ANDROGENIC (ANABOLIC) STEROIDS (Group 2A)

A. Evidence for carcinogenicity to humans (limited)

Cases of benign hepatoma, peliosis hepatis, primary hepatocellular carcinoma and hepatic cholangiocarcinoma have all been linked to the use of androgenic steroids, mostly oxymetholone¹⁻¹³. At least 25 cases of liver-cell tumour have been reported in patients with Fanconi's anaemia^{1-6,11,12}, aplastic anaemia^{1,4,7,8}, paroxysmal nocturnal haemoglobinuria^{1,12,13}, panmyelopathy⁹ or megaloblastic anaemia¹⁰ treated with oxymetholone alone or in combination with other androgenic steroid drugs. Usually, treatment was given for years, but cancer has occurred within as little as two months of therapy⁶, and there have been well-documented instances of remission following the withdrawal of oxymetholone treatment^{8,9,11}. Hepatocellular carcinomas were also reported after extended treatment with oxymetholone of one patient with nephrolithiasis¹⁴ and of another with chronic renal failure¹⁵; and hepatocellular carcinomas^{1,16}, cholangiocarcinomas¹⁵ and adenomas¹⁶ were reported after extended treatment of patients with methyltestosterone, testosterone oenanthate and nandrolone decanoate for hypogonadism¹⁶, hypopituitarism¹³, chronic renal failure¹⁵ and generalized weakness¹⁵.

The fact that castration palliates prostatic cancers suggests that testosterone may be involved in the genesis of these tumours¹⁷, and a number of epidemiological observations suggest that increased testosterone levels may increase the risk for prostatic cancer. In addition, patients with cirrhosis, who have depressed testosterone levels¹⁸, have low rates of prostatic cancer¹⁹, and prostatic cancer is seemingly unknown among castrates²⁰. There have also been a number of case reports²¹⁻²³ of prostatic cancer developing after androgen therapy; there was only one, unusual case, however, in which the cancer developed in a 'body-builder' at the age of 40 who had taken anabolic steroids for 18 years²³.

Blacks in the USA have the highest prostatic cancer rates in the world. Their two-fold increased risk, compared to US whites, is evident at the earliest age at which prostatic cancer occurs. Ross et al.²⁴ showed that young US blacks have a 15% higher mean testosterone serum level than young US whites, and argued that this difference could readily explain the two-fold difference in rates.

In one study²⁵, prostatic cancer cases were found to have higher mean levels of serum testosterone than healthy controls of the same age. Prostatic cancer cases in this study had a clear excess of high testosterone values. Another study ²⁶ showed significantly higher levels of serum testosterone in prostatic cancer cases than in age-matched controls among US blacks, but not among African blacks. A number of case-control studies, however, showed no significant difference between cases and controls²⁷⁻²⁹. At present, there are insufficient data to permit firm conclusions to be drawn.

The development of myeloid leukaemia as a complication of Fanconi's anaemia has been reported in association with the use of oxymetholone^{11,30,31}, and there has been one case report of paroxysmal nocturnal haemoglobinuria in which a myeloproliferative disorder developed after oxymetholone therapy³².

The evidence that anabolic steroids can cause both benign and malignant liver tumours is quite strong. However, because no analytical epidemiological study has been done, the Working Group felt constrained to classify the evidence for carcinogenicity in humans as no more than 'limited'.

B. Evidence for carcinogenicity to animals (sufficient for testosterone)

Testosterone propionate was tested for carcinogenicity in mice and rats by subcutaneous implantation, producing cervical-uterine tumours in female mice and prostatic adenocarcinomas in male rats. Neonatal treatment of female mice by subcutaneous injection of testosterone induced hyperplastic epithelial lesions of the genital tract and increased the incidence of mammary tumours. 5β -Dihydrotestosterone, which is considered hormonally inactive in adults, also increased the incidence of mammary tumours in mice when given neonatally by subcutaneous injection³³. Depots of testosterone propionate implanted in rats resulted in an increased incidence of prostatic adenocarcinomas³⁴. Subcutaneous administration of testosterone propionate following intravenous treatment with N-methyl-N-nitrosourea produced a high incidence of prostatic adenocarcinoma not seen with the individual compounds³⁵.

