and computer 
processing. The integration of the 
many levels of gene expression is 
often referred to as systems biology 
by bioinformatics or computational 
biology. Bioinformatics represents 
an applied field of mathematics to 
biochemistry and molecular biology 
using statistics, computer science 
and artificial intelligence to design 
algorithms to derive biological 
meaning from gene expression 
data.
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Genomics

Chromosomal abnormalities are 
responsible for many developmental 
defects and malignancies, and 
include rearrangements in genomic 
DNA or changes in copy number, 
such as deletions, duplications 
and amplifications. Identification of 
genomic changes and mutations 
that underlie disease rely on 
comparisons of DNA sequences 
between affected and unaffected 
individuals. Finding disease-
causing chromosomal abnormalities 
by genomic analysis is confounded 
by the fact that many sequence 
polymorphisms are functionally 
irrelevant and produce no observable 
biological consequence. Detection 
of many disease-causing mutations, 

such as those in p53 in the Li-
Fraumeni syndrome (5) and ATM in 
ataxia telangiectasia (6), have been 
found by sectional resequencing 
of genomic DNA or PCR-amplified 
DNA or RNA. However, de novo 
sequencing of individuals using 
automated Sanger-based capillary 
electrophoresis systems has so far 
been practical for only small regions 
of the human genome-containing 
candidate genes.

Recent advances in nucleic 
acid sequencing technologies using 
massive parallel sequencing, called 
next-generation sequencing, now 
allow sequencing of much larger 
genomic intervals (7). Sequencing 
of entire genomes can take place 
within a matter of several weeks, 
in a comprehensive search for 

chromosomal aberrations and 
mutations that affect phenotype. 
DNA sequencing does have inherent 
advantages in achieving single-
base resolution and importantly 
for de novo analysis of samples 
without the prior knowledge of 
existing DNA sequence required 
for fabricated sequence platforms 
(8). New sequencing technologies 
that are high-throughput and 
low-cost while maintaining high 
accuracy and completeness are in 
continued development (9). New 
platforms often integrate real-time 
(RT) PCR and may incorporate 
microelectrophoresis, sequencing 
by hybridization, mass spectrometry, 
high-density oligonucleotide arrays, 
or incorporation of nanopore 
technology to bring within sight 
the goal of routine human genome 
sequencing (10) for personalized 
medicine (11).

There are several alternatives 
to whole-genome assessment of 
chromosomal abnormalities that 
do not involve traditional DNA 
sequencing. Alternative platforms 
involve selective genotyping of 
very focused genomic loci (short 
sections of DNA) that are potentially 
related to disease susceptibility. 
Haplotype mapping data have 
been extremely useful in providing 
candidate genomic regions with high 
polymorphic variation. Hundreds 
of thousands of loci can be very 
rapidly genotyped using BeadArray 
platforms, a technology based 
upon direct hybridization of whole- 
genome-amplified (WGA) genomic 
DNA to BeadArrays of locus-
specific, 50mer oligonucleotide 
sequences (12). As such, genome-
wide association studies (GWAS) 
comprise an important evolving field 
in genetic epidemiology in which 
more than 450 GWAS have been 
published, and the associations of 
greater than 2000 single nucleotide 
polymorphisms (SNPs) or genetic 

Figure 7.1. The interdependence of the cellular metabolome, proteome, transcriptome, 
and genome. Each type of characterization provides a functional indication of the 
activity of the proceeding set of molecules (solid lines). Conversely, there will be 
some degree of feedback regulation built into the system (dotted lines).
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loci have been reported so far (13). 
Equally as important are high-
density oligonucleotide microarrays 
for SNP detection in linkage 
analysis of susceptibility genes 
often used in cancer studies (14) or 
pharmacogenomics (15). In addition, 
fluorescence in situ hybridization 
(FISH) provides a visual map to 
examine all the chromosomes of 
a patient for abnormalities using 
fluorescent probes for specific 
genes or whole chromosome probes 
(16). Although high-throughput 
sequencing methodologies have 
been developed to accommodate 
the demand for sequence output, 
they consume large amounts of 
a valuable and potentially limiting 
genomic DNA. WGA can potentially 
remove DNA as a limiting factor 
for genomic analyses (17) that 
include multiple displacement 
amplification (MDA), primer 
extension preamplification (PEP), 
and degenerate oligonucleotide 
primed PCR (DOP) (18). However, 
genomic amplification technologies 
generate a certain level of 
replication error in sequence, 
which should be considered during 
verification studies. In summary, 
bead or chip DNA arrays or FISH 
platforms exemplify whole-genome 
technologies for high-throughput, 
compared to DNA sequencing for 
detection of genetic variation that 
can be linked to disease-based 
foci, protein, biomarkers and 
pharmacogenomic responses.

Transcriptomics

Transcriptomics studies the full, 
global complement of mRNA 
molecules expressed in cells and 
tissues. Some 20  500 genes are 
present within the human genome, 
of which about 10–15  000 are 
expressed at any one time in 
any particular tissue (19). Many 
expressed genes are necessary 

to perform basic functions of the 
cell, regardless of cell type or 
tissue, but a proportion of the 
expressed genes contribute to 
a cell’s unique phenotype and 
specialized functions. Beginning 
around 1989, DNA microarrays, 
consisting of thousands of high-
density cDNAs or oligonucleotides 
on support surfaces (called chips), 
were introduced and have evolved 
into powerful and versatile platforms 
for transcriptomic analysis (20–23). 
Spotted microarrays, either cDNAs 

or oligonucleotides, have been used 
extensively since the late 1990s, 
particularly by academia-based 
research scientists (see Figure 
7.2). Commercial oligonucleotide 
arrays provide highly reproducible 
platforms representing the entire 
genome. Oligonucleotides from 
25–70 bp in length are arrayed by 
either spotting pre-synthesized 
oligonucleotides directly onto 
glass, chemically synthesizing 
directly onto glass substrates 
(e.g. Agilent Technologies, Inc.), 

Figure 7.2. Platforms for gene expression in transcriptomics, proteomics and 
metabolomics. Transcriptomic platforms are cDNA or oligonucleotides bound 
to glass slides or microbeads for analysis of mRNA. Metabolomic platforms are 
nuclear magnetic resonance (NMR) or mass spectrometry (MS) instruments for 
small biologic molecules or metabolites. Proteomic platforms can be gel-based 
or liquid chromatography-based (e.g. linear column gradients or multidimensional 
chromatography (MuDPIT)) for separation of proteins before identification (ID) by 
mass spectrometry. Use of stable isotopes greatly facilitates protein quantitation 
(ICAT, isotope coded affinity tags; iTRAQ, isobaric tags for relative and absolute 
quantitation; SILAC, stable isotope labelling by amino acids in culture), while non-
isotopic or label-free methods can also be used that include spectral counting and 
ion precursor signal measurement. Retentate chromatography mass spectrometry 
(i.e. surface enhanced laser detection ionization (SELDI)) has been used for rapid 
profiling of biofluid samples using chemically reactive surfaces for separation and 
MALDI for generating protein mass spectra. Alternatives for MS-based proteomics 
involve affinity arrays, such as antibody microarrays or fluorescently tagged antibody 
bound bead suspensions (i.e. Luminex technology).
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or by synthesizing directly onto 
quartz wafers by photolithographic 
technology (e.g. Affymetrix, Inc.) 
(24). In addition, oligonucleotides 
can be covalently linked with micro-
beads that can then be used in a 
96-well microtiter dish format or on 
a glass substrate (e.g. Illumina, Inc.). 
With ever increasing technological 
advances, microarrays have 
progressed from chips with only 
several hundred probes to modern 
DNA chips reflecting expression 
of thousands, to even millions, of 
features per array.

