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chapter 15.  

Family-based designs
Christopher I. Amos and Christoph Lange

Summary

Family-based designs are used 
for a variety of reasons in genetic 
epidemiology, including the initial 
estimation of the strength of genetic 
effects for a disease, genetic linkage 
analysis by which genetic causes 
can be sublocalized to chromosomal 
regions, as well as to perform 
association studies that are not 
confounded by ethnic background. 
This chapter describes some of 
the approaches that are followed in 
the initial characterizing of genetic 
components of disease and family-
based designs for association 
analysis and linkage with genetic 
markers.

Family studies of phenotypes

To obtain an initial assessment of 
the genetic contributions to disease, 
and determine which subsequent 

approach is most likely to be 
effective, a variety of family-based 
designs are employed (Figure 
15.1). The heritability of a disease 
indicates the proportion of the 
covariation in risk for disease that 
can be attributed to genetic factors. 
Heritability in the narrow sense 
excludes covariation due to gene–
environment interactions, while in 
the broad sense includes all genetic 
contributions to disease. Heritability 
estimation can be performed using 
either data from population-based 
twin registries or from family studies 
that include different types of 
relatives. The study of twin registries 
allows investigators to contrast 
the similarity in disease among 
monozygotic twins, who share all 
their genetic material in common, 
versus dizygous twins. While the 
study of twin registries can provide 

important insights concerning the 
contribution of genetic factors 
to disease, twin studies have 
limitations. For the study of rare 
diseases, such as cancer, very 
large collections of twins must be 
followed for many years. Second, 
important assumptions that 
the monozygotic and dizygotic 
environments are similar are difficult 
to evaluate. Despite some concerns 
and weaknesses of this design, 
twin studies have indicated strong 
genetic components of risk for the 
most common cancers (1), as well 
as many autoimmune conditions 
(2). Since the development and 
maintenance of twin registries 
is beyond the scope of most 
epidemiologists, this design is not 
discussed here (see (3,4) for several 
comprehensive resources).
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An alternate measure that is 
more often used to characterize 
the genetic contribution to disease 
is the recurrence risk to a class 
of relatives. For example, for 
genetically influenced diseases, a 
monozygous twin who shares all 
genes in common with their cotwin 
(a zeroth-degree relative) should 
have a higher risk of developing 
disease if their cotwin also has the 
disease, compared with dizygous 
twins, siblings or a parent or child 
who shares only half their genes 
in common. Each of these pairs 
of relatives is called a first-degree 
relative. Similarly, second-degree 
relatives (half-siblings, avuncular 
pairs, and grandchild-grandparent 
pairs) should show even lower risks 
for disease given that one of the pair 
members has the disease compared 
with first- or zeroth-degree relatives. 
Evidence that there are genetic 
contributions to disease is found 
by observing the relative risk for 
disease either among different 
classes of relatives, or if population-
based estimates are available, by 
forming the relative recurrence risk 
by contrasting the risk to relatives 

of a certain type to the risk in the 
general population. The easiest such 
relative risk to estimate is the risk 
to cosiblings. Relative recurrence 
risks (RRR) to siblings for cancers 
range from 2–2.5 for most common 
epithelial cancers (5), but are much 
higher for selected cancers, such as 
non-medullary thyroid cancer (RRR 
= 15.6), Hodgkin’s disease (RRR = 
6.5), testicular cancer (RRR = 6.6), 
ovarian cancer (RRR = 4.9) and 
renal cancer (RRR = 4.7). Relative 
recurrence risks are much higher for 
some cancers if multiple relatives 
are affected and also higher for 
relatives of earlier onset cancers.

Contrasting recurrence risks for 
other types of relative combinations 
can provide initial insights into 
whether or not there are recessive 
or dominant effects for a disease, 
and the number of genetic factors 
that are likely to be important in 
disease causation (6,7). If there are 
recessive effects influencing disease 
causation, then risk to monozygous 
twins who share all their genetic 
material in common will be much 
greater than risks to dizygous pairs 
of siblings. In turn these risks will be 

higher than the risks to offspring or 
parents, because parent-offspring 
pairs never share two alleles in 
common, while siblings share on 
average one quarter of the time, and 
sibling pairs share both alleles in 
common. Thus, if a disease includes 
a recessive effect, then a co-sib of 
an affected individual is also more 
likely to have two deleterious alleles 
and be affected than a parent would 
be (see (8) for a detailed description 
concerning the estimation of 
allele frequencies in co-sibs and 
other relatives). The fall-off of the 
recurrence can also be used to 
provide insights into the number of 
loci that may influence a disease (6).

The probability that an individual 
becomes affected given that they 
carry a particular genotype is called 
the penetrance. The penetrance 
of disease can depend upon 
genotype(s) at one or more loci, as 
well as environmental factors. The 
genotypic risk ratio is the ratio of the 
penetrance given that an individual 
has one particular genotype 
compared to the risk for disease 
given another genotype. The 
relative recurrence risk depends 
upon the genotypic risk ratio and the 
population prevalence of the genetic 
factor (9). The genotypic recurrence 
risk determines the power of 
association studies, as described in 
more detail below.

Standard epidemiological 
approaches have been modified 
and further developed for 
characterizing evidence that genetic 
factors influence a disease. The 
most straightforward approach that 
epidemiologists will initially apply 
seeks to identify the odds ratio of 
a disease with family history for 
the disease in relatives. In this 
approach, the epidemiologist asks 
cases and controls to delineate 
the occurrence of disease among 
relatives of each type (e.g. 
siblings and parents). Then, usual 

Figure 15.1. Designs for genetic epidemiological studies to identify genetic factors 
for diseases
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epidemiological approaches such 
as logistic regression can be used 
to obtain an odds ratio that a case 
reports a family history of disease 
compared with a control. While this 
approach is similar to other analytical 
approaches commonly used in 
epidemiology, a historical cohort 
approach is preferred by genetic 
epidemiologists for many reasons. 
In the historical cohort approach, 
case and control participants are 
asked to provide medical history 
information on selected relatives, 
such as first-degree relatives. The 
data that must be collected for each 
relative includes either the age at 
disease onset(s), the current age if 
alive and unaffected, or the age at 
death if deceased without disease. 
The relatives of the cases and 
controls then form a historical cohort 
with the follow-up period extending 
from birth until either disease onset 
or last age (death or current age). 
There are many advantages of this 
approach over the case–control 
design (10). In the historical cohort 
design, both absolute and relative 
risks can be obtained. As this is a 
cohort design, multiple disease 
endpoints can be studied. In the 
case–control design, because 
cases and controls are typically 
selected not to have multiple 
diseases, it becomes impossible 
to evaluate whether one disease, 
such as rheumatoid arthritis, is 
associated with an increase in 
relatives for another disease, such 
as systemic lupus erythematosis. 
In addition, according to both the 
two-stage and multistage models 
of carcinogenesis, individuals with 
inherited susceptibility to disease 
should have higher hazards 
ratios for cancer(s) at earlier ages 
compared with older ages. Case–
control designs that are typically 
matched on age have difficulty 
estimating differential risks for 
disease according to age, but 

for the historical cohort design, 
variation in disease risk according 
to age can be readily estimated. 
Because the relatives in a family 
are correlated, tests of the relative 
risks for disease are biased unless 
a variance correction is introduced 
to allow for this correlation. The 
Huber-White variance correction 
procedure can be applied and 
is readily available in standard 
analytical packages such as SAS, 
STATA or R. As an example, the 
occurrence of rheumatoid arthritis 
in relatives of cases compared to 
controls and the occurrence of other 
autoimmune conditions was studied 
(11). The results showed that aside 
from rheumatoid arthritis, which 
was more frequent in case relatives 
compared to control relatives, other 
autoimmune conditions occurred 
more frequently in relatives of 
controls.