No data were available to the Working Group on oxymetholone.

C. Other relevant data

No data were available on the genetic and related effects of oxymetholone or testosterone in humans.

Testosterone did not induce sperm abnormalities or micronuclei in mice treated in vivo and was not mutagenic to bacteria³⁶.

References

- ¹IARC Monographs, 13, 131-139, 1977
- ²Port, R.B., Petasnick, J.P. & Ranniger, K. (1971) Angiographic demonstration of hepatoma in association with Fanconi's anemia. *Am. J. Roentgenol.*, 113, 82-83
- ³Kew, M.C., Van Coller, B., Prowse, C.M., Skikne, B., Wolfsdorf, J.I., Isdale, J., Krawitz, S., Altman, H., Levin, S.E. & Bothwell, T.H. (1976) Occurrence of primary hepatocellular cancer and peliosis hepatis after treatment with androgenic steroids. S.A. med. J., 50, 1233-1237
- ⁴Sweeney, E.C. & Evans, D.J. (1976) Hepatic lesions in patients treated with synthetic anabolic steroids. *J. clin. Pathol.*, 29, 626-633
- ⁵Shapiro, P., Ikeda, R.M., Ruebner, B.H., Connors, M.H., Halsted, C.C. & Abildgaard, C.F. (1977) Multiple hepatic tumors and peliosis hepatis in Fanconi's anemia treated with androgens. *Am. J. Dis. Child.*, 131, 1104-1106
- ⁶Mokrohisky, S.T., Ambruso, D.R. & Hathaway, W.E. (1977) Fulminant hepatic neoplasia after androgen therapy. New Engl. J. Med., 296, 1411-1412
- ⁷Sale, G.E. & Lerner, K.G. (1977) Multiple tumors after androgen therapy. Arch. Pathol. Lab. Med., 101, 600-603

- ⁸Montgomery, R.R., Ducore, J.M., Githens, J.H., August, C.S. & Johnson, M.L. (1980) Regression of oxymetholone-induced hepatic tumors after bone marrow transplantation in a plastic anemia. Transplantation, 30, 90-96
- ⁹Treuner, J., Niethammer, D., Flach, A., Fischbach, H. & Schenck, W. (1980) Hepatocellular carcinoma following oxymetholone treatment (Ger.). *Med. Welt*, 31, 952-955
- ¹⁰Stromeyer, F.W., Smith, D.H. & Ishak, K.G. (1979) Anabolic steroid therapy and intrahepatic cholangiocarcinoma. *Cancer*, 43, 440-443
- Obeid, D.A., Hill, F.G.H., Harnden, D., Mann, J.R. & Wood, B.S.B. (1980) Fanconi anemia. Oxymetholone hepatic tumors, and chromosome aberrations associated with leukemic transition. Cancer, 46, 1401-1404
- ¹²Čáp, J., Ondruš, B. & Danihel, L. (1983) Focal nodular hyperplasia of the liver and hepatocellular carcinoma in children with Fanconi's anaemia after long-term treatment with androgen (Czech.).
 Bratisl. lek. Listy., 79, 73-81
- ¹³McCaughan, G.W., Bilous, M.J. & Gallagher, N.D. (1985) Long-term survival with tumor regression in androgen-induced liver tumors. *Cancer*, 56, 2622-2626
- ¹⁴Zevin, D., Turani, H., Cohen, A. & Levi, J. (1981) Androgen-associated hepatoma in a hemodialysis patient. *Nephron*, 29, 274-276
- ¹⁵Turani, H., Levi, J., Zevin, D. & Kessler, E. (1983) Hepatic lesions in patients on anabolic androgenic therapy. *Isr. J. med. Sci.*, 19, 332-337
- ¹⁶Westaby, D., Portmann, B. & Williams, R. (1983) Androgen related primary hepatic tumors in non-Fanconi patients. *Cancer*, 51, 1947-1952
- ¹⁷Huggins, C. & Hodges, C.V. (1941) Studies on prostatic cancer. I. The effect of castration, of estrogen, and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res., 1, 293-297
- ¹⁸Gordon, G.G., Altman, K., Southren, A.L., Rubin, E. & Lieber, C.S. (1976) Effect of alcohol (ethanol) administration on sex-hormone metabolism in normal men. New Engl. J. Med., 295, 793-797
- ¹⁹Glantz, G.M. (1964) Cirrhosis and carcinoma of the prostate gland. J. Urol., 91, 291-293
- ²⁰Hovenanian, M.S. & Deming, C.L. (1948) The heterologous growth of cancer of the human prostate. Surg. Gynecol. Obstet., 86, 29-35
- ²¹Sandeman, T.F. (1975) The possible dangers of androgens used for male climacteric. *Med. J. Aust.*, *i*, 634-635
- ²²Guinan, P.D., Sadoughi, W., Alsheik, H., Ablin, R.J., Alrenga, D. & Bush, I.M. (1976) Impotence therapy and cancer of the prostate. Am. J. Surg., 131, 599-600
- ²³Roberts, J.T. & Essenhigh, D.M. (1986) Adenocarcinoma of prostate in a 40-year-old body-builder. Lancet, ii, 742
- ²⁴Ross, R., Bernstein, L., Judd, H., Hanisch, R., Pike, M. & Henderson, B. (1986) Serum testosterone levels in healthy young black and white men. *J. natl Cancer Inst.*, 76, 45-48
- ²⁵Ghanadian, R., Puah, C.M. & O'Donoghue, E.P.N. (1979) Serum testosterone and dihydrotestosterone in carcinoma of the prostate. *Br. J. Cancer*, 39, 696-699
- ²⁶Ahluwalia, B., Jackson, M.A., Jones, G.W., Williams, A.O., Rao, M.S. & Rajguru, S. (1981) Blood hormone profiles in prostate cancer patients in high-risk and low-risk populations. *Cancer*, 48, 2267-2273