The strength of any gene 
expression analysis, and the ability 
to determine expression profiles as 
potential biomarkers of exposure 
or effect, is dependent on proper 
experimental design and careful 
execution to minimize sources of 
variance and error and maximize 
useful biological information. Thus 
it is critical, in any microarray 
experiment, to design proper 
controls to include with samples of 
biological interest. Proper sampling 
and integrity of the RNA obtained 
from those samples are vital in 
determining the success of the 
analysis. Once RNA is isolated, 
proper labelling, hybridization, 
washing and scanning can 
dramatically influence the integrity 
of the resulting data. Since transcript 
expression is generally expressed 
in relative terms of a fold change 
of a particular gene expressed 
in one sample relative to a value 
in a control or normal sample, 
it is critical that the investigator 
structure the experiment in such a 
way as to minimize variations other 
than the one variable to be tested. 
Fortunately, commercial microarray 
providers have added increasingly 
more stringent quality control 
measurements in the production 
facilities. This has resulted in high 
reproducibility and low variation 
in microarrays coming from a 

manufacturer. Investigators have 
been allowed to shift resources 
away from multiple analyses of single 
samples to focusing on expanding the 
numbers of experimental samples. 
In turn, this has resulted in significant 
improvements in the confidence of 
results from microarray experiments. 
In fact, several large consortium 
efforts have demonstrated that 
comparable biological affects could 
be revealed in carefully controlled 
experiments in which multiple 
commercial microarray platforms, as 
well as rigorously quality-controlled 
spotted cDNA arrays, were used to 
analyse the same biological material 
(25–27).

Additional technological 
improvements have allowed for the 
reduction in the starting amounts 
of mRNA required in the labelling 
processes for the commercial 
platforms. Most labelling protocols 
used a single, PCR-based linear 
amplification of sample mRNA, which 
is used to incorporate a nucleotide 
conjugated with a fluorescent dye, 
biotin, or some other chemical 
modification. This amplification step 
has reduced the starting material 
for a sample to be analysed to only 
a few micrograms of total mRNA 
or less. Furthermore, protocols 
have been developed for additional 
rounds of PCR-based amplification 
of starting mRNA samples that 
make it possible to analyse very 
small quantities in the range of 
nanograms, and even picograms, of 
mRNA. These developments have 
facilitated gene expression profiling 
of samples derived from laser 
capture microdissection (LCM), 
for example, as well as biopsy 
samples, and other clinically derived 
samples that are limited in quantity. 
In addition, recent technological 
developments, particularly using 
bead-based microarrays (e.g. 
Illumina BeadChip), have opened 
up the possibility of using formalin-

fixed, paraffin-embedded material 
for gene expression analysis.

An accessible, biological 
material fluid of principal interest to 
several clinical research scientists 
is blood. Many researchers are 
interested in testing the utility 
of gene expression profiling of 
peripheral blood leukocytes to 
generate biomarkers as surrogates 
for other tissues or organs affected 
in disease or injury processes 
(28). The utility of this approach 
has been demonstrated in studies 
of inflammatory responses and 
diseases in both animal models and 
humans, of neurological disorders, 
of angiomyolipoma (AML) and 
renal cell cancers, and of cardiac 
injury (29–36). Recent studies have 
used gene expression analysis 
of blood samples to generate 
molecular profiles as biomarkers 
of exposure and exposure-induced 
injury to arsenic, benzene, tobacco 
smoke and hepatotoxic levels of 
acetaminophen (37–41).

A common application 
in transcriptomics, useful in 
epidemiology studies, is to compare 
transcript outputs between normal 
and diseased tissues in what has 
been termed transcript profiling 
or expression profiling. Transcript 
expression studies can query all 
known or predicted genes in an 
organism, providing an abundance 
of information that represents a 
snapshot of the expression status 
of a tissue at any given time. One 
can gain considerable insight 
into molecular mechanisms from 
properly structured microarray 
experiments, both on the level of 
individual genes and on the level of 
biological pathways and processes. 
The potential for mRNA degradation 
makes expression profiling most 
applicable to freshly isolated tissues, 
cultured cells or flash-frozen tissue 
sections, but not paraffin-embedded 
tissue. While microarray approaches 
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can be used to interrogate the entire 
genome on a single microarray 
chip, focused arrays representing 
distinct gene subsets have been 
used to focus upon changes in 
specific pathways or processes. 
These include both glass slide-
based microarrays (e.g. the National 
Institute of Environmental Health 
Sciences’ Human ToxChip (42)), 
and PCR-based gene expression 
analyses (e.g. SuperArrays).

DNA arrays can also reflect 
epigenetic effects upon gene 
expression. Epigenetics is defined 
as heritable changes in gene 
expression that are not due to DNA 
sequence alterations. Methylation 
is the most common epigenetic 
change and is detected by bisulfite 
conversion, methylation-sensitive 
restriction enzymes, methyl-binding 
proteins, and anti-methylcytosine 
antibodies. Combining these 
techniques with DNA microarrays 
and high-throughput sequencing 
has made the mapping of DNA 
methylation feasible on a genome-
wide scale. Genomic DNA 
methylation occurs particularly at 
cytosines in clusters of cytosine-
guanine dinucleotides, or CpG 
islands (p is the phosphodiester 
bond between C and G bases). 
Methylation of CpG islands in 
promoter regions frequently results 
in gene silencing, which normally 
occurs during development (43), 
but is often observed as an early 
alteration in some cancers by 
causing inactivation of tumour 
suppressors genes, such as von 
Hippel-Lindau disease (VHL), 
inhibitor of cyclin-dependent kinase 
4a (p16INK4a), and breast cancer 
gene 1 (BRCA1) (44).

DNA microarrays have also been 
developed for expression beyond 
profiling. In addition to SNP and 
comparative genomic hybridization 
(CGH) applications mentioned in 
the previous section, genome-wide 

localization of transcription factor 
binding sites can be accomplished 
by chromatin immunoprecipitation 
(ChIP) analysed on a microarray 
chip that forms the so-called ChIP-
on-chip technique (45). The method 
can be innovatively combined with 
different types of DNA arrays, 
such as SNP chips, to form “ChIP-
on-SNP” (46). The future for array 
technologies will also bring about a 
revolution in clinical DNA diagnostics 
(47), develop pharmaceuticals 
in pharmacogenomics (48), and 
personalized medicine (49).