When a candidate mutation has 
been studied in a family, an approach 
to estimate the penetrance specific 
to that mutation is the kin-cohort 
approach (12–14). This method 
takes advantage of the extensive 
data on family members that can 
be obtained using the historical 
cohort approach discussed above, 
but also allows the penetrance to 
be estimated specifically from the 
mutation. Among those probands 
who are found to have a rare 
mutation, about 50% carry the 
mutation, while nearly none of the 
relatives of probands not carrying 
the mutation are carriers. By 
contrasting the age-specific risk in 
relatives of carriers versus relatives 
of non-carriers, one can derive 
an estimate of the penetrance 
associated with the mutation being 
studied. An issue in applying this 
method is how to correct for the 
selection of probands based upon 
their being affected when there is 
risk for disease, not only from the 
mutation being studied, but also 

from other loci (14,15). Using these 
methods, the risk associated with 
carriage of breast cancer 1 (BRCA1) 
and BRCA2 mutations could be 
estimated from the population-
based Washington Ashkenazi 
Study, since the prevalence of 
mutations in this population was 
sufficiently high. Using the kin-
cohort approach, the risk for breast 
cancer due to carriage of either of 
the three common mutations in 
Ashkenazim was 56% to age 70, 
which is considerably less than had 
been estimated previously from the 
study of families ascertained through 
multiple affected relatives (16). This 
variation in risk according to the 
sampling design likely reflected 
the incomplete ascertainment 
correction provided by earlier 
studies of families that included 
many affected relatives. Previous 
approaches to ascertainment 
correction in family studies derived 
for linkage analysis conditioned only 
on the specific measured genetic 
factors (e.g. BRCA1 and BRCA2) 
and failed to allow for effects from 
unmeasured lower-penetrant loci. 
A more recent alternative approach 
to the kin-cohort method adapts 
segregation analysis to incorporate 
effects from a known measured 
genetic factor, such as BRCA1 and 
BRCA2, as well as residual risk 
from unmeasured genetic factors 
(17). Application of these methods 
has yielded penetrance estimates 
similar to those given by the kin-
cohort approach.

Of concern when performing 
genetic epidemiological studies 
in which a case or control is 
interviewed about the occurrence of 
disease in relatives is the reliability 
of the reporting by such subjects. 
Numerous studies have shown 
that for some common epithelial 
cancers, such as breast, colon, 
prostate and lung, reporting of 
disease in relatives is acceptably 



264

accurate (18,19). For cancers of 
the internal organs or common 
metastatic sites, such as ovarian, 
liver and brain cancers, reliability 
of reporting is extremely poor (20). 
Studies of these cancers would 
entail obtaining medical records 
to verify reporting by the case or 
control. Reporting of autoimmune 
diseases also shows variable 
reliability, with rheumatoid arthritis, 
for example often being confused 
with other types of arthritis. Reports 
of rheumatoid arthritis in relatives 
were confirmed using medical 
records and reports from multiple 
relatives (11).

Reporting of disease in relatives 
can raise issues concerning 
the privacy of the relatives. The 
American Society of Human 
Genetics has issued a policy 
statement that indicates reporting 
by an individual about a relative 
is hearsay, and hence does not 
constitute a violation of privacy 
(21). However, an evaluation of 
risk associated with the collection 
of reported disease in relatives 
will require Internal Review Board 
review. Inadequate compliance 
with an approved protocol for the 
collection of reported medical 
data on relatives, led to temporary 
cessation of research at the 
University of Virginia, when a father 
complained that his child was being 
asked to report sensitive information 
about him as a part of a research 
study. In the USA, researchers 
involved in studies of diseases for 
which risk can accrue to either the 
patient or the researcher can obtain 
a certificate of confidentiality. This 
certificate protects the research 
from legal discovery.

Segregation analysis

To more precisely model the familial 
and genetic factors affecting 
disease expression, case–control 

studies have often been followed 
by segregation analyses. This 
is particularly useful when initial 
studies identify high risk associated 
with a family history of disease, and 
the disease is rare, suggesting the 
involvement of one or a few genetic 
factors having high penetrance. 
Segregation analyses seek to 
identify the relationship between 
an individual's genotype and the 
resulting phenotype. Inheritance of 
genetic factors results in a specific 
form of genotype dependence 
among family members. Although 
the genotypes at a disease locus 
cannot usually be determined, the 
inheritance of disease within families 
can be compared with that expected 
under specific genetic models. In 
segregation analyses, the model 
that most closely approximates the 
observed familial data is sought. The 
models that are evaluated by classic 
segregation analyses include a 
genetic factor, environmental effects 
which may be correlated among 
family members, and polygenic 
effects. These polygenic effects 
are a mathematical construct that 
corresponds to the inheritance of 
many independent genetic factors, 
each having small effects.

The classic paradigm of 
segregation analysis also requires 
scrupulous definition and attention 
to the ascertainment criteria. For 
most diseases, the occurrence of 
genetic susceptibility is sufficiently 
uncommon that random sampling 
would result in low power to detect 
genetic effects. However, most 
patterns of selection through 
affected individuals introduce biases 
into the genetic analyses. When 
the selection or ascertainment 
events are well characterized, these 
biases can often be controlled 
for appropriate mathematical 
conditioning (22). For segregation 
analysis, the units of observation 
are individuals within families, and 

although the modeling process 
is applied to individuals, it also 
requires information on their close 
relatives. Thus, the unit of sampling 
and analysis is the family. Summary 
statistics from segregation analytic 
studies include the gene frequency 
of the disease-causing locus, the 
penetrance for the susceptible 
genotypes, and the sporadic risk 
for the non-susceptible genotypes. 
During segregation analysis, 
the parameters describing the 
penetrance and the gene frequency 
are inferred using maximum 
likelihood methods. The parameters 
that most accurately describe the 
observed data are identified by 
computationally intensive numerical 
evaluations. To allow for the variable 
size and structure of human 
families, very general algorithms 
were developed, largely as a result 
of seminal works by R.C. Elston 
(23,24).

Genetic linkage analysis

Genetic linkage analysis has been 
an extremely powerful tool for 
identifying specific genetic factors 
for diseases. Linkage analysis has 
typically been applied for identifying 
novel genetic factors by using a 
genome-wide analysis of the co-
inheritance of disease with genetic 
markers. Evidence in favour of 
linkage is typically expressed by the 
LOD score, which is the log10 ratio of 
the likelihood of the data assuming 
linkage between a modelled disease 
susceptibility locus and a genetic 
marker, to the likelihood of the data 
assuming no linkage of the disease 
susceptibility and genetic marker. To 
allow for the large number of tests 
that are indicated in a genome-wide 
analysis, several testing paradigms 
have been developed. If a Bayesian 
approach is adopted, a LOD score 
of about 3.0 leads to a 5% posterior 
probability of linkage assuming 
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the existence of a single disease 
locus, even when many markers are 
genotyped over the entire genome. 
An approach for sequentially 
combining data from multiple 
studies by adding LOD scores 
across studies has been highly 
effective (25). From Bayesian and 
sequential analytical approaches, a 
LOD score of 3.0 was proposed as 
providing a meaningful critical value 
for declaring strong evidence for 
linkage. More recently, approaches 
to control the overall significance 
of genetic studies when studying 
multiple markers have been 
adopted (26). These criteria have 
been criticized for being excessively 
conservative (27), particularly when 
candidate regions are of primary 
interest (e.g. when prior studies 
indicated evidence for linkage to 
an area). The significance testing 
paradigm requires the slightly higher 
LOD score of 3.3 to declare that a 
significant result has been obtained 
while providing a genome-wide 
significance of 5%.

If a simple genetic mechanism 
explains inheritance of disease, 
then a genetic model can be 
specified and tested for co-
inheritance of disease susceptibility 
with genetic markers. In order for 
linkage studies to be informative, 
the families chosen for study must 
be able to show inheritance of 
a genetic factor. For uncommon 
diseases for which the penetrance 
is reduced, the affected individuals 
provide the majority of information 
about the segregation or inheritance 
of genetic mutations predisposing 
to disease. For quantitative traits, 
sampling through individuals with 
extreme phenotypes can increase 
the probability of sampling a genetic 
variant influencing the trait of 
interest. Sampling through extreme 
individuals is an effective strategy 
for increasing the power of a linkage 
study, but may only be practical 

if the quantitative phenotype can 
be assayed inexpensively. Some 
studies of quantitative phenotypes 
look at many phenotypes. Sampling 
through extreme individuals only 
increases power for a single or a few 
correlated phenotypes.

Linkage analyses are mainly 
conducted using panels of single 
nucleotide polymorphisms (SNPs) 
with a density of at least 1 marker 
every 500 kilobases (usually at 
least 6K markers), but can also 
be performed using microsatellite 
panels with a density of at least 1 
marker every 10 megabases (about 
350 markers). SNPs are far less 
informative than microsatellites, so 
that a much denser mapping panel 
is required to obtain a comparable 
amount of information from a genetic 
study using SNPs compared with 
one using microsatellites. Evidence 
for genetic linkage in a region would 
often be followed by finer-scale 
mapping to improve the information 
for detecting linkage and to identify 
any recombinant individuals. Finer 
maps would be employed if a 
microsatellite panel or relatively 
sparse SNP panel was used, to 
search for associations between the 
disease or trait and particular marker 
alleles. Standard finer mapping 
panels for microsatellites provide a 
0.5 to 0.2 megabase interval spacing 
(available from Decode Genetics 
(decodegenetics.com) or Invitrogen 
Genetics). Routine genotyping 
platforms for the purposes of genetic 
linkage analysis are available from 
Affymetrix and Illumina, and provide 
results from genotyping of between 
6000 and 1 000 000 genome-wide 
SNPs, respectively. These much 
finer mapping panels can improve 
the power to detect linkages and 
may provide narrower intervals 
for positional cloning. However, 
the presence of strong linkage 
disequilibrium (LD) among the SNPs 
in these platforms raises many 

analytical complexities that must be 
dealt with for accurate inferences. 
In particular, biases occur when 
families are selected through 
multiple disease-affected relatives 
if LD is not precisely modelled (28).