- ²⁷Hammond, G.L., Kontturi, M., Vihko, P. & Vihko, R. (1978) Serum steroids in normal males and patients with prostatic diseases. *Clin. Endocrinol.*, 9, 113-121
- ²⁸Bartsch, W., Steins, P. & Becker, H. (1977) Hormone blood levels in patients with prostatic carcinoma and their relation to the type of carcinoma growth differentiation. Eur. Urol., 3, 47-52
- ²⁹Harper, M.E., Peeling, W.B., Cowley, T., Brownsey, B.G., Phillips, M.E.A., Groom, G., Fahmy, D.R. & Griffiths, K. (1976) Plasma steroid and protein hormone concentrations in patients with prostatic carcinoma, before and during oestrogen therapy. *Acta endocrinol.*, 81, 409-426
- ³⁰Sarna, G., Tomasulo, P., Lotz, M.J., Bubinak, J.F. & Shulman, N.R. (1975) Multiple neoplasms in two siblings with a variant form of Fanconi's anemia. *Cancer*, 36, 1029-1033
- ³¹Bourgeois, C.A. & Hill, F.G.H. (1977) Fanconi's anemia leading to acute myelomonocytic leukemia. Cytogenetic studies. *Cancer*, 39, 1163-1167
- ³²Boyd, A.W., Parkin, J.D. & Castaldi, P.A. (1979) A case of paroxysmal nocturnal haemoglobinuria terminating in a myeloproliferative syndrome. *Aust. N.Z. J. Med.*, 9, 181-183
- ³³IARC Monographs, 21, 519-547, 1979
- ³⁴Pollard, M. & Luckert, P.H. (1986) Promotional effects of testosterone and high fat diet on the development of autochthonous prostate cancer in rats. *Cancer Lett.*, 32, 223-227
- ³⁵Pollard, M. & Luckert, P.H. (1986) Production of autochthonous prostate cancer in Lobund-Wistar rats by treatments with *N*-nitroso-*N*-methylurea and testosterone. *J. natl Cancer Inst.*, 77, 583-587
- ³⁶IARC Monographs, Suppl. 6, 506-507, 1987