Proteomics

The field for describing protein 
expression on a global scale is 
proteomics, which aims to detail 
the structure and functions of all 
proteins in an organism over time. 
The wide application of proteomics 
has generated great interest in many 
established disciplines of exposure 
biology and medicine, including 
the field of epidemiology (50,51). 
Chemical or toxicant exposure can 
bind to or modify proteins, produce 
changes in protein expression, 
and dysregulate critical biological 
pathways and processes that lead to 
toxicity and disease, which in theory 
should be detectable by proteomic 
analysis. Primary aims in proteomic 
analysis are the discovery of key 
modified proteins, the determination 
of affected pathways, and the 
development of biomarkers for 
association with and eventual 
prediction of disease.

The complexity of a proteome, 
represented by the total protein 
expression of a specific cell, organ, 
tissue or biofluid, presents numerous 
challenges for comprehensive 
analysis. Proteins are more 
complex than nucleic acids, and 
therefore proteomic analysis 
involves measurement of just some 
of the many attributes of proteins 

during any single expression 
analysis (52). Proteins exhibit many 
attributes of interest to biomarker 
development in epidemiology 
studies, including determination of 
protein sequence identity, quantity, 
post-translational modifications 
(PTM), protein–protein interactions, 
structure and function. Some of the 
challenges in proteomic analysis 
include: defining the identities and 
quantities of an entire proteome in 
a particular spatial location, such 
as serum or subcellular structures 
like mitochondria; the existence 
of multiple protein forms and 
complexes; the evolving structural 
and functional annotations of the 
human and rodent proteomes; 
and integration of proteomics 
data with transcriptomics or other 
expression data. Primary aims of 
proteomic analysis are to achieve 
maximal proteome identification, 
quantitative high-throughput protein 
measurement, timely analysis, 
and discovery-oriented platforms. 
Proteomic platforms represent 
combinations of technologies 
that describe protein attributes 
by the separation, quantitation 
and identification of all proteins 
in a biological sample. Proteomic 
analysis includes four broad 
categories of proteomic platforms: 
mass spectrometry has played a 
central role in proteomic platform 
development in large part because 
of its sensitive and versatile ability 
to identify proteins; the ability to 
separate proteins greatly determines 
the designation of platform type 
by gel-based separation or liquid 
chromatophic separation linked 
to mass spectrometry (53); solid 
phase adsorption, based on 
partitioning of peptides and proteins 
due to specific chemical properties, 
has been exploited in rententate 
chromatography combined with 
mass spectrometry; and finally, 
affinity chromatography, which 
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sorts and identifies proteins in one 
reaction, is exemplified by use 
of antibodies in various formats 
(54). The following proteomic 
platforms represent some of 
the primary technologies being 
used for separating, identifying, 
and quantifying proteins during 
toxicoproteomic studies (Cf. Figure 
7.2).

2D PAGE and DIGE

Two-dimensional polyacrylamide 
gel electrophoresis (2D PAGE) 
systems have been combined with 
mass spectrometry in an established 
and adaptable platform. Since 
1975, 2D PAGE has been the most 
commonly used proteomic platform 
to separate and comparatively 
quantitate protein samples (55). 
Current state-of-the-art 2D gels 
use immobilized pH gradient (IPG) 
gels to separate proteins by charge. 
They are then resolved by mass 
spectrometry using sodium dodecyl 
sulfate (SDS) gel electrophoresis 
for effective separation of complex 
protein samples in μg to mg 
quantities. Either visible stains, 
such as Coomassie Blue or silver, 
or fluorescent staining are used for 
sensitive protein detection. After 
electronic alignment (registration) of 
stained proteins in 2D gels by image 
analysis software, intensities of 
identical protein spots are compared 
among treatment groups and a ratio 
(fold change) is calculated for each 
protein. A relatively new variation of 
the 2D PAGE technique, difference 
gel electrophoresis (DIGE), allows 
an investigator to measure three 
samples per gel that have been 
labelled with Cy2, Cy3 and Cy5 
fluorescent dyes, which reduces 
some of the error associated 
with electronic registration during 
multiple gel alignment. This strategy 
allows for direct comparison of 
samples on one gel for better 

reproducibility and quantitation 
than conventional image analysis 
for comparison of multiple 2D gels. 
Thus, separation of proteins by 2D 
gels, using single stains or multiple 
fluors (i.e. DIGE), can be combined 
with mass spectrometry for ready 
protein identification to form a 
versatile and discovery-oriented 
platform for use in proteomic studies 
(56). In addition, some protein 
samples are sufficiently limited in 
their protein content that a simple 
size separation (one dimension) by 
SDS–PAGE can be used to identify 
protein bands of interest by mass 
spectrometry in 1D-Gel-MS.

Multidimensional LC-MS/MS

Proteomic platforms incorporating 
liquid chromatography (LC) as 
the primary means of separation 
(versus gel-based separations) 
have become the preferred means 
of analysis. There are many 
different types of LC separations 
often termed “multidimensional.” 
In this proteomic platform, LC is 
used to separate protein digests 
by exploiting different biophysical 
properties of proteins before 
identification by tandem mass 
spectrometry (MS/MS). One of the 
most notable multidimensional LC-
MS/MS platforms is Multidimensional 
Protein Identification Technology 
(MuDPIT). MuDPIT attempts to 
identify all proteins in a sample 
by two-dimensional separation of 
protein digests by charge (strong 
anion exchange matrix) and 
hydrophobicity (C18 column) with 
online LC immediately before entry 
into a tandem mass spectrometer 
(MS/MS) for protein identification 
(57). The platform has also been 
called shotgun proteomics, as entire 
protein lysates are trypsin digested 
into thousands of peptide fragments 
without any prior fractionation 
before separation and identification. 

Advantages of this newer platform 
are the potential for detection and 
identification of low abundance 
proteins that may not be observed 
in gel staining-based methods. 
One drawback is that LC-MS/MS 
platforms, like MuDPIT, are only 
semiquantitative and somewhat 
low-throughput in capacity.

The issue of protein quantitation 
in proteomics is an important one, 
since changes in protein expression 
may be a matter of altering existing 
gene and protein expression rather 
than turning them on (induction) 
or off (repression), which makes 
quantitation of proteins crucial in 
normal and diseased or control and 
experimental states. The use of 
stable isotopes, as detailed in the 
section below, takes advantage of 
the high resolution power of mass 
spectrometers to discriminate 
protein samples stable-isotopically 
labelled for quantitative comparison. 
However, rapid developments 
are being made using “label-free” 
approaches to quantitation if sample 
mass spectral data are sufficiently 
detailed (58). The two main 
approaches used are ion precursor 
signal intensities and spectral 
counting. Though they deliver 
relative sample quantitation, versus 
absolute protein measurement, 
they are simpler and less costly 
than stable isotopic methods, but 
not as precise. Label-free protein 
quantitation methods should be 
considered at the outset of designing 
LC-MS/MS proteomic studies and 
weighed against the considerable 
advantages and choices of stable 
isotopic approaches.