A wide range of genetic linkage 
methods are available. The diversity 
of methods reflects, in part, the 
considerable success in identifying 
genetic causes of disease, and the 
consequent value and interest in 
using the methods by the scientific 
community. Computing statistics 
over a large number of genetic 
markers in families for diseases 
that do not show simple inheritance 
patterns is computationally 
demanding. There are three basic 
approaches that are used for 
analysis of the genetic marker 
data. The Elston-Stewart algorithm 
(23) summarizes information about 
haplotypes (the set of alleles on 
a chromosome) sequentially in a 
pedigree, and is therefore efficient 
for statistical analysis of large 
families, but limited in the number of 
markers that can be jointly modelled 
(usually fewer than five markers can 
be considered jointly). The Lander-
Green-Kruglyak (LGK) method (29) 
adopts a different approach that 
facilitates the analysis of multiple 
markers. The LGK model first 
identifies the possible inheritance 
patterns of genotypes within 
families and stores this information 
as inheritance vectors. Because 
the number of inheritance vectors 
increases rapidly according to the 
number of individuals in a family, this 
approach is only suitable for small- 
or medium-sized families, usually 
allowing at most 25 individuals in 
a family to be studied. In addition, 
because the method stores all 
possible inheritance vectors in 
memory, the approach requires 
considerable RAM to be efficient. 
The major advantage of the LGK 
approach is that computational 
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speed increases only linearly in the 
number of markers so that it is highly 
efficient for genome-wide analyses. 
In addition, the adaptations of the 
LGK algorithm allow haplotypes to 
be used as markers, thus allowing 
for the strong LD that can exist 
among tightly linked markers (30).

Analyses including many markers 
on large pedigrees, or analyses of 
pedigrees that include more than 
a few inbred individuals, may not 
be effectively performed using the 
Elston-Stewart or LGK algorithms. 
In this case, Monte-Carlo Markov 
Chain (MCMC) algorithms are used 
to approximate the likelihood of 
the data. MCMC methods provide 
tools for sampling the haplotype 
configurations in data (31,32). The 
MCMC procedure samples possible 
haplotypes according to the 
underlying probability distribution 
that generated the data and provides 
an accurate approximation to the 
likelihood. A major advantage of 
MCMC procedures is a decreased 
need for memory, since they do not 
require summing over all possible 
genotypes as in the Elston-Stewart 
algorithm, or over all possible 
inheritance vectors as in the LGK. 
One disadvantage is the complexity 
in storing output from analyses, 
since results from large numbers 
of realizations from the sampling 
of genotype configurations must 
be stored. MCMC methods infer 
the genotypes for all individuals 
that are specified as a part of the 
analytical file. Individuals with 
known genotypes have a limited 
number of potential haplotypes, 
but individuals who have not 
been genotyped can have a large 
number of potential genotypes 
and haplotypes. The probability 
distribution from which MCMC 
methods must sample can become 
quite large if many individuals 
who have not been genotyped 
are included in the analytical file. 

Therefore, it is often beneficial to 
remove the ungenotyped individuals 
from MCMC analyses, particularly 
those who are not affected, since 
they contribute little in most linkage 
analyses.

An issue in performing genetic 
analysis is whether to use model-
dependent or model-free methods for 
linkage analysis. Model-dependent 
methods have higher power for 
linkage analysis if an approximately 
valid genetic model can be specified 
to describe the manner in which 
disease susceptibility at a given 
locus is expressed. One approach 
for estimating penetrance to be used 
in a linkage study is to first perform a 
segregation analysis of families that 
have been ascertained according to 
a specified sampling scheme. The 
approach estimates parameters for 
models describing the inheritance 
of genetic and environmental 
factors that most closely fit the 
dependence in family data. For 
uncommon conditions, random 
sampling of families would not result 
in an informative family; a sampling 
scheme is usually followed in which 
relatives of cases with a disease are 
preferentially sampled. When the 
families are not randomly sampled, 
an ascertainment correction for 
non-random sampling is required 
to obtain parameter estimates that 
reflect the more general population 
of families. To correct for the non-
random sampling approach usually 
used, a clearly defined sampling 
scheme must typically be followed. 
Using only a binary phenotype 
(e.g. affection or non-affection) 
one may not be able to estimate all 
the parameters that are necessary 
to describe the penetrance of the 
genotypes of the loci influencing 
disease susceptibility, unless 
restrictive assumptions about the 
interactions among the loci are 
made.

Sampling families and collecting 
information for segregation 
analysis can be an arduous task, 
and may not be fully informative 
about the parameters that describe 
the penetrance and disease 
allele frequencies. Therefore, 
investigators studying complex 
diseases may postulate genetic 
models from assumptions about 
the relative risks for disease that 
are observed from epidemiological 
studies. It has been shown that 
postulating an inaccurate genetic 
model for genetic linkage studies 
does not lead to false-positive 
results in a model-based linkage 
study. However, if multiple models 
are tested, there can be an inflation 
of the overall number of false-
positive results from linkage studies 
because of the inherent multiple-
testing problem that is introduced. 
A powerful approach for studying 
complex diseases is to evaluate 
the evidence for linkage, assuming 
simple recessive and dominant 
models of disease, and then to 
adjust the required critical value for 
the LOD score upwards by about 
0.3 for the small multiple-testing 
problem so engendered (33).

If the genetic model influencing 
disease susceptibility cannot be 
inferred with any confidence, either 
because the genetic model appears 
too complex or because there is a 
lack of epidemiological data from 
which to postulate penetrance, then 
model-free methods are typically 
adopted. One approach is to set the 
penetrance to an artificially low level, 
thus restricting analysis to include 
only the affected subjects. With 
very low penetrance, unaffected 
individuals provide no information 
about their possible genotypes and 
so do not contribute in the linkage 
analysis, but this approach still 
makes some modelling assumptions 
about disease expression. An 
alternative approach is to evaluate 
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the similarity in alleles that have been 
inherited by common parentage 
(identity by descent) and test 
whether or not there is evidence that 
affected relatives share more alleles 
than expected identical by descent. 
In some cases this approach may 
provide a more powerful test for 
linkage than a model-dependent 
approach, particularly when multiple 
independent loci additively increase 
disease risk. Because pedigrees are 
usually variable in size and contain 
different numbers of affected 
relatives, a variety of different 
tests have been proposed and are 
available for testing for linkage 
(34,35). These tests are optimal 
for varying disease penetrances 
(which are typically unknown). As 
a compromise, the pairs statistic 
is often used, which includes all 
affected relatives in a pedigree and 
gives only moderately higher weight 
to families that include multiple 
affected relatives (29).

The joint analysis of covariates, 
along with genetic markers in 
family studies, usually has limited 
utility. Typically, collecting covariate 
information in families is difficult 
because data cannot be directly 
collected from deceased or 
otherwise unavailable individuals. 
In addition, the genetic risks that are 
sought in linkage analyses are often 
large. Some non-genetic factors, 
such as smoking and reproductive 
behaviours, can be reliably collected 
through proxies (when needed), are 
inexpensive to collect, and may 
have a strong effect upon risk for 
some diseases.

For complex diseases, a large 
number of families may be needed 
to obtain adequate power to detect 
linkages. Meta-analyses combining 
multiple studies can assist in 
overcoming power limitations from 
a single study. However, in order for 
meaningful results to be obtained 
in meta-analyses, investigators 

must be studying comparable 
classifications of the same disease. 
Coordination of studies by using 
common definitions of disease 
outcomes, demographic measures 
and covariates is necessary for the 
study of complex diseases. Tools for 
meta-analysis of both linkage and 
association studies are available 
(36,37)

Association studies using 
families

While parametric and non-parametric 
linkage analysis approaches have 
proved successful for mapping many 
disease and trait genes, in some 
gene mapping investigations the 
limited number of meioses occurring 
within pedigrees limit one’s ability 
to detect, by linkage recombination, 
events between closely spaced (< 
~1 cM) loci (38). Association studies 
might be used instead to map more 
closely spaced disease genes. 
These studies generally have a 
case–control design, where cases 
are recruited from a disease registry 
or hospital-based populations. 
Controls can range from the cases’ 
family members (e.g. parents or 
siblings), or unrelated individuals. 
Genetic variants observed in cases 
are contrasted with those observed 
among controls to determine if an 
association exists between genes 
and disease.

