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This chapter considers the epidemiological contribution of DNA adducts as an example of 
markers for use in chemoprevention studies, and highlights the potential biases inherent in the 
conduct of epidemiological studies with molecular markers. Although adducts have been inter-
preted mainly as biomarkers of exposure, 'bulky' DNA adducts such as those measured by 
3213-postlabelling or ELISA in white blood cells are more correctly interpretable as markers of 
cumulative unrepaired DNA damage. The latter concept can prove useful in cancer epidemiol-
ogy, since it is consistent with existing knowledge on the importance of duration of exposure 
in the etiology of chemically-induced cancers. Increasing evidence suggests that in addition 
to prolonged exposure to genotoxic chemicals, inter-individual variability in carcinogen 
metabolism and DNA repair is predictive of cancer risk. Also from this point of view, measure-
ments of bulky' DNA adducts can be useful as biomarkers for studies in populations, since 
they express the amount of carcinogen linked to DNA after repair, taking into account individ-
ual repair capacity. Finally, we suggest a theory of causality based on the work of Wesley 
Salmon and the concept of 'propagating mark', which is particularly attractive for molecular 
epidemiologists. 

Categories of markers and their complex interplay 
The usual categorization of biomarkers refers to 
three categories of markers, of exposure (internal 
dose), of intermediate effect and of individual sus-
ceptibility (see Chapter 1). We will examine a few 
examples that suggest that the nature of biological 
measurements may be more complex than is 
implied by such categorization. 

There is increasing evidence that some types of 
DNA adduct can be considered both as markers of 
internal dose and as markers of susceptibility, 
because (a) they predict the onset of disease inde-
pendently of exposure levels (see Example 1 
below), and (b) they represent an integrated 
marker of exposure and of the individual's ability 
to metabolize carcinogens and repair DNA 
damage. Classical markers of susceptibility, such as 
genetically-based metabolic polymorphisms, can 
modulate the effect of exposures, but their expres-
sion can also be influenced by external determi-
nants such as dietary habits. In this complex con-
text of mutual interplay, the level of exposure is also 
likely to be important, as Example 2 demonstrates. 

Validation 
Validation of biomarkers can be interpreted in at 
least three different ways. One is the usual valida-
tion of a marker from the laboratory point of view, 
including an assessment of measurement error (for 
example by repeat measurements in the sample, 
and by the use of positive control samples with 
known values of the marker level). Measurement 
error is expressed by, for example, the coefficient of 
variation, the ratio between the standard deviation 
and the mean. Still in this category of validation 
measures, we can include measures of marker reli-
ability (reproducibility and repeatability). A second 
category is represented by attempts to estimate the 
validity of the marker when compared with a stan-
dard (internal validity: sensitivity and specificity) 
and the impact of its use in a population (predic-
tive value, depending on internal validity and the 
prevalence of the condition that we aim to mea-
sure). These aspects of validation are extensively 
dealt with in Toniolo et al. (1997). 

A third concept of validation refers to the rele-
vance of the marker in the context of population 
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studies or intervention trials when it is used as a 
surrogate end-point biomarker. Even if a marker is 
reliable and valid, and its predictive value reason-
ably high)  in the context of chemoprevention we 
need to be sure that the marker is a good surrogate 
end-point. This is the category of markers we 
mainly refer to below. 

Examples 
Example 1: DNA adducts as predictors of cancer risk 
and dietary effect modifiers 
'Bulky' DNA adducts (adducts with large molecules, 
as opposed to small alkyl radicals such as methyl 
groups) can be considered both as markers of inter- 
nal dose and as markers of susceptibility. Several 
studies have considered the association between 
cancer at various sites and the levels of bulky DNA 
adducts (Table 1). Most studies (Tang et al., 1995; Li 
et al., 1996; Peluso et al., 2000; Vulimiri et al., 2000) 
have found that cancer cases had higher levels of 
adducts than non-cancer controls, after adjust-
ment for relevant exposures such as smoking. This 
suggests that we may consider bulky DNA adducts 
(as measured in white blood cells by the 32P-post-
labelling method) as markers of susceptibility in 
addition to their being markers of exposure. 
Further evidence for such an interpretation comes 
from a recent case-control study nested in the 
Physicians Health Study cohort, which found DNA 
adducts to be predictive of the cancer outcome 
(Perera, 2000). In the latter study, adducts were 
measured in blood samples that were collected 
years before cancer onset, thus ruling out the pos-
sibility that the higher adduct levels were due to 
metabolic changes associated with an already 
existing cancer. 