Stable isotope LC-MS/MS 
platforms: ICAT, iTRAQ 
and SILAC

A primary goal of proteomics is 
to comprehensively analyse all 
proteins in a sample, or as many 
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as possible. However, the prospect 
of quantifying protein levels 
for comparison among protein 
samples has been a difficult aspect 
of proteomic analysis. Protein 
quantitation can be considered either 
in relative terms as a proportion of 
treatment (test) samples compared 
to control samples, or in absolute 
terms as the number of molecules 
(moles) or concentration (molarity). 
Internal standards are useful, but 
not realistic, for complex protein 
samples of unknown composition in 
most proteomic studies. Since many 
proteomic platforms are based in 
mass spectrometry, comparison 
of intensity signals seems the 
most direct means for comparative 
measurements; however, intensities 
are subject to many interfering 
factors. Quantitation by mass 
spectrometry has generally been 
regarded as semiquantitative under 
the best of circumstances.

The use of stable isotopes for 
tagging proteins has made great 
strides in proteomics for determining 
the relative amounts of proteins 
among samples (59). Stable isotopes 
of an element differ in mass due to 
the number of neutrons, but have 
the same elemental and chemical 
characteristics as the element. 
Stable isotopes are not radioactive. 
Common stable elements and their 
stable isotopes are 1H and 2H; 12C 
and 13C; 14N and 15N; 16O and 18O; 
32S and 34S. A unique feature of 
high-resolution mass spectrometers 
is the ability to finely distinguish 
between small differences in mass, 
even to the point of resolving 
the relative abundance of stable 
isotopes in otherwise identical 
samples. Several proteomic 
platforms for protein quantitation 
and identification have been built 
around the use of isotopic tagging 
of proteins (isotope coded affinity 
tagging (ICAT), peptides (isotope tag 
for relative and absolute quantitation 

(iTRAQ), or metabolic incorporation 
of isotopically tagged amino acids 
in cell culture (stable isotope 
labelling with amino acids in cell 
culture (SILAC)). The applications 
of stable isotopes in proteomics 
have been recently reviewed for 
their sensitive detection of proteins 
in a quantitative and comparative 
fashion (60). As mentioned above, 
continuing improvements in spectral 
counting for use in LC-MS/MS 
platforms should have wide utility 
as a versatile, isotope-free method 
of protein quantitation when stable 
isotope use is not feasible (61).

SELDI-TOF mass 
spectrometry

Retentate chromatography-mass 
spectrometry (RC-MS) is a high-
throughput proteomic platform 
that creates a laser-based mass 
spectrum (based on matrix-
assisted laser desorption ionization 
time-of-flight (MALDI-TOF) mass 
spectrometry) from a chemically-
absorptive surface. The principle 
of this approach is the adsorptive 
retention of a subset of sample 
proteins on a thin, chromatographic 
support (i.e. hydrophobic, normal 
phase, weak cation exchange, 
strong anion exchange or 
immobilized metal affinity supports). 
The absorptive surfaces are placed 
on thin metal chips which can be 
inserted into a MALDI-type mass 
spectrometer. The laser rapidly 
desorbs proteins from each sample 
on a metal chip to create a mass 
spectrum profile. RC-MS can be 
performed upon any protein sample, 
but thus far this platform has found 
greatest utility in the analysis of 
serum and plasma for disease 
biomarker discovery (62). The lead 
commercial platform of RC-MS 
proteomic platforms is the surface-
enhanced laser desorption ionization 
time-of-flight mass spectrometry 

(SELDI-TOF-MS) instrument (63). 
Analysis of samples is relatively 
rapid (100/day), and only a few μl of 
sample is necessary. A downside is 
that protein identification of peaks 
is not readily accomplished without 
additional conventional separation 
and analysis.

Antibody arrays

Protein microarrays represent a 
promising new proteomic tool that 
closely emulates the design for 
parallel analysis of DNA microarray 
technology (64). Protein microarray 
formats can be divided into two 
types of multianalyte sensing 
formats: forward phase arrays and 
reverse phase arrays. In the forward 
phase array format, the analyte is 
captured from the solution phase by 
different capture molecules, such 
as an antibody immobilized on a 
substratum (i.e. glass slides). In 
contrast, the reverse array format 
immobilizes the individual test 
samples in each array spot so that, 
for example, hundreds of different 
patient blood or tissue samples 
are arrayed and probed with one 
detection protein, such as an antibody 
and a single analyte endpoint are 
measured for comparison across 
multiple samples. Such microarray 
studies have been carried out for 
metastatic ovarian cancer (65).

Many different types of capture 
molecules can be arrayed, including 
peptides (i.e. peptide substrates for 
kinases on phosphorylation arrays), 
proteins (protein–protein interaction 
arrays) and oligonucleotides (i.e. 
transcription factor binding arrays 
to oligonucleotides), but the most 
prevalent are antibody arrays in 
the forward phase format. Antibody 
arrays can directly separate proteins 
from complex biological fluids like 
plasma, serum or cell lysates by 
affinity binding to specific antigenic 
sites on target proteins.
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Generally, current commercial 
antibody array platforms fall into 
three classes based on the targeted 
proteins: cytokine/chemokine 
arrays, cellular function protein 
arrays and cell signalling arrays. 
Although not all proteins for any 
given cell type or biofluid (i.e. blood, 
serum, plasma, urine, cerebral spinal 
fluid) are currently represented on 
antibody arrays, they do provide a 
rapid screen for protein alterations 
that may be relevant to tissue injury 
or disease (54). Antibodies can be 
placed in ordered array on glass 
slides or on a fluorescent microbead 
format (i.e. Luminex technology) 
for multiplexed separation, 
identification and quantitation (66). 
For example, in a study investigating 
the chemotherapeutic and 
radiotherapy of patients with rectal 
cancer, 40 tumour samples were 
analysed by DNA microarray and 
plasma samples were analysed by 
antibody (Luminex) bead microarray 
platforms. Using a kernel-based 
method with Least Squares 
Support Vector Machines to predict 
rectal cancer regression grade, 
investigators found that combining 
and integrating of microarray and 
proteomics data improved predictive 
power leading to the best model 

based on five genes and 10 proteins 
with an accuracy of 91.7%, sensitivity 
of 96.2% and specificity of 80% (67). 
In a different approach, a molecular 
epidemiological study used SELDI-
TOF MS for in vivo studies of 
humans exposed to benzene. By 
using two sets of 10 exposed and 
10 unexposed subjects, researchers 
identified with chemically-reactive 
surfaces and validated with antibody-
coated chips three differentially 
expressed proteins in the serum 
of benzene-exposed individuals, 
two of which were identified as 
PF4 and CTAP-III, both members 
of the CXC-chemokine family 
(68). The same can be done with 
peptides (instead of antibodies) as 
the affinity ligand. This method was 
applied in the development of two 
diagnostic antibodies against avian 
influenza detection for epidemiologic 
studies, in which the epitopes 
of two monoclonal antibodies 
(mAbs) against avian influenza 
nucleoprotein (NP) were found using 
truncated NP recombinant proteins 
and peptide array techniques (69).