Association studies may permit 
one to get closer to the disease-
causing gene than allowed by linkage 
studies (i.e. more recombinant events 
over evolutionary time). This type of 
study can also be used to directly 
examine genetic variants in known 
candidate genes. That is, association 
studies can be used either in an 
indirect manner, as a tool for mapping 
genes using linkage disequilibrium, 
or in a direct manner, for evaluating 
associations with postulated causal 
(“candidate”) genes.

The growing use of association 
studies is driven in part by how 
quickly and easily they can be 
undertaken, and the availability 
of high-density SNP genotyping 
technology. The SNP consortium 
(39) has provided sequences for 
1.8 million SNPs, and at least 250 
000 of these have been confirmed 
as polymorphic by Perlegen alone, 
while polymorphisms in hundreds 
of thousands of additional SNPs 
have also been verified by the SNP 
consortium Applera, and by many 
investigators and companies.

The power to detect associations 
using unrelated cases and unrelated 
controls can be increased by 
selection of cases that are likely to 
have developed the disease because 
of increased genetic propensity. For 
rare or uncommon susceptibility 
factors, sampling unrelated cases 
on the basis that they have close 
relatives affected by the same 
disease can greatly increase the 
power to detect associations (40). 
Power to detect associations can 
also be accomplished by seeking a 
homogeneous genetic etiology for 
the disease, which entails selecting 
from isolated populations and cases 
that show a homogeneous clinical 
phenotype.

Linkage disequilibrium 
and haplotypes

The genetic variants that cause 
disease arise through, for example, 
novel mutations or immigration of 
mutation carriers into a population. 
When a mutation initially occurs, 
it has a particular chromosomal 
location and specific neighbouring 
marker alleles. At this incipient point 
in time, the mutation is completely 
associated with the adjacent 
alleles; it is only observed when 
the marker alleles are also present 
(41). Marker alleles that were in the 
neighbourhood of the disease gene 



268

when its mutation was introduced 
into the population will generally 
remain nearby over numerous 
generations, that is to say linkage 
disequilibrium. One can estimate 
whether particular marker alleles 
appear to be in disequilibrium, that is 
to say, are associated, with disease 
genes. In particular, if specific marker 
allele frequencies are higher among 
cases versus controls, this suggests 
linkage between the corresponding 
loci and a disease gene. The extent 
of this disequilibrium depends 
on the number of subsequent 
generations since the mutation was 
introduced into the population, the 
recombination between the disease 
and marker alleles, mutation rates, 
and selective values (e.g. epistatic 
components).

Alleles in linkage disequilibrium 
may be parts of haplotypes. 
Recent work indicates that there 
may exist discrete chromosomal 
regions with low haplotype diversity, 
termed haplotype blocks, that 
are separated by recombination 
hotspots. Information from some 
polymorphisms within each block 
may be redundant; in other words, 
having information on one SNP 
provides all the information about 
another if they are in strong linkage 
disequilibrium. The majority of the 
haplotypes within a block can thus 
be distinguished using a much 
smaller number of SNPs, known as 
haplotype tagging SNPs (htSNPs). 
Using such SNPs can drastically 
reduce the effort required to 
undertake large scale association 
studies. Instead of saturating an 
entire chromosomal region with 
genotypes in all study samples, 
an investigator can first screen for 
SNPs within a subsample of study 
subjects to determine the htSNPs. 
Then only these tagging SNPs (and 
possibly other promising SNPs) can 
be genotyped in the entire study 
population. Several approaches 

have been suggested for identifying 
optimal htSNPs. These include 
visual inspection of haplotypes, and 
analytic approaches that eliminate 
redundant markers (42–44).

Family-based association 
studies

The most common familial case–
control designs use parents or 
siblings as controls. In the former, 
the parents themselves are not the 
controls, but the set of genotypes the 
parents could have transmitted to 
the case, given their own genotypes 
(the case’s “pseudosibs”). For 
example, the Transmission/
Disequilibrium Test (TDT) compares 
alleles transmitted from parents 
to diseased offspring with those 
alleles that are not transmitted (i.e. 
the non-diseased alleles) (45). The 
TDT provides a joint test of linkage 
and association (i.e. linkage in the 
presence of association or vice-
versa). In doing so, when there 
is disequilibrium between marker 
and disease alleles, incorporating 
the additional information that the 
same alleles are associated across 
families with the TDT can provide 
increased power in comparison with 
linkage analysis. Furthermore, the 
use of pseudosib controls has better 
statistical efficiency than sibling or 
cousin controls (even more than 
population controls for a recessive 
gene), but the requirement that 
parents be available for genotyping 
limits its usefulness for late-onset 
diseases.

As with pseudosib controls, 
siblings are derived from the same 
gene pool as the cases, and thus 
provide another attractive source 
of controls for family-based studies. 
However, using siblings as controls 
can pose other difficulties. A major 
issue is that not every case will have 
an available sibling. If sibship size or 
other determinants of availability are 

associated with genotype, selection 
bias may result, possibly leading to 
false-negative or -positive results. 
Another issue is that controls should 
generally be selected from siblings 
who have already survived to the 
age at diagnosis of the case and 
be free of the disease. In practice, 
this will tend to limit control eligibility 
to older siblings, which can lead 
to confounding by factors related 
to year of birth, family size or birth 
order. Siblings are also more likely 
to have the same genotype as the 
case than are unrelated controls, 
thereby leading to some loss of 
statistical efficiency (i.e. larger 
sample sizes required to attain the 
same statistical precision).

The many successful 
applications of the TDT motivated 
the development of a large number 
of generalizations. The original TDT 
concept was extended to multiallelic 
marker data (45–47) and to different 
genetic models. In the framework of 
score tests for multivariate data, it 
has been shown that the TDT is the 
most powerful test under an additive 
mode of inheritance; alternative tests 
can be derived under a dominant 
and recessive mode of inheritance 
(48). (Extension to general pedigree 
designs and to scenarios in which 
parental genotypes are missing 
are discussed in (46,49–52)). 
Approaches to general pedigrees 
that are also valid under the null 
hypothesis of linkage, but no 
association has been developed are 
discussed in (53–55). Extensions 
to quantitative traits are described 
in (52,56–61).) The gamete 
competition model (62) provides one 
generalization of the TDT that can 
be applied to arbitrary pedigrees 
and extends to haplotype-based 
analyses. This approach has been 
integrated into the Mendel suite of 
programs (http://www.genetics.ucla.
edu/software/mendel).
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The family-based association 
tests (FBAT) approach

In this section is a review of a very 
general and adaptable approach to 
construct family-based association 
tests that are often referred to as 
the FBAT approach (60). FBATs 
can be applied under any mode of 
inheritance and in situations in which 
multiallelic data and/or general 
pedigrees are available. Various 
null hypotheses, and different 
phenotypic traits and arbitrary 
combinations of them (binary, 
quantitative, time-to-onset, repeated 
measurements, multivariate data, 
etc.), can be tested for association. 
FBAT can be computed for a single 
marker locus, haplotypes or multiple 
markers. The FBAT approach is built 
on the three key principles of the 
original TDT approach:

1. The FBAT statistic is a 
conditional test that conditions 
upon the parental genotype, or, as 
will be discussed later, equivalent 
information if parental data should 
be missing. By conditioning on 
the parental information, there is 
no need to estimate the genotype 
distribution of the data (e.g. the 
margins of the table in a case/control 
design) under the null hypothesis, 
and thereby eliminate the effects 
of population admixture. When 
parental information is missing, 
one can condition on the sufficient 
statistic for the genotype distribution 
in each family. For haplotype 
analysis, phase uncertainty will also 
be included in the conditioning.

2. The FBAT statistic is 
also computed conditional on 
the phenotype, which makes 
the approach robust against 
misspecification of the phenotypic 
assumptions that are used for the 
computation of the FBAT statistic.

3. Since the only random variable 
in the FBAT approach is the offspring 
genotype, whose distribution under 

the null hypothesis can be computed 
based on Mendelian transmission, 
Mendel’s first law is the sole 
requirement for the validity of the 
approach.