It appears that bulky DNA adducts express 
cumulative exposure to aromatic compounds after 
the action of metabolizing enzymes and before the 
intervention of DNA repair enzymes. They are, 
therefore, markers of cumulative unrepaired DNA 
damage. There is a large amount of additional 
evidence to support this interpretation, based on 
the observation that the lymphocytes of cancer 
patients (and of their healthy relatives) have higher 
levels of DNA adducts after treatment with a 
hydrophilic chemical, compared with those of non-
cancerous individuals (Berwick & Vineis, 2000). 

Other types of adduct provide a better expres-
sion of external exposure than of cumulative  

unrepaired DNA damage. This is the case for pro-
tein adducts that are not repaired. 

The level of DNA adducts, which is suggested to 
be predictive of cancer risk, can be modulated by 
personal habits such as intake of fruit and vege-
tables. In a study of healthy volunteers, 
conducted within the EPIC Italian cohort, an 
inverse association between consumption of sev-
eral dietary items and adduct levels was found 
(Table 1) (PaUl et al., 2000). Out of about 120 food 
items that were investigated, only those shown in 
this table were associated in a statistically signifi-
cant manner with the adduct levels. Some of these 
food items, namely leafy vegetables and fruits, 
were associated with an approximately 25-30% 
decrease in adduct levels, while meat consumption 
was associated with a slight and non-significant 
increase (Palli et al., 2000). When nutrients were 
assessed by means of food-nutrient conversion 
tables, associations were found with monounsatu-
rated fatty acids and j-carotene (Table 2). Similar 
relationships have been observed in the investiga-
tion on bladder cancer by Peluso et al. (2000). 

Other types of change that are related to DNA 
damage can be modified by fruit or vegetable 
intake. For example, several functional tests have 
been developed to explore individual DNA repair 
capacity (mutagen sensitivity tests; see Berwick & 
Vineis, 2000). The repair capacity thus assessed 
seems to be modified by several exposures or per-
sonal habits. In cultured lymphocytes, antioxi-
dants such as cr-tocopherol exercised a dose-depen-
dent protective effect in preventing bleomycin-
induced chromosome damage (Trizna et al., 1992, 
1993). In another study, Kucuk et al. (1995) found 
strong inverse correlations between plasma nutri-
ents and results from the mutagen sensitivity 
assay. Correlation coefficients were 0.76 with P-  
carotene and 0.72 with total carotenoids. 
However, in randomized double-blind trials, Hu et 
al. (1996) and Goodman et al. (1998) did not find 
any association between supplementation and 
DNA repair activity. 

From a mechanistic point of view, the modu-
lating effect of fruit or vegetables on adduct levels 
may be explained by induction of enzymes 
involved in carcinogen detoxification or by repres-
sion of enzymes involved in carcinogen activation. 
As far as 'mutagen sensitivity' is concerned, this is 
usually interpreted as an indirect expression of 
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oz B 

Tertile of consumption p-value 
Adjusted mean s SE % changeb for trend'  