Future developments in 
proteomics will see incorporation 
of more sophisticated methods of 
quantitation in proteomic analysis 
(70), combining higher data 

density LC-MS/MS platforms with 
stable isotope labelled peptides, 
spectral counting, and parallel 
use of complementary proteomic 
platforms, such as tissue arrays 
(71). Study designs that remove 
abundant proteins from biofluids, 
enrich subcellular structures, and 
include cell-specific isolation from 
heterogeneous tissues will greatly 
increase differential expression 
capabilities. Advancement in 
mechanistic insights and biomarker 
development using proteomics 
will be furthered by completely 
defining plasma (serum) proteome 
and circulating microparticles in 
humans and rodent species as 
accessible biofluids (72). Some of 
the representative biomarkers and 
patterns of protein and message 
expression are shown in Table 7.1. 
Reviews on using proteomics to 
develop biomarkers and further 
mechanistic insights have been 
published (73–75).

Metabolomics

Analogous to the genomic 
characterization of cellular DNA 
and the proteomic characterization 
of the set of proteins expressed 
at a given time, cells also can be 

Table 7.1. Recently identified biomarkers and signatures of toxicity using transcriptomics and proteomics

Biomarker/Signature Identification Condition Reference No.

KIM-1 DNA microarray Renal toxicity (145)

Adipsin DNA microarray GI toxicity, functional gamma secretase inhibitors 
(FGSIs)

(146)

CXC-chemokines SELDI Benzene exposure (68)

Troponin I,T 2D gel-MS Myocardial ischemia, infarction (147)

Aminopeptidase-P
Annexin A1

2D gel-MS Radioimmunotherapy (148)

12 Lipid-gene signature DNA microarray Drug-induced phospholipidosis (149)

Multigene blood signature DNA microarray Systemic sepsis (32)
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characterized in terms of the set of 
low-molecular-weight metabolites 
(typically < 1500 D) that comprise the 
cellular “metabolome.” The cellular 
metabolome provides a functional 
readout of the cellular proteome (Cf. 
Figure 7.1). Although the analysis of 
homogeneous cell populations in 
culture, receiving identical nutrients 
and oxygenation, and exposed 
to the same levels of excreted 
waste products, represents the 
most ideal system for metabolomic 
characterization, the approach has 
been extended to the analysis of 
extracts and fluids derived from 
higher organisms. Urinary and 
blood metabolites have been 
among the most frequent targets 
for metabolomic characterization, 
but analyses of other fluids, such 
as cerebrospinal fluid (CSF), 
bronchoalveolar lavage fluid (76) 
and saliva (77), and of cellular 
extracts also have been performed. 
Typical 1H NMR spectra illustrating 
the different metabolite composition 
of urine, blood, and saliva are shown 
in Figure 7.3. Currently, metabolomic 
characterization is being used for a 
wide range of objectives in human 
nutrition and toxicology, and for the 
development of pharmaceuticals and 
agricultural products. The underlying 
objectives of these studies 
include: discovery of metabolite 
signatures as prognostic indicators, 
diagnostics or biomarkers of disease 
states; establishing toxicological 
markers for drug development 
and environmental toxicology; 
understanding mechanisms of 
metabolic diseases; and correlation 
of metabolite phenotypes 
(metabotype) with genotype and 
environmental input (e.g. nutrition).

The screening of neonates for 
genetic disorders in intermediary 
metabolism is an application that 
predates the more recent interest 
in metabolomic characterization. 
The recent reviews of analytical 

approaches for clinical diagnosis 
of metabolic disorders (78,79) 
summarize methods for metabolite 
analysis and provide good 
examples of the application of MS 
to metabolomic analysis (Cf. Figure 
7.2). Mass spectrometric analysis 
typically requires preparation of 
the metabolic components using 
either gas chromatography (GC) 
after chemical derivatization, or 
LC, with the newer method of ultra-
performance liquid chromatography 
(UPLC) increasingly used. The use 
of capillary electrophoresis (CE) 
coupled to MS also has shown 
some promise. It was reported that 
a combination of approaches for 
metabolite extraction produced over 
10 000 unique metabolite features, 
indicating both the complexity 
of the human metabolome and 
the potential of metabolomics in 
biomarker discovery (80).

Other more specialized 
techniques, such as Fourier 
transform infrared (FTIR) 
spectroscopy and arrayed 
electrochemical detection, have 
been used in some cases (81,82). 
The main limitation of FTIR is the 
low level of detailed molecular 
identification that can be achieved. 
In one study, MS was also employed 
for metabolite identification (82).

The extensive application of 
nuclear magnetic resonance (NMR) 
for metabolic characterization 
of urine and other body fluids 
has been developed primarily by 
Nicholson and coworkers (83–85). 
The primary advantage of the NMR 
approach (Cf. Figure 7.2) is the lack 
of required preparatory separations, 
which in turn leads to an unbiased 
and potentially quantitative measure 
of the constituents of the sample. 
Alternatively, while in principle it 

Figure 7.3. Typical 1H NMR spectra illustrating the metabolite composition of urine 
(A), saliva (B) and plasma (C). Used with permission from (77). 

TMAO, trimethylamine oxide; DMA, dimethylamine.
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is possible to obtain a molecular 
mass corresponding to each 
unfragmented metabolite observed 
in a mass spectrum, in an NMR 
spectrum, molecular information is 
distributed among the resonances 
of a compound, and the position 
of these resonances can depend 
critically on pH, salt concentration, 
divalent ions and other physical 
parameters. Additional caveats 
discussed in various reviews include 
loss of more volatile metabolites, 
metabolite contributions derived 
from intestinal bacteria (86), potential 
bacterial growth in stored fluids, and 
other factors (84,87). Some have 
proposed using dimethylamine and 
its nitroso metabolite as biomarkers 
for small bowel bacterial overgrowth 
(86), while others have suggested 
monitoring 4-hydroxyphenylacetate 
as a potential screening method 
for small bowel disease and 
bacterial overgrowth syndromes 
(88). Significant levels of ethanol 
in plasma or urinary samples 
generally indicate either bacterial 
contamination of the sample or 
small bowel bacterial overgrowth 
(87). Such conditions typically 
accompany renal failure or other 
serious illnesses.