The general FBAT statistic

The FBAT statistic assesses the 
association between the phenotype 
and the genetic locus by using a 
natural yardstick: the covariance 
between the phenotype and 
the Mendelian residuals. The 
covariance is defined by:

U = Σ Tij (Xij -E(Xij|Si)),             (1)

where i indexes family and j indexes 
non-founders in the family. The 
summation is over all families i and 
all non-founders j. The parameter 
Tij denotes the coded trait of 
interest in the jth non-founder of 
the ith family. The corresponding 
genotype is given by Xij which is 
adjusted by its expected value 
E(Xij|Si) under the null hypothesis. 
Using the assumption of Mendelian 
transmissions from the parents 
to the offspring, the expected 
marker score E(Xij|Si) is computed 
conditional upon the parental 
genotypes Si of the ith family. If 
parental information is missing, Si 

denotes the sufficient statistic of 
the genetic distribution in the ith 
family. The adjusted genotype, (Xij-
E(Xij|Si)), can be interpreted as an 
Mendelian residual, measuring a 
potential over- or undertransmission 
from the parents to the offspring. 
In this context, it is important to 
note that the Mendelian residuals 
for families with two homozygous 
parents will always be zero and 
that such families do not contribute 
to the FBAT statistic. The number 
of families that have at least one 
Mendelian residual (Xij-E(Xij|Si)), 
which based on Si can be different 
from zero, is typically referred to as 

‘number of informative families.’
As discussed below, the coded 

phenotype Tij is either centred 
or unadjusted, depending on 
the absence or presence of a 
phenotypic ascertainment condition. 
By selecting appropriate coding 
functions, qualitative, quantitative, 
time-to-onset and multivariate 
phenotypes are incorporated into 
the FBAT approach.

The basic formula (1) is 
applicable in virtually any scenario; 
the appropriate selection of the 
phenotypic coding function and its 
adjustment, and the definition of the 
genotypes, reflecting the underlying 
genetic model.

Large sample distribution 
of the FBAT statistic under
the null hypothesis

As outlined in the discussion of the 
key principles of the FBAT approach, 
the distribution of the FBAT statistic 
U is computed by treating the 
non-founder genotype as the only 
random variable and both the coded 
phenotype, Tij, and the sufficient 
statistic, Si, as deterministic 
variables by conditioning on them. 
The expected value of the FBAT 
statistic, U, is zero by definition 
(E(U) = 0), so to normalize U under 
the null hypothesis, all that is left 
to do is to compute the variance 
of U conditional upon the offspring 
phenotype and Si. If the genotype 
and trait variable are both univariate, 
then

Z = U/ √(var (U)), or equivalently,     
χ2

FBAT  = U2/var(U),
where

Var(U) = Σi Σjj’TijTij’ cov(Xij,Xij’|Si,Tij,Tij’)   (2)

As for the expected marker score, 
the covariance cov(Xij,Xij’ |Si Tij,Tij’) 
also conditions upon the traits and 
the sufficient statistics, assuming 
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the null hypothesis is true. Under 
the null hypothesis of no association 
and no linkage, the covariance 
cov(Xij,Xij’ |Si Tij,Tij’) does not depend 
on the phenotype Tij, and can be 
computed based on independent 
Mendelian transmissions within 
a family. However, when the null 
hypothesis of no association in the 
presence of linkage is selected, 
the transmissions to siblings within 
a family are correlated (55). In 
this situation, the derivation of the 
theoretical covariance is difficult, 
and an empirical variance can be 
used to estimate var(U) (51).

Asymptotically, Z is normally 
distributed, N(0,1), and χ2

FBAT follows 
a χ2 distribution with one degree 
of freedom. When multiple alleles 
and/or multiple traits are tested, U 
is the vector and var(U) becomes a 
variance/covariance matrix. Then, 
the FBAT statistic is a quadratic 
form UTvar(U)-U and follows 
asymptotically a χ2 distribution with 
degrees of freedom equal to the 
rank of var(U) (60,63).

When the number of families is 
small (e.g. in linkage studies), it is 
recommended either to estimate 
the P-value of the FBAT statistic via 
Monte-Carlo simulations or to use 
an exact test (64).

Specifying the mode 
of inheritance in the FBAT 
statistic

In the FBAT statistic, the coding of 
the genotype reflects the specified 
mode of inheritance. When 
testing under an additive mode of 
inheritance is required, Xij  counts 
the number of target alleles (i.e. 0, 
1 or 2). Under a recessive model, Xij 

is defined to be 1 for subjects who 
carry 2 copies of the target allele, 
and 0 otherwise. For multiallelic 
markers or haplotypes, Xij  is a vector 
whose element reflects the coded 
genotype for each allele/haplotype.

Coding the phenotype: Testing 
binary phenotypes in the FBAT 
approach

When the phenotype of interest is 
affection status, an FBAT statistic 
that is equivalent to the classical 
TDT (61), and that only incorporates 
information on affected subjects, 
can be obtained by setting Tij  = 1 for 
affected subjects and 0 otherwise. 
Unaffected subjects can be included 
in the FBAT statistic by defining Tij   = 
(Yij  – μ), where Yij  is the original 1/0 
phenotype and μ is a user-defined 
offset parameter in the range 
between 0 and 1. For example, 
by setting μ = 0, the original TDT 
statistic is obtained. Affected 
subjects (Yij  = 1) then contributed 
(1 – μ) to the FBAT statistic and the 
unaffecteds (1 – μ). Here the FBAT 
statistic can be interpreted as a 
contrast between transmissions to 
affected offspring weighted by (1- μ), 
and unaffected offspring weighted 
by μ.

In samples that have been 
recruited without a phenotypic 
ascertainment condition, e.g. 
population samples, the optimal 
offset choice is the prevalence of 
the disorder/trait E(Y = 1) in the total 
population (63). Even for studies 
with phenotypic ascertainment 
conditions, this finding approximately 
holds (65,66). In many situations, 
the population prevalence of the 
disease/trait is unknown. Since most 
study designs over-sample affected 
subjects to maximize the genetic 
loading of the sample (e.g. trio-
design), the population prevalence 
of the disease/trait cannot be 
estimated directly from the sample. 
Fortunately, the FBAT statistic 
achieves almost optimal power in 
a relatively large neighbourhood 
around the true population 
prevalence (66). In practice, rough 
estimates for the prevalence will be 
sufficient.

Handling general pedigrees 
and/or missing founders 
in the FBAT approach

The FBAT statistic is very general 
and can be applied to any 
complex pedigree as long the 
expected marker score, E(Xij |Si), 
can be computed, as well as the 
corresponding variance/covariance 
structure, cov(Xij ,Xij’ |Si Tij,Tij’), which 
requires the specification of the 
marker densities p(Xij, |Si Tij) and 
p(Xij,Xij’ |Si Tij,Tij’). For nuclear families 
in which both parents and one or 
multiple offspring are genotyped, 
the univariate density, p(Xij |Si Tij,), 
is completely defined by Mendel’s 
law. Under the null hypothesis of 
no association and no linkage, 
the parental transmissions to all 
offspring are independent, p(Xij,Xij’ 
|Si Tij,Tij’) = p(Xij, |Si Tij,)* p(Xij’ |Si Tij’), 
and computation of the expected 
marker score and its variance/
covariance is straightforward. 
In the presence of linkage, the 
transmissions from the parents to 
the offspring are not independent 
anymore, but rather dependent on 
the recombination fraction which 
is known. Technically, it would be 
possible to remove the dependence 
on the unknown recombination 
fraction by conditioning on the 
identity-by-descent patterns 
among offspring (51); however, 
the inclusion of this additional 
condition would make many families 
uninformative for the computation 
of the test statistic, and would lead 
to a substantial drop in statistical 
power. It is therefore recommended 
to estimate the variance/covariance 
structure directly by using empirical 
variance estimators, as discussed 
above.

The same ideas for the 
computation of the expected marker 
scores and their variance/covariance 
structure are also applicable to 
extended pedigrees in which the 
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genotypes of all founders are known 
(51,61). For the analysis of such 
data, the power of the FBAT statistic 
can be increased by computing the 
conditional marker distribution for 
the complete pedigree instead of 
splitting up the pedigree into nuclear 
families and analysing the data as 
such (51,61). For pedigrees in which 
founder genotypes are missing, the 
computation of the expected marker 
scores and its variance is more 
complex. Instead of conditioning 
on the parental genotypes, the 
distribution of the observed offspring 
genotypes is computed conditional 
on the sufficient statistics for the 
unobserved parental genotypes. 
The advantage of conditioning on 
the sufficient statistic here is that no 
assumptions about the unobserved 
parental genotypes are necessary. 
Such assumptions would make the 
FBAT statistic susceptible to the 
effects of population substructure 
and stratification. Although the 
concept of the conditioning on the 
sufficient statistic for the unobserved 
parental genotypes is very technical, 
the conditional distributed for the 
observed offspring genotypes can 
straightforwardly be computed 
using the algorithm by Rabinowitz 
and Laird (51). The details of the 
algorithm are not discussed here, 
and the interested reader is referred 
to the original paper.