I II 111 

Leafy vegetables (except cabbage) 9.07±122 8.80±1.13 6.34±1.21 -30.10 0.02 
Fruiting vegetables 8.34±134 8.48±1.14 7.29±119 -12.59 0.06 
Hoot vegetables 7.60±1.14 10.29±1.12 5.89±1.21 -22.50 0.07 
Cruciferous 10.221.2 18.57±1.15 7.42±1.15 -27.40 0.2 
Grain and pod vegetables 7.16±1.20 9.51±1.23 7.65±1.16 6.84 0.7 
Stalk vegetables, sprouts 8.76±1.16 8.70±1.17 6.66±1.17 -23.97 0.2 
Mixed salad, mixed vegetables 8.47±119 8.45±1.18 7.02±1.33 -17.12 0.2 
Alt vegetables 8.92±1.27 8.66±1,13 6.58±1.18 -26.23 0.01 
Legumes 8.24±1.22 8.18±1.16 7.69±1.15 -6.67 0.01 
Potatoes 6.98±1.19 7.93±1.19 9.19±1.20 31.65 0.7 
Onion, garlic 7.89±123 8.03±1.23 8.111.13 2.79 0.8 
Fresh fruit (all types) 8.56±1.23 6.88±1.20 6.47±1.24 -24.4 0.04 
Nuis and seeds 6.54±1.38 7.79±1.l9 9.34±l.15 42.81 0.1 
Fruit and vegetable juices 9.34±1.10 6.40±1.43 7.42±1.22 -20.56 0.5 
Milk 8.81±119 8.27±115 6.98±1.20 -20.77 0.8 
Yoghurt 7.54±1.00 .23±1.35 7.83±1.28 3.85 0.3 
Cheese (including fresh cheeses) 7.02±1.20 6.86±1.14 10.20±1.20 45.30 0.1 
Pasta, other grain 6.82±1.26 7.37±1.13 9.92±1.27 45.45 0.09 
Rice 7.08±130 9.00±1.16 7.85±1.13 10.88 0.9 
Bread 7.76±1.28 8.03±1.14 8.29±1.34 6.83 0.9 
Fish 8.60±1.25 8.77±118 7.02±114 -18.37 02 
Seafood 8.43±1.25 9.03±118 6.90±1.14 -18.15 0.1 
Eggs 8.99±1.19 7.46±1.14 8.69±1.21 -3.34 0.9 
Processed meat 8,82±1.22 8.08±1.18 6.95±1.34 -21,20 0.3 
Offal 9.09±1.13 8.27±1.19 6.40±1.21 -29.59 0.1 
All red meat 7.65±1.18 8.58±1.14 7.80±1.24 1.98 0.5 
All white meat 7.85±1.19 8.03±1.13 8.19±1.19 4.33 0.8 
Seed oil 7.70±1.20 7.96±1.22 831±1.10 7.92 0.3 
Olive cr1 8.28±1.16 8.88±1.18 6.76±1.25 -18.36 0.05 
Butter 6.71±1.13 7.00±1.20 10.52±1.20 56.781 0.1 
Sugar, honey, jam 6.45±1.20 8.23±1.19 9.31±1.19 44.34 0.06 
Cakes, pies, pastries, puddings 8.15±1.26 7.98±1.15 7.95±1.23 -2.45 0.9 
Ice cream 8.70±1.13 8.92±1.20 6.06±1.30*  -30.341 0.003 
Wine 7.89±1.29 7.55±1.12 8.68±1.35 10.01 0.1 
Beer 8.04±1.23 8.55±1.23 7.55±1.20 -6.09 0.9 
Coffee 8.12±1.30 8.24±1.13 7.72±1.20 -4.93 0.5 

From Palli et al. (2000) 
From analysis for covariance model including terms for age, sex, centre, smoking habits (never. ex and current), period of 

blood drawing and total caloric intake (kcal) 
L' Percentage change frorri Ito Ill fertile (1 highest and . lowest variation) 

Cunnett test for multiple comparisons significant at the 0.05 level (first level is the reference category) 
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Nutrient Tertile of consumption p-value for trend * 