In studies of chemical toxins 
or pharmaceutics, the xenobiotic 
and its metabolites and conjugates 
typically constitute an important 
source of variation of the 
metabolome. While of interest 
from a metabolic perspective, 
these compounds are not directly 
indicative of organ toxicity or 
therapeutic response, so that in 
general these metabolites are not 
relevant to the study. One approach 
to dealing with this issue involves 
stable isotope labelling of the 
compounds under study, so that the 
compound and metabolites derived 
from it will exhibit characteristic 
features in the NMR or mass 
spectrum. Alternatively, if the test 

compound and all of its metabolites 
and conjugates can be identified, 
these can simply be ignored or 
eliminated from the analysis. One 
general source of toxicity resulting 
from the administration of high 
levels of test compounds is the 
depletion of sulfur-containing amino 
acids that results from the excretion 
of glutathione and cysteine 
conjugates. Thus, it was reported 
that rats receiving high levels of 
acetaminophen excreted significant 
amounts of pyroglutamic acid. This 
effect of excess acetaminophen 
was prevented/reversed by 
supplementation with methionine 
(89). The glutathione analogue 
ophthalmic acid recently has been 
found to accumulate after high 
dosage with acetaminophen, and 
may also function as a biomarker 
for oxidative stress and glutathione 
depletion (90).

Various multivariate analyses 
of metabolite composition have 
been applied to detect differences 
among subject groups, such as 
those receiving different treatments 
or different chemical exposures. 
This type of analysis, termed 
“metabonomics” by the Nicholson 
group, most frequently utilizes 
principal component analysis 
(PCA) of the spectral data to 
reveal clustering behaviour that 
differentiates treated from control 
subjects. The clusters of data points 
in PC plots reveal the uniformity 
of the control and treated groups, 
as well as the extent to which the 
treated group yields a distinct 
metabolic phenotype. Since the 
axes of the PC plot are dependent on 
the data set and do not correspond 
to independent variables, the ability 
of different laboratories to utilize 
the published information is limited. 
Interestingly, a recent study that 
evaluated statistical methodology 
for the analysis of gene expression 
data found that the use of PCA to 

reveal clustering behaviour generally 
degrades cluster quality, and 
concluded that PCA was only useful 
in special cases (91). Hence, there 
is a critical need for the identification 
of metabolic biomarkers that provide 
universally quantifiable indications 
of organ function and toxicity.

Another critical issue related to 
the identification of biomarkers is the 
need to separate acute and chronic 
effects of illnesses or toxins. It is not 
unusual for a particular metabolite 
to become elevated during the 
acute phase of a toxic response, 
but to become depressed as the 
chronic effects become significant. 
Alternatively, in the absence of 
chronic effects, the metabolite level 
may return to pretreatment values. 
For this reason, plots of data obtained 
at different times after dosage, 
or trajectory plots for individual 
subjects, can provide critical 
information on the time-dependent 
response. Several of the issues 
discussed above are illustrated in 
studies identifying the association 
of the oxidative stress biomarker 
8-oxoguanosine with Parkinson's 
disease (92). In this study, elevation 
of the 8-oxoguanosine level was 
observed in cerebrospinal fluid 
(CSF), but not in the serum of 
patients with Parkinson. Further, 
there was a significant negative 
correlation between the level of 
the biomarker and the duration of 
the disease. Finally, as indicated in 
Table 7.2, 8-oxoguanosine is also 
elevated in other conditions, e.g. 
amyotrophic lateral sclerosis (93). 
Another important limitation on the 
identification of some biomarkers 
relates to the chemical reactivity, 
which can deplete the free metabolite 
pool and lead to heterogeneous 
adduct formation and difficulties of 
detection. Homocysteine, which has 
long been linked to cardiovascular 
disease, provides one example (94).
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Much of the early NMR work 
evaluating the effects of various 
toxins noted changes in the levels 
of tricarboxylic acid cycle (TCA) 
metabolites and other abundant 
molecules that may be present in 
the nutrient source and that are not 
organ-specific (85). More recently, 
several more specific metabolomic 
biomarkers have been correlated 
with various diseases or treatments 
(Table 7.2). Notably, most of the 

Biomarker Sample Analysis Condition Reference No.

NAN;
2-PY

NMR – human and rodent urine Type 2 diabetes mellitus (110)

NAN;
2-PY

NMR – rat urine peroxosome proliferation (111,112)

ADMA MS –human blood plasma Renal failure; atherosclerosis (108,109)

Ophthalmic acid MS – mouse serum, liver extract Acetaminophen-induced hepatotoxicity (90)

Pyroglutamic acid NMR – rat urine APAP-induced deficiency of sulfur- amino acids (89)

3-nitrotyrosine HPLC - human CSF Amyotrophic lateral sclerosis (150)

8-oxoguanosine HPLC – human CSF Alzheimer's disease (93)

8-oxoguanosine HPLC – human CSF Parkinson's disease (92)

Modified nucleosides LC-IT-MS of human urine Breast cancer (102)

12(S)-HETEa HPLC - tumor cell extracts Human melanoma (95-97)

Aspartyl-4-phosphate DESI-MS/NMR – murine urine Lung cancer/ tumour growth (100)

Phosphorylcholine 31P NMR – cell extracts Breast cancer cell extracts (98)

Depressed lysophosphatidyl 
choline levels

31P NMR – blood plasma Renal cell carcinoma (101)

Elevated xanthine, 
hypoxanthine, urate

GC-MS – human urine Lesch-Nyhan syndrome (103)

Glc-Gal-pyridinoline HPLC - human urine Synovial degradation – RA (104-106)

4-hydroxyphenyl acetate GC-LC – human urine SBBO (88)

Dimethylamine, 
nitrosodimethylamine

GC – human serum; 
GC – whole blood

SBBO (86)

Table 7.2. Biomarkers recently identified using metabolomics

biomarkers that have been related to 
metastatic growth are proteins, but 
new metabolomic markers continue 
to be developed. The metabolite 
12(S) -hydroxyeicosatetraenoic 
acid (12(S)-HETE) has been 
demonstrated to play a pivotal role 
in experimental melanoma invasion 
and metastasis, suggesting that 
12-lipoxygenase expression may be 
important in early human melanoma 
carcinogenesis (95–97). Changes in 

phosphate-containing metabolites 
and in phospholipid composition 
have been correlated with tumour 
stage and metastatic spread. In 
studies of extracts from tumour cell 
lines, elevations in phosphorylcholine 
or other membrane-related 
phosphomonoesters have frequently 
been observed, and suggested to be 
correlated with metastatic potential 
(98,99). Increases have been 
observed in aspartyl-4-phosphate 

a In most reported studies, concentration or enzymatic activity of 12-lipoxygenase, rather than 12(S)-HETE, has been determined.
2-PY, N-methyl-2-pyridone-5-carboxamide; ADMA, NG,NG-dimethylarginine; APAP, Acetaminophen; DESI, Desorption electrospray ionization; GC-LC, Gas chromatography-
liquid chromatography; GC-MS, Gas chromatography-mass spectrometry; HPLC, High performance liquid chromatography; LC-IT-MS, Liquid chromatography-ion trap-mass 
spectrometry; NAN, N-methylnicotinamide; NMR, Nuclear magnetic resonance; RA, rheumatoid arthritis; SBBO, small bowel bacterial overgrowth.
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that may correlate with tumour 
growth (100). Phosphorus-31 NMR 
studies of blood plasma derived 
from patients with advanced renal 
cell carcinoma have been found 
to exhibit depressed levels of 
lysophosphatidylcholine (101). A 
significantly improved discrimination 
of breast cancer patients based on 
metabolomic analysis of modified 
nucleosides present in urine was 
recently reported (102).