Handling haplotypes and 
multiple markers in the FBAT 
approach

In candidate gene studies, and 
even in genome-wide association 
studies nowadays, closely spaced 
markers/SNPs are often available 
that characterize a gene or a well-
defined region. In such scenarios, 
it might not be the optimal strategy 
to test each marker individually for 
association with the phenotype 
of interest for two reasons. First, 

in general, it is difficult to take the 
LD-structure/correlation structure 
between markers into account when 
adjusting for multiple comparisons. 
This often leads to adjustments 
for multiple comparisons that are 
too conservative. Second, by only 
testing one marker locus at a time, 
the available genetic information on 
the other marker loci is not used. 
Consequently, a more powerful 
strategy would be to test all markers 
that reside in a well-defined region 
simultaneously. Two approaches for 
this are available haplotype tests 
and multimarker tests.

Here a multiloci haplotype is 
defined as a set of alleles, one for 
each marker, that are located on 
the same copy of the chromosome 
and that are inherited from one 
generation to the next without 
recombination. There are several 
situations in which multiloci 
haplotype tests should be more 
powerful than single-marker tests. 
For example, consider the scenario 
in which a true disease susceptibility 
locus (DSL) is located in the region 
that is spanned by the markers, but 
the DSL has not been genotyped nor 
is in sufficiently high disequilibrium 
with one of the genotyped markers 
to be identified by a single-marker 
test. If the set of genotyped markers 
is able to capture the haplotype 
diversity in the region, a multiloci 
haplotype will exist that captures 
the variation at the DSL. Another 
scenario, in which a haplotype 
analysis will be more powerful 
than a single-marker approach, is 
when two or more of the observed 
markers have genetic effects on the 
phenotype of interest. On the other 
hand, if there is only a single DSL 
in the region, and its variation is 
sufficiently “tagged” by one of the 
genotyped markers, a haplotype 
analysis can be suboptimal.

If the phase of the haplotype 
(i.e. which alleles are located on 

the same copy of the chromosome 
and are inherited jointly) is known for 
each subject in the study, the set of 
markers defining the haplotypes can 
be interpreted as a single marker with 
multiple alleles and the FBAT statistic 
can be computed as outlined above. 
However, in most applications, the 
phase of the haplotypes will not be 
known and will have to be inferred. 
Despite the fact that family data 
is available here, for which it is 
generally easier to determine the 
phase of the haplotypes than for 
population-based data, resolving 
the phase in all subjects will not 
be possible, especially if parents’ 
genotypes are missing.

However, an unresolved 
haplotype phase in a study subject 
does not prevent the computation of 
the FBAT statistic. The same trick 
can be applied here as in the case 
for missing parental genotypes. 
The haplotype distribution in 
offspring is computed conditional 
upon both the parental genotypes/
sufficient statistics and whether it 
is possible to infer the phase of the 
haplotypes (67). The FBAT statistic 
can then be calculated by assuming 
that the set of markers defines a 
multiallelic marker locus whose 
alleles are given by the phased 
haplotypes. Since this haplotype 
analysis approach does not make 
any assumptions about population 
parameters (e.g. haplotype 
frequencies, etc.), to infer haplotype 
phase, but conditions upon the 
ability/inability to reconstruct the 
phase, the approach maintains 
its robustness against population 
admixture and stratification. In the 
usual way, the FBAT statistic can 
either be computed for a specific 
target haplotype as a diallelic FBAT 
or as a global haplotype test based 
on a multiallelic FBAT. As discussed 
above, the presence of linkage 
can be accounted for by use of the 
empirical variance estimator.
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As the numbers of markers 
increase, the advantages of a 
haplotype analysis are outweighed 
by characteristic disadvantages of 
the approach. Inferring the phase of 
a haplotype becomes increasingly 
difficult and numerically complex 
when the number of markers 
exceeds 5–10, particularly when 
parental information is missing or 
extended pedigrees are analysed. 
Furthermore, the assumption of non-
recombination between the markers 
must be carefully considered. In 
this situation, which also applies 
to smaller numbers of markers, 
so-called multimarker FBATs 
can be an attractive alternative. 
Rather than trying to infer the 
underlying haplotype structure, 
multimarker FBATs account for the 
linkage disequilibrium between 
markers by directly estimating 
the variance/covariance structure 
between the markers. To construct 
a multimarker FBAT, in the FBAT 
statistic the univariate marker score 
Xij is replaced by a vector Xij whose 
elements are the genotypes for 
each individual marker. The vector 
of expected marker scores, E(Xij| Si), 
is defined by the expected marker 
scores for each marker which are 
computed individually, conditioned 
upon the corresponding parental 
information/sufficient statistic. The 
linkage disequilibrium between the 
markers is incorporated by using 
the empirical estimator of var(Xij) 
in the calculation of var(U). The 
multimarker FBAT statistic is then 
a quadratic form which has an 
asymptotic χ2 distribution, where the 
degrees of freedom are given by the 
number of markers that are linear 
independent. (A detailed discussion 
of multimarker FBATs is given in 
(68).) Alternative approaches are 
discussed in (69,70).

Complex trait analysis 
in the FBAT approach

Complex phenotypes are tested 
in the FBAT approach by selecting 
an appropriate coding function 
Tij that is selected by the user 
and that will depend on the trait 
type. The choice of the coding 
function should be motivated by 
an underlying phenotypic model, 
describing the phenotypes as a 
function of the genotypes. Since 
the FBAT approach conditions upon 
the parental genotypes and the 
offspring phenotype, the validity 
of the FBAT test will not depend 
upon the correct specification of the 
coding function, but a poor choice 
will affect the statistical power of the 
approach.

A more refined version of the 
phenotype affection status is the 
variable age-at-onset/time-to-onset. 
If the phenotype age-at-onset/time-
to-onset contains more genetic 
information, such an analysis will 
result in greater statistical power 
(e.g. for childhood asthma). It can 
be assumed that an early onset 
is more related to genetic factors 
than is a late onset, which could 
be attributable to environmental 
factors. Various coding functions 
for an age-at-onset analysis are 
discussed in (71) and (72).

For quantitative phenotypes, 
standard phenotypic residuals are 
an obvious choice for the coding 
function, i.e. Tij = (Yij – μ), where Yij 
is the original phenotype and μ is a 
user-defined offset parameter. For 
population samples (a study without 
any phenotypic ascertainment 
conditions), the optimal offset 
choice is the phenotypic sample 
mean. In such a situation, the FBAT 
statistic for the quantitative trait has 
higher statistical power than an 
FBAT statistic that is based on a 
dichotomized version of the same 
quantitative trait (73). To utilize this 

theoretical power advantage in a real 
data analysis, some additional work 
is usually required. By definition, 
quantitative traits contain more 
information and are therefore more 
powerful phenotypes in a statistical 
analysis, but they usually depend on 
other non-genetic factors (e.g. lung-
volume measurements in asthma 
studies depend on age, gender and 
height). Such confounding variables 
can be probands characteristics, 
but they also include environmental/ 
treatment information. For example, 
lung-volume measurements for 
asthmatics depend on smoking 
status/history and on treatment 
for asthma. An unadjusted, raw 
measurement of such a phenotype 
will be confounded by such factors 
and the genetic signal will be 
diluted, resulting in a potentially 
lower statistical power. For such 
phenotypes, it is recommended to 
regress the raw phenotypes on all 
known confounding variables and 
use the regression residuals as the 
coded phenotype in the computation 
of the FBAT statistic. Note that such 
an adjustment is study-specific 
and requires careful statistical 
model building; results might not be 
reproducible in other studies that 
do not have the same covariate 
information. The motivation for a 
within-study adjustment is to reduce 
the variability in the phenotype that is 
attributable to all other non-genetic 
factors. However, this requires 
knowledge and measurement 
of such variables, which are not 
necessarily known before the study. 
For such situations, efficient coding 
functions that do not require any 
covariate adjustment and that are 
able to achieve high power levels 
can be used (74).