Adjusted mean ± SE % changeb 

I 	 II III 

Total protein 9.73±1.60 7.13±1.12 733±1.66 -3274 0.9 

Animai protein 9.40±1.34 7.77±1.15 6.75±1.44 -39,47 0.9 

Vegetable protein 6.92±1.57 8.25±1.15 8.77±1.50 21.09 0.7 

Total fat 9.99±1.44 7.01±1.14 6.96±1,54 -30.33 0.05 

Animal fat 9.01±1.41 7.56±1.14 7.58±1.44 -15.87 0.6 

Vegetable fat 8.86±1.29 8.75±1.13 6.17±1.32 -30.36 0.009 

Fatty acids 
Total saturated fatly acids 8.57±1.43 7.92±1.14 7.55±1.51 -11.90 0.9 

Oleic acid 9,95±1:35 7.79±1.15 5.87±1.46 -41.01 0.03 

Total monounsaturated fatty acids 10.20±1.34 7,67±1,15 6.57±1.47 -34.61 0.008 

Linoleic acid 8.20±1.48 8.09±1.18 7.82±1.40 4.63 0.4 

Linolertic acid 11.04±1.45 6.86±1.14 6.44±1.42 -41.67.1 0.01 

Total polyunsaturated fatty acids 8.16±1.46 '7.91±1.16 8.02±1.39 -1.72 0.2 

Cholesterol 8.25±1.38 7.52±1.14 8.35±1.42 1.21 03 

Carbohydrates 8.08±1.68 6.76±1.14 9.36±1.63 15.84 0.3 

Starch 6.46±1.51 7.15±1.15 10.22±1.48 58.201 0.1 

Sugar 7.84±1.35 7.32:t1.15 8.92±1.33 13.78 03 

Fibre 8.04±1.43 8.03±1.24 8.01±1.52 -0.37 0.1 

Alcohol 7.41±1.30 7.93±1.17 8.66±1.29 16.87 0.05 

Total calories 826±1.78 7.84±1.17 7.91±2.04 -4.24 0.9 

Minerals 

Iron 10.31±1.52 7.53±1.16 6.26±1.55 -6&70 0.4 

Calcium 7.79±1.37 7.71±1.14 8.62±1.40 9.63 0.9 

Sodium 9.35±1.42 6.45±113 8.34±1.51 -12.11 0.5 

Potassium 10.19±1.43 7.11±1.16 6.89±1.39 -47.90 0.004 

Vitamins 
Thiamine 9.74±1.42 7.32±1.14 6.91±1.53 -40.96 0.2 

Riboflavin 9.58±1.37 7.24±1.13 7.28±1.43 -31.59 0.4 

Niacin 8.35±1.46 8.59±1.13 7.02±1.47 -18.95 03 

Vitamin B5 9.25±1.42 9.11±1.14 6.65±1.40 -24.21 0.2 

Folic acid 8.71±1.36 7,21±1.15 8.19±1.35 -6.35 0.4 

Retinol 8.96±1.21 7.42±1.16 7.62±1.23 -17.59 0.2 

-Carotene 9.37±1.22 7.63±1.13 7.15±1.23 -31.05 0.01 

Vitamin E 8.91±1.46 7.51±1.23 7.73±1.30 -15.27 0.02 

Vitamin C 9.03±1.24 7.28±1.17 7,79±1.21* -15.92 0.01 

From Palli et aI. (2000) 
From analysis for covariance model including terms for age, sex, centre, smoking habits (never, ex and current), period of 

blood drawing and total caloric intake (kcal) 

° Percentage change from Ito Ill teOile ('1' highest and ,. lowest varIation) 

Dunnett test for multiple comparisons significant al the 0.05 level (first level is the reference category.) 
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DNA repair capacity. One can speculate that fruit 
and vegetables, or vitamins, may interfere with 
DNA repair enzymes, but there is in fact no evi-
dence supporting this hypothesis. 