A metabolomic approach using a 
combination of gas chromatography 
and MS has identified elevations in 
the levels of the metabolites xanthine, 
hypoxanthine, urate and guanine 
in patients with Lesch-Nyhan 
syndrome (103). The urinary cross 
link product, Glc-Gal-pyridinoline 
(104), has been identified as a 
biomarker for synovial degradation 
observed in osteoarthritis (105); 
treatment with ibuprofen lowers the 
level of this excreted metabolite 
(106). Endogenously formed NG,NG-
dimethylarginine, also referred to 
as asymmetric dimethylarginine 
(ADMA), is a potent inhibitor of 
nitric oxide synthase (107). Plasma 
levels increase as a consequence 
of renal failure (108), and ADMA has 
been identified as a biomarker for 
atherosclerosis (109). Metabolomic 
analyses have identified several 
pyridine derivatives in urine 
from diabetic rats (110), and the 
same derivatives have shown 
up as biomarkers of peroxisome 
proliferation (Table 7.2) (111,112). 
The presence of these compounds 
indicates a perturbation of the 
tryptophan-nicotinamide adenine 
dinucleotide (NAD) pathway.

As is typical for new 
technologies, some reports of 
putative biomarkers have proven 
controversial. Early identification of 
the partly-characterized metabolites 
CFSUM1 and CFSUM2, associated 
with chronic fatigue syndrome, 
were subsequently demonstrated 

to arise from incompletely 
derivatized pyroglutamic acid 
and serine (113,114), and the 
quantitative abnormalities of these 
metabolites in urine from patients 
with chronic fatigue syndrome/
myalgic encephalomyelitis has been 
reported to be artefactual. Early 
analyses supporting the use of 1H 
NMR of blood sera to diagnose 
coronary artery disease (115) have 
subsequently been found to be more 
equivocal than originally suggested 
and to compare unfavourably with 
angiography-based diagnosis (116).

As more specific biomarkers are 
identified, the power of this approach 
will continue to evolve, providing 
useful diagnostic information 
for pathological, environmental, 
toxicological, pharmaceutical and 
nutritional research, as well as 
enhancing the value of metabolomic 
analysis for basic research into 
mechanisms of toxicity. Future 
developments in mass spectrometry 
platforms in metabolomics will 
increase the detectable coverage 
of the metabolome in clinical 
specimens and experimental 
species, and permit better 
identification of metabolites in the 
process of converting raw data to 
biological knowledge (117).

Bioinformatics

The wealth of data generated 
through high-throughput omics 
approaches has become 
increasingly complex and too vast 
for conventional biomarker analysis 
strategies. Bioinformatics has 
played a crucial role in biomarker 
discovery and validation (Figure 
7.4). It is a multidisciplinary field 
involving biology, computer science, 
mathematics and statistics to 
derive knowledge from biological, 
genomics and genetic data (118,119). 
Database systems, computational 
algorithms, statistical models, data 

mining methods and other analytical 
tools are typically employed in 
a bioinformatics framework to 
effectively manage, analyse and 
summarize the plethora of data. For 
example, proteomics approaches, 
such as SELDI-TOF and mass 
spectrometry in conjunction with 
bioinformatics tools, have greatly 
facilitated the discovery of new and 
better serum biomarkers to detect 
cancer (120).

The bioinformatics processes to 
translate omics data into clinically 
useful biomarkers can comprise a 
myriad of steps, beginning with initial 
analysis of the data to validation of 
the biomarkers (121). This multistep 
process typically involves discovery, 
data integration, predictive modeling, 
and delivery of the biomarkers to 
the clinic in a format to facilitate 
implementation (122). Bioinformatic 
analyses may take different 
approaches with several checkpoints 
along the way. A flowchart is 
described for the application of 
bioinformatics strategies to improve 
the identification of candidate 
biomarkers from cancer genome-
wide expression analyses (123). The 
process proceeds with acquisition of 
gene expression data from cancer 
tissues, followed by the identification 
of candidate genes as biomarkers. 
The next step entails meta-mining 
public cancer data sets of the same 
type of pathophysiology to reduce 
the biomarker false-positive rate. The 
last step before use of the biomarkers 
in clinical trials involves validation of 
the candidates by RT–PCR, ELISA, 
tissue arrays, immunohistochemistry, 
and other types of bioassays.

What are these bioinformatics 
tools and processes and how are 
they used to aid in the discovery and 
validation of disease biomarkers? 
It is helpful to appreciate that a 
useful biomarker must be objective, 
highly accurate and very reliable 
in determining disease states and 
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assessing risk. In other words, they 
must generalize well (i.e. extend) 
to broad cases, exhibit significance 
in their reporting, and be precise 
in their utility. Unfortunately, omics 
data possesses systematic variation 
due to the experimental error in 
the data acquisition process (124). 
There are technical limitations in the 
sensitivity of detecting biomarkers 
that are lowly expressed or non-
abundant; however, biomarkers do 
not need to be highly expressed 
or in large abundance. Thus, the 
challenge in biomarker identification 
is successfully mining omics data 
with inherent error to find the 
features that reliably, accurately 
and objectively relate to the 
pathophysiology of a disease (125).