For many complex diseases, 
the definition of affection status is 
based on a variety of phenotypes 
which describe and characterize 
the disease and its severity. 
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Consequently, when an association 
with affection status is tested for in 
such a situation, the aggregated 
and dichotomized information is 
assessed all at once. If now, to 
increase statistical power, the 
quantitative traits that define the 
disease and/or describe its severity 
are selected as target phenotypes 
instead of affection status, multiple 
FBATs have to be computed and the 
resulting multiple testing problem 
has to be addressed. Quantitative 
phenotypes for a complex disease 
typically are correlated and cluster 
together into groups (symptom 
groups). In asthma studies, it is 
standard practice to measure 
quantitative phenotypes that 
characterize such things as the lung-
function of a proband (FEV1, FVC) 
and the atopy-reaction (number of 
positive skin tests, IGE-levels) (75). 
Depending on how well understood 
the disease is, symptom groups can 
be defined based on prior knowledge 
about the underlying biological 
pathways, clinical knowledge, or just 
the phenotypic correlation between 
the traits. A test strategy that does 
not incorporate this aspect of the 
data, but that tests all phenotypes 
individually and adjusts for multiple 
comparisons, would be optimal. 
Since the FBAT tests for the same 
symptom group will be correlated, 
standard adjustments for multiple 
testing will be too conservative here. 
Further, if the hypothesis is true that 
the phenotypes in the same symptom 
group are influenced by common 
genetic factors and/or share similar 
environmental confounding, it will 
be more powerful to assess the 
evidence for association for the 
entire symptom group at once. A 
multivariate method that tests all 
phenotypes jointly in a single test, 
without having to adjust for multiple 
comparisons, is the most desirable 
approach in this situation.

the generalized estimating equation 
approach (77). A generalized 
estimating equation model can 
be defined by modeling the m 
phenotypes as a function of the 
genotype, using appropriate trait-
dependent link-functions and a 
predefined variance/covariance 
structure. When a family-based 
score test is derived for this 
estimating equation model, the link-
functions and the assumptions for 
the variance/covariance structure 
cancel out and the model-free FBAT-
GEE statistic is obtained, making 
the multivariate FBAT-GEE statistic 
invariant towards distributional 
assumptions for the phenotype.

Pedigree-based association 
tests (PBATS): Bypassing the 
multiple comparison problem 
in family-based association 
studies

To maintain the three key properties 
of the original TDT approach, the 
FBAT statistic conditions upon 
the phenotype and the parental 
genotypes, which comes at the price 
that not all information about linkage 
and association that is contained 
in the data can be used. While this 
ensures that the robustness and 
the model-free character of the 
original approach are maintained, 
FBATs are in general not the most 
efficient test statistic. However, this 
extra unutilized information can 
be brought into play in a screening 
step before the computation of the 
FBAT statistic. The information can 
be used to construct an optimally 
informed two-stage testing strategy, 
or an “optimal” FBAT statistic, which 
has been denoted as a pedigree-
based association test (PBAT). This 
enhances the power of the FBAT 
approach substantially. FBAT, with 
a prior screening step, can achieve 
power levels that are comparable to 
power levels that would be obtained 

For the FBAT approach, such 
a multivariate test that examines 
all phenotypes simultaneously is 
the FBAT-GEE statistic (76). The 
FBAT-GEE statistic maintains the 
advantages of the original FBAT 
statistic. It is easy to compute and 
does not require any distributional 
assumptions about the phenotypes 
even if the selected phenotypes are 
of different trait types (e.g. normally 
distributed phenotypes, count 
variables, etc.).

FBAT-GEE

For each study subject it is 
assumed that m phenotypes have 
been recorded and are defined 
as a symptom group as described 
above. The vector containing all m 
observations for each proband is 
denoted by Yij = (Yij1,..., Yijm), where 
Yijk is the kth phenotype for the 
jth offspring in the ith family. The 
multivariate FBAT-GEE statistic can 
then be obtained by defining the 
coding vector Tij,

		              
	               Yij1      Ŷij1

                                Tij = Yij - Ŷij1 =  Yijk   -  Yijk 

                                    
	               Yijm     Ŷijm

                                   where the parameter Ŷijk  is 
given either by the observed 
sample means for the kth trait, or 
by the predicted trait value based 
on a regression Ŷijk on its known 
covariates/confounding variables. 
As discussed earlier, in the situation 
of a multivariate trait, the univariate 
coding variable Tij in the FBAT 
statistic is replaced by the vector Tij 

and the FBAT-GEE statistic given by
TFBAT-GEE = CTV—C.
Under the null hypothesis, the 

FBAT-GEE statistic is asymptotically 
χ2-distributed with m degrees of 
freedom. The name of the test 
statistic originates from its link with 
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by a corresponding population-
based analysis (78).

In particular, in large-scale 
association studies, with numerous 
genotyped markers and multiple 
complex traits, the screening 
step/extra information can be 
used to guide the testing strategy 
with respect to minimizing the 
effects of multiple comparisons, 
model-building and phenotype 
selection. Discussed here is a 
general approach that partitions 
family data into two independent 
components corresponding to 
the population information, and 
the within family information. The 
population information about 
association, which is susceptible 
to population substructure, is used 
for the screening step, or model 
development, and the within-
family information is used for the 
construction of the confirmatory 
FBAT statistic. The idea is similar 
to cross validation, except that each 
subject contributes information to 
both parts of partitioning, minimizing 
the variability of the genetic effect in 
the two subsets. For simplicity it is 
assumed that offspring-parent trios 
are given.

The distribution of the complete 
data is the joint distribution of the 
offspring phenotype, Y, the offspring 
genotype, X, and the parental 
genotype, P (or more generally, the 
sufficient statistic, S). Using Bayes’ 
rule, the joint distribution can be 
partitioned into two independent 
parts:

P(Y, X, S) = P(X|Y,S)P(S,Y).         (3)

If the screening step (e.g. model 
building, hypothesis generation) 
uses only information on S and Y, 
any subsequent hypothesis testing 
that is based on the FBAT statistic, 
whose distribution is given by 
P(X|S,Y), will be independent of 
the prior screening step. There are 

various ways to model the variables 
S and Y so that information about a 
potential association between Y and 
X can be obtained. In general, the 
appropriate model for S and Y will 
depend on the specific design (e.g. 
ascertainment conditions, trait type, 
etc). For example, in the situation of 
an unascertained population sample 
with a quantitative target phenotype, 
the population-based information 
about the association between the 
offspring genotype and phenotype 
can be described by the conditional 
mean model (73,79):

E(Y) = m + a*E(X|S).                     (4)

The genetic effect size, a, can be 
estimated by an ordinary regression 
of the phenotype, Y, on E(X|S). Note 
that E(X|S) is computed solely based 
on the parental genotypes. For the 
uninformative families (i.e. trios with 
doubly homozygous parents), the 
actual offspring genotype, X, is equal 
to E(X|S). Otherwise, if parents are 
informative, the offspring genotype 
X can be thought of as missing 
and being imputed by E(X|S). 
Since the conditional mean model 
is only based on information about 
Y and S, under the null hypothesis 
all its parameter estimates will 
be statistically independent of 
the FBAT statistic. Of course, the 
statistical independence of the 
screening step/conditional mean 
and the FBAT statistic does not hold 
under the alternative hypothesis. 
The conditional mean model (4) can 
therefore be fit repeatedly for any 
choice of genetic model, any number 
of phenotypes and any number of 
markers. Based on the parameter 
estimates for the conditional 
mean model, the Wald test for null 
hypothesis of no association, H0: a 
= 0, can be computed. Alternatively, 
the parameter estimates can be 
used to compute the conditional, 
predicted power of the FBAT statistic. 

Such conditional power calculations 
will also depend upon the observed 
parental genotypes and phenotype 
(73,79). It is generally recommended 
to use the conditional power 
estimates to prioritize information 
for the subsequent FBAT testing 
step (80). This basic idea can be 
extended to handle longitudinal 
and repeated measurements 
(FBAT-PC) (81) and multivariate 
data (69). There the screening step 
can be used to compute optimal 
linear combinations of traits for 
subsequent testing. The approach 
has also been adapted to scenarios 
in which multiple markers are tested 
(69). A method has been proposed 
to estimate the genetically relevant 
age range for age-at-onset data 
(72). This extension is particularly 
useful for diseases in which an 
early onset suggests a strong 
genetic component, while a late 
onset is mostly attributable to non-
genetic/environmental effects (e.g. 
Alzheimer's disease or childhood 
asthma).