In the light of such observations, a possible 
explanation for the higher levels of bulky adducts 
among cancer cases than in controls can be found 
in the concept of cumulative unrepaired DNA dam-
age. What causes cancer would be the total burden 
of a genotoxic chemical that remains bound to 
DNA, after the repair processes. This burden may be 
higher because DNA repair is impaired, because 
higher levels of carcinogenic metabolites are pre-
sent (due to genetic or acquired effects) or because 
of repeated exposures to the same agent. 

We also have to consider the limitations of this 
model. First, the level of measurement error 
for bulky adducts is flot certain, but seems to be 
high (coefficient of variation around 20-30%). 
However, the effect of measurement error is to 
attenuate a relationship, if error is evenly distrib-
uted between the compared groups (Copeland 
et al., 1977). Table 3 shows an example: in this 
case, the laboratory error was measured by 
the intra-class correlation coefficient, which, in 
turn, was used to correct the observed (attenuated)  

relative risks so as to obtain a more realistic 
estimate of the true effects on the risk of cancer. 
Thus, measurement error is expected to blur existing 
associations rather than reveal false associations. 

A second relevant question concerning Example 
1 is whether the effect is attributable to specific 
agents or to fruits and vegetables as a whole. This 
question has been addressed by Thompson et cd. 
(1999) in an experimental study that aimed to test 
the hypothesis that increased consumption of 
vegetables and fruits would reduce levels of mark-
ers of oxidative cellular damage. Twenty-eight 
women participated in a 14-day dietary intervention. 
The primary end-points assessed were levels of 8-
hydroxydeoxyguanosine (8-OHdG) in DNA iso-
lated from peripheral lymphocytes, 8-OHdG 
excreted in urine, and urinary 8-isoprostane F-2a 
(8-EPG). Overall, the levels of 8-OHdG in DNA 
isolated from lymphocytes and in urine and the 
level of 8-EPG in urine were reduced by the 
intervention. The reduction in lymphocyte 8-
OHdG was greater (32 versus 5%) in individuals 
with lower average pre-intervention levels of 
plasma a-carotene than in those with higher 
levels. The results of this study indicate that 
consumption of a diet that significantly increased 

Observed relative risk 
Laboratory r RR1 5 	 RR,2 O RR=2 5 

Laboratory 1 G.12 1.1 	 11 11 

Laboratoiy 2 
analysis 1 0.82 1A 	 1.8 21 
an]1sis 2 053 1.2 	 1.4 1.6 

Laboratoi, 3 

anaIis 1 057 1 	 1,5 1.7 
alal ys is 2 BbS 1 	 1.6 1.8 

Labo 	orj 4. 0.90 1.4 	 1.9 23 

troc relative risk 
Observed RR= exp (ln RR, , r) 

From l-lankinson et I. (1994). 

61 



Biomarkers in Cancer Chemoprevention 

vegetable and fruit intake led to significant reduc-
tions in markers of oxidative cellular damage to 
DNA and lipids, in contrast to previous studies that 
were based on administration of single compo-
nents of diet. 

Thus, we may argue that the choice of the type 
of intervention can be crucial, and in some cir-
cumstances positive results can be obtained more 
easily with a general category (fruit and vegetable 
intake) than with a specific component. 

Example 2: Modulation by genetic susceptibility and 
the effect of dose; the case of methylenetetrahydro-
folate reductase polymorphism 
Common genetic polymorphisms have been 
reported in the gene encoding methylenetetrahy-
drofolate reductase (MTHFR), the enzyme that pro-
duces 5-methyltetrahydrofolate (5-methyl-THF) 
required for the conversion of homocysteine to 
methionine. In individuals with the genotype cor-
responding to a val/val polymorphism, functional 
effects include elevation of plasma homocysteine 
levels and differences in response to folic acid sup-
plementation. The metabolic changes associated 
with the genotype have been reported to modify 
the risk for chronic disease (e.g., vascular disease 
and cancer) and neural tube defects in conjunction 
with folate deficiency. Folate intake requirements 
may be different in affected individuals to those of 
normal or heterozygous individuals. The complex 
interaction between this common genetic poly-
morphism of MTHFR and folate intake is the focus 
of intense investigation (Bailey et al., 1999). 