Data normalization and 
dimension reduction (data 
condensing) techniques have been 
widely used to preprocess omics 
data before biomarker discovery. 
Standard ways of dealing with data 
normalization have been adopted 
for omics data. Robust Multiarray 
Average (RMA), loess and quantile 
normalization methods have 
seemed to pass the test of time 
(126–128). A systematic variation 

normalization (SVN) approach was 
developed specifically to remove 
systematic error from microarray 
gene expression data (129). Baseline 
subtraction, signal smoothing and 
normalization methodologies were 
employed in the preprocessing of 
mass spectrometry proteomics data 
to reduce the noise and to make the 
analysis of spectral data comparable 
(130). In general, once the omics 
data is made unbiased and adjusted 
to make fair comparisons across 
samples, all the data can be used 
to mine for biomarkers or be filtered 
first to remove uninformative or 
redundant information. Some believe 
that the inclusion of uninformative 
features in the biomarker selection 
process will severely degrade the 
performance of the predictor model 
(131). Thus, it has been suggested 
to remove variables that do not 
contribute to a biological response 
of interest before the selection of 
biomarkers. Filtering of the data 
can be based on a signal or relative 
level, fold change, a confidence 
level, standard deviation from the 
mean of the distribution, P-values, 
mutual information, full or partial 
correlations, or more elaborate 

methods. The underlying omics data 
should be rich enough to be narrowed 
down to a core set of features that 
best represent the biology of the 
system for biomarker selection. 
Caution must be taken with respect 
to the preprocessing of omics data 
for biomarker identification, as the 
use of a particular combination of 
methods will surely add variability to 
the set of indicators selected. In other 
words, the preprocessing and filtering 
steps are sources of variability in and 
of themselves. The US Food and 
Drug Administration-led MicroArray 
Quality Control Phase II (MAQC-
II) consortium set out to address 
this by trying to understand the 
limitations of various bioinformatics 
data analysis methods in developing 
and validating microarray-based 
predictive models, and determining 
if best practices for development and 
validation of predictive models based 
on microarray gene expression and 
genotyping data can be derived 
for biomarker discovery and 
personalized medicine (132).

The development and utilization 
of classification and prediction 
methods for analysis of omics data 
have transcended the process 

Figure 7.4. Sequential scheme for the integration of omics with bioinformatics in the biomarker discovery process
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for identifying biomarkers from 
molecular signatures. One of the 
most widely used methods for 
classification is clustering. The 
process works by using a dissimilarity 
measure for the feature profiles in the 
omics data to iteratively form groups 
of samples that are tightly clustered. 
Features that cluster well together 
and can distinguish between 
groups of samples that differ in 
pathophysiology are considered to 
be potential biomarkers. Clustering 
and an F-test-like score based on 
within- and between-sample gene 
expression variance measures were 
used effectively to identify an intrinsic 
gene subset (i.e. a molecular portrait) 
that has a high predictive score 
for human breast tumours (133). 
More sophisticated bioinformatics 
methods have been developed to 
identify potential biomarkers. A 
hybrid approach was developed 
based on the genetic algorithm 
(GA) and k-nearest neighbours 
(KNN) classifier that is capable 
of identifying gene and protein 
molecular signatures of diseases 
based on microarray and proteomics 
data, respectively (134,135). The 
GA serves as a search tool to 
choose small subsets of predictors, 
whereas the KNN functions as a 
non-parametric (no distribution 
model assumed) pattern recognition 
method to evaluate the discriminative 
ability of the subsets. More recently, 
a hybrid approach for biomarker 
discovery from microarray gene 
expression data was developed 
to distinguish between types of 
cancer (136). This approach is 
based on Fisher’s ratio (a measure 
for the linear discriminative power 
of variables) to select features 
“wrapped” with a classifier (hence, 
the procedure is called FR-Wrapper) 
to perform predictions. With these 
hybrid approaches, the two main 
objectives in biomarker discovery 
are met: 1) the identification of a 

small set of relevant indicators with 
minimum redundancy, and 2) the 
validation of the predictors using 
a classifier and cross-validation 
strategy. To balance false-positives 
and false-negatives in the selection 
of biomarkers, a clever method was 
proposed to use common peaks 
in mass spectrometry data as the 
predictive indicators (137). The 
procedure applies AdaBoost (a 
form of ensemble classifier training) 
to perform the classification and 
to select the informative common 
peaks.

Bioinformatics approaches 
to discover biomarkers can 
take on more sophisticated 
implementations. For instance, a 
dependence (interaction) network 
modeling scheme was suggested 
for identifying biomarkers from 
groups of genes or proteins (138). 
Very clear differences were 
observed in the dependence 
networks for cancer and non-cancer 
samples. On the other hand, a gene 
selection algorithm was used based 
on Gaussian processes to discover 
consistent gene expression patterns 
associated with ordinal clinical 
phenotypes (139). The method was 
able to identify subsets of genes as 
potential biomarkers for colon and 
prostate cancers. The integration 
of time-course microarray gene 
expression data with cytotoxicity 
measurements, by way of a partial 
least squares objective criterion, 
has been shown to be useful for 
identifying biomarkers in primary rat 
hepatocytes exposed to cadmium 
(140). The approach demonstrates 
the value of integrating omics data 
with associated biological data to 
glean more information about the 
biomarker’s diagnostic utility. More 
recently, a bioinformatics approach 
was introduced that takes into 
account the inherent correlation of 
genes when using gene expression 
data for biomarker discovery (141). 

Finally, a host of techniques and 
software to integrate omics data 
are summarized, to shed additional 
light on the complex molecular 
interactions that take place on a 
systems biology level (142).

Repositories of omics data 
from various studies that can be 
queried may bring about improved 
means for detecting biomarkers 
of a clinical process or phenotype 
than one which is isolated or from 
a small group of data sets (143). 
This realization has motivated the 
generators of omics data to store 
them in repositories for meta-mining 
purposes. Figure 7.5 represents 
a brief list of some of the publicly 
accessible databases that store, 
distribute and permit querying of 
omics data (a more comprehensive 
list is presented in (142)). A plasma 
proteome database at the Institute 
of Bioinformatics that stores 
comparisons of human plasma 
protein concentration levels along 
with their isoforms in normal and 
disease states should be useful for 
discovery of novel biomarkers (144). 
Another database, ONCOMINE, 
stores a collection of curated cancer 
gene expression profiles integrated 
with a therapeutic target database 
and biological resources, such as 
Gene Ontology, so that the data can 
be mined for putative biomarkers 
(123).

The use of bioinformatics 
tools has increased mechanistic 
understanding and development 
of biomarkers in the analysis of 
massive genomics, proteomics 
and metabolomics data (Cf. Figure 
7.4). Bioinformatics techniques 
will continue to be useful in 
organizing and extracting candidate 
biomarkers for chemical exposures 
and disease for epidemiology, 
clinical and experimental studies. 
However, mere access to 
sophisticated bioinformatics tools 
will be insufficient to grapple with 
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the identification of biomarkers from 
omics data (Figure 7.5). An ongoing 
and vigorous debate has emerged 
over the use and reproducibility 
of bioinformatics approaches and 
omics data for biomarker discovery 
and clinical applications (145,146). 
Clearly there is a need for rigorous 
quality control in the field of 
bioinformatics for the use of omics 
type data in clinical, diagnostic and 
regulatory settings (Lyle Burgoon, 
personal communication). A 
fundamental understanding of the 
inherent problems and issues with 
omics data, and knowing how, 
where and when to apply which 
type of bioinformatics approach, are 
essential to effectively translating 
omics biomarkers into clinically 
useful diagnostic tools and 
epidemiological markers.
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