Testing strategies for large-
scale association studies

Genome-wide association studies 
offer great potential to the field of 
complex disease mapping, but to 
translate the dramatic increase in 
genetic information at a genome-
wide level into the identification 
of new disease genes (a major 
statistical challenge) the multiple 
testing problem has to be tackled. 
For case–control studies, multistage 
designs have been proposed 
(82,83) as a cost-efficient way of 
handling this problem. In each 
stage of the design, the number of 
genotyped SNPs and genome-wide 
significance are achieved by a joint 
analysis of all stages.

For family-based association 
studies, the concept of partitioning 
the association information into 
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two statistically independent 
components is well suited to 
efficiently address the multiple 
comparison problem within one 
study. By using the decomposition 
(3), a two-stage testing strategy can 
be constructed that consists of two 
statistically independent stages, 
the screening step and the testing 
step, which can be applied to the 
same data set (80). This approach is 
illustrated in Figure 15.2.

A two-stage approach is highly 
effective for screening and then 
testing results when family controls 
are available for application using 
FBAT. In step 1, association analysis 
based on the conditional mean 
model before the FBAT testing 
is used to minimize the multiple 
testing problem. In this example, one 
quantitative trait and M SNPs are 
analysed. In the first step, the marker 
data in the offspring is assumed 
to be missing and imputed by the 
expected markers scores conditional 
on the parental genotypes/sufficient 

statistic. Based on the imputed 
data, the conditional mean model 
is fitted, and its estimates are used 
to compute the power of the FBAT 
statistic for each SNP. The power is 
a function of the observed parental 
genotypes, their frequencies, and 
the genetic effect size estimated 
from the conditional mean model. 
In the final step, the K SNPs with 
the highest power estimates are 
selected to be subsequently tested 
for association with the FBAT statistic 
at a Bonferroni-adjusted significance 
level of ά/K. Since only K SNPs are 
pushed forward to the testing step, 
it is only necessary to adjust for 
K comparisons instead of M. The 
markers that pass this first testing 
step are then validated in the second 
step, as depicted in Figure 15.2.

In family-based designs, the 
screening procedure utilizes 
information on all families, even the 
non-informative ones. Assuming 
moderate to small genetic effect 
sizes, simulation studies have 

shown that if a true DSL, or a SNP 
in LD with a DSL, is included in the 
data set, it is sufficient to select 
only the highest 10 or 20 SNPs for 
subsequent testing to achieve high 
power levels. The key advantage of 
this testing strategy for family-based 
designs is that the same data set is 
used twice; once for the genomic 
screening step and once for the 
testing step. Thereby the effects of 
study heterogeneity are minimized, 
which can cause, in a standard two-
stage design that uses different 
samples in each step, the failure to 
discover an important association. 
Another advantage of this approach 
is that it is only necessary to recruit 
one sample to identify SNPs/
associations that achieve genome-
wide significance. Replications in 
other studies serve the sole purpose 
of generalizing a significant finding 
to other populations.

This testing strategy has been 
successfully applied to a 100 000-
SNP scan for obesity in the family 

Figure 15.2. Using the same data set for genomic screening and testing
Step 1: Screening SNPs using conditional power estimates for the FBAT statistics. The power estimates are based on genetic 
effect size estimates obtained from the conditional mean model.
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plates of the Framingham Heart 
Study. Among the top 10 SNPs 
from that study, as determined 
by estimated conditional power, 
there was a novel SNP whose 
association with body mass index 
(FBAT P-value = 0.0026) reached 
genome-wide significance, after 
having adjusted for 10 comparisons. 
If standard analysis methods would 
have been used (e.g. testing all 
SNPs for association and adjusting 
for multiple testing by the Bonferroni 
or Hochberg corrections), this 
association would have been 
missed. Using the same genetic 
model, the finding was replicated 
in four independent studies, 
including cohort, case–control and 
family-based samples of different 
ethnicities (84). Recently, the 
approach was extended so that 
all genotyped SNPs can be tested 
in the second stage of the testing 
strategy, making a decision on 
how many SNPs should be pushed 
forward to the test step redundant 
(78). Despite the larger number 
of tests in the second stage, this 
approach achieves power levels that 
are about 50% higher than in the 
original Van Steen approach, and 
that are comparable to the power 
levels of a population-based study 
with the same number of probands. 
The approach has been generalized 
so that phenotypic information on 
the parents can be incorporated 
as well (85). Extensions for 
case–control designs have been 
developed (86,87).

Other extensions of the FBAT 
approach include an extension 
to accommodate copy number 
variation calls (88), and an extension 
to allow covariate data from the 
parents to modify the weight 
assigned to transmissions of genetic 
information to the offspring, allowing 
the phenotype of the parents to 
influence the association analysis 
(89).

Software

With family-based designs, there is 
generally a need for special software 
to analyse the data. For the FBAT 
approach, four software packages 
are available. Two packages were 
developed by the original authors 
of the methods and are home-
grown (PBAT, P2BAT). Despite the 
lack of general support for such 
software packages in academia, 
the packages have proven to be 
reliable and user-friendly tools. 
Recently, a commercial package 
with professional user-support 
and documentation has become 
available that is particularly suited 
for less statistical-oriented users 
and for large-scale projects. Table 
15.1 shows an overview of these 
packages and their functions.

Discussion

Studies of families have been 
instrumental for describing the 
genetic architecture of many 
Mendelian and complex diseases. 
For initial characterization of the 
strength of evidence for genetic 
factors influencing disease risk, 
twin studies and evaluations of 
the aggregation of disease within 

families provide key insights. 
For diseases that have strong 
influences from genetic factors, 
segregation analysis followed by 
linkage analysis has been a highly 
effective strategy. When the genetic 
and environmental factors influence 
disease risk in complex ways, 
linkage analysis using a model-
free method is a preferred strategy. 
For diseases with weaker genetic 
influences, or that result from effects 
of many genetic factors with each 
individually having a weak effect 
on disease risk, association studies 
are more successful. Family-based 
association studies are robust to 
population stratification and can 
have power comparable to case–
control studies with unrelated cases 
and controls.

The area of whole-genome 
association scans offers great 
promise for the field of genetic 
association mapping. Most 
predictions agree that studies with 
large sample sizes are needed 
to identify the “needles in the 
haystack,” regardless of which 
design is used (80,83,90). It is much 
easier to achieve such sample sizes 
from existing cohorts, or from case–

Figure 15.2, Step 2: The Testing Step. Select the top K SNPs with the highest power 
estimates for subsequent testing with the FBAT statistic. The P-value of the FBAT 
statistic must be smaller than ά/K to achieve genome-wide/overall significance.

Power Rank Estimated power of the FBAT statistic SNP P-value FBAT statistic

1 0.92 3 0.90

2 0.89 100 0.20

3 0.85 25 0.00001

…. … …

K 0.70 53 0.20
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control studies, than from family 
samples. However the innovative use 
of the population information that is 
included in family-based data sets, 
combined with the robustness of the 
family-based association methods, 
can protect against both population 
substructures and misspecifications 
of the phenotypic model, creating 
a viable and powerful alternative to 

Table 15.1. Software for the analysis of family-based association tests

Package Genetic analysis capability Phenotypic analysis capability Special features

FBAT Single marker, haplotype, 
multi-marker

Binary traits, quantitative/
multivariate traits, ranked traits, 
time-to-onset

X-chromosome, permutation tests

PBAT Single marker, haplotype, 
multi-marker

Binary traits, quantitative traits/
multivariate, ranked traits, time-
to-onset, gene-environment 
interaction

Covariate adjustment, Van Steen 
algorithm for multiple testing, 
X-chromosome, permutation tests

P2BAT 
R-implementation

Single marker, haplotype, 
multi-marker

Binary traits, quantitative traits/
multivariate, ranked traits, time-
to-onset, gene-environment 
interaction

Covariate adjustment, Van Steen 
algorithm for multiple testing, 
X-chromosome, permutation tests

PBAT GoldenHelix 
commercial package

Single marker, haplotype, 
multi-marker

Binary traits, quantitative traits/
multivariate, ranked traits, time-
to-onset, gene-environment 
interaction

Covariate adjustment, Van Steen 
algorithm for multiple testing, 
X-chromosome, permutation 
tests, active user-support and 
professional documentation

population-based studies. Further, 
with the ability to handle extended 
pedigrees with large numbers 
of subjects, the FBAT approach 
allows the continuing utilization of 
existing linkage studies. Recent 
developments to estimate and test 
gene–environment interaction in 
the FBAT approach, without any 
loss of robustness, are an additional 

advantage (91). For many complex 
diseases, genetic interactions with 
environmental exposure variables 
are thought to be crucial for the 
understanding of the disease (e.g. 
smoking status and/or smoking 
history in asthma and COPD 
studies) (92,93).
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