In a study in the United States, an inverse asso-
ciation of this MTHFR gene polymorphism with 
colorectal cancer was found. The inverse associa-
tion of methionine intake and positive association 
of alcohol with colorectal cancer were stronger 
among val/val individuals. These interactions were 
not seen for colorectal adenomas (Chen et al., 
1998, 1999). In another study, the association 
between the V (val) allele of the MTHFR gene and 
ischaemic stroke in an elderly Japanese population 
was examined. In 256 stroke patients and 325 con-
trol subjects, the frequencies of the V allele were 
0.45 and 0.32, respectively. The odds ratios and 95% 
confidence intervals adjusted for the other risk fac-
tors were 1.51(1.02-2.23) for the AV (alanine/valine) 
genotype and 3.35 (1.94-5.77) for the W genotype, 
compared with the M genotype (Monta etal., 1998). 

Moderate elevation of plasma total homocys-
teine (tHCY) level is a strong and independent risk 
factor for coronary artery disease. The polymor-
phism in MTHFR, plasma tHCY and folate using 
baseline blood levels were examined among 293 
Physicians' Health Study participants who 
developed myocardial infarction during up to 
eight years of follow-up and 290 control subjects. 
Compared with those with genotype AA, the 
relative risk (RR) of myocardial infarction were 1.1 
(95% CI, 0.8-1.5) among those with the AV geno-
type and 0.8 (0.5-1.4) for the W genotype; none 
of these RRs was statistically significant. However, 
those with genotype VV had an increased mean 
tHCY level (mean ± SEM, 12.6 ± 0.5 nmol/ml), 
compared with those with genotype AA (10.6± 03) 
(p < 0.01). This difference was most marked among 
men with low folate levels (the lowest quartile dis-
tribution of the control subjects): those with geno-
type VV had tHCY levels of 16.0 ± 1.1 nmol/ml, 
compared with 12.3 ± 0.6 nmol/ml (p < 0.001) for 
genotype AA. Therefore, the modulating effect of 
MTHFR seems to be exerted through the tHCY 
level, especially when folate intake is low (Ma et 
al., 1996). 

Methodological issues 
Gene-environment interactions and their potential 
role in chemoprevention trials: some calculations 
To assess the potential role of gene-environment 
interactions in chemoprevention trials, it is essen-
tial to know the penetrance of the genetic trait and 
its prevalence in the target groups. Table 4 presents 
an attempt to address this complex issue. Let us 
imagine we wish to screen high-risk families for a 
highly penetrant gene (BRCA1). In this case, the 
cumulative risk of breast cancer is approximately 
80% in the mutation carriers and the prevalence of 
the mutations in families is about 50%. Let us 
hypothetically suppose that tamoxifen reduces the 
risk by 50%. This means that we have to treat 2.5 
family members (carriers of the mutation) to 
prevent one cancer, i.e., to screen five members to 
have the same result. However, if we aim at the 
general population, things change dramatically. 
Now the cumulative risk is 40%, with an absolute 
risk reduction of 20%, which means a number 
needed to treat (NNT) of five women among those 
carrying the mutations. However, since in the 
general population only 0.2% are mutation carriers 
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Smokers BRCAf 

GSTMI-nul[ GSTMf wild General population Families 

Relative riuc 1.34 (1.21-1.48P 1.0 5 10 
Cumulative risk 13% 10% 40% I 80% 
Risk reduction 5091. 50% 50% tamoxiten) 50% 
Cumulative risk after intervention 6.5% 5% 20% 40% 
Absolute risk reduction 5.5% 5% 20% 40% 
NNT in mutation carriers 15 20 5 2.5 
Prevalence 50% 50% 0,21V 50% 
NNT in whole target population 30 40 2500 5 
NNT in all smokers 35 

NNT, number needed to treat 

From Vinais et aL (1999) the OR for GSTMI in smokers was 1.22 (0.9e-154) 
From Hopper et aI. (.1999) 

C  Theoretical nasimum reduction in risk of lung cancer due to chernopreventive agent 
Theoretical benetit 

C Cou ghlin  cI al. (1999) 

(1 in every 500), the number we need to screen is 
as large as 2500 in order to prevent one cancer, 
based on the rather optimistic (and theoretical) 
50% benefit of tamoxifen treatment. 

Considering next a low-penetrance gene, 
GSTM1, we might plan to screen smokers for the 
GS7M1 genotype and to address chemoprevention 
only to them. What would be the advantage? 
In a meta-analysis (Vineis et al., 1999), the risk of 
lung cancer associated with the GSTMI genotype 
was 1.34 (it was 1.22 if the meta-analysis was 
restricted to smokers). Therefore, if the cumulative 
risk of lung cancer in smokers is 10%, it will be 
13% among the null GSTMI carriers. Let us sup-
pose again that the chemopreventive intervention 
has a 50% efficacy. This leads to a cumulative risk 
of 6.5% among smokers who are GSTM1 -null, with 
a number needed to treat (NNT) of 15 (1/6.5%). 
However, since the carriers of the null genotype are 
50% in the population, we need to screen 30 indi-
viduals to prevent one cancer. Now we repeat the 
same calculations with the carriers of the wild 
genotype, ending up with an NNT of 40. Without  

screening the population for GSTM1, we would 
have an NNT of 35 (the average of the previous 
two). Clearly, there is very little advantage in 
screening for a low-penetrance gene if the NNT 
just increases from 35 to 40. 

Validation of biomarkers: bias and confounding 
We have considered several examples of contri-
butions that might come from epidemiology for 
the selection and validation of biomarkers, and 
particularly surrogate end-point biomarkers. 
We suggest that, subject to further validation, 
bulky DNA adducts could become one such 
surrogate, particularly in view of the cohort 
study results mentioned above. Also, mutational 
spectra in cancer genes and measures of 
gene—environment interaction are potentially 
important end-points. However, epidemiological 
studies are prone to several types of bias 
(Kleinbaum et al., 1982; Murphy, 1976; 
Hennekens & Buring, 1987). 

Information bias is related to material mistakes 
in conducting laboratory or other analyses, or in 
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reporting mutations; for example, a distortion 
arose from incorrect reporting of the p53 gene 
sequence in an early paper, which influenced 
subsequent reports (Lamb & Crawford, 1986). 
Another example is the measurement of oxidative 
damage to DNA routine phenol-based DNA 
purification procedures can increase 8-hydroxy-
deoxyguanosine levels 20-fold in samples that 
are exposed to air following removal of the phenol 
(Wiseman et al., 1995). Such gross contamination 
would seriously bias an epidemiological study if 
subsets (batches) of samples from different sub-
groups in the study population (e.g., exposed vs. 
unexposed) were to undergo different technical 
procedures subject to different levels of error. 

Selection bias is certainly relevant to molecular 
epidemiology. Consider hospital-based case—con-
trol studies of disease risk in relation to metabolic 
polymorphisms. We can imagine at least three 
mechanisms by which selection bias (and, more 
specifically, Berkson's bias) can occur. First, if a 
person is hospitalized for a specific reason, but has 
more than one pathological condition, it is possi-
ble that the concurrent disease is also associated 
with the genetic polymorphism(s) under investi-
gation. Second, patients with a certain allele at the 
polymorphic locus under investigation can have 
adverse reactions to drugs and be hospitalized for 
this reason. Third, induction of an enzyme by 
treatment can influence the phenotypic indicator 
of genotype. For example, administration of 
methotrexate can induce hydroxyfolate-reductase 
by gene amplification; therefore, if in a case—con-
trol study we include cancer patients among the 
controls, we may have a distorted association 
between the disease under study and hydroxy-
folate-reductase activity. 

Specific characteristics of bias and confounding 
in studies on mutational spectra of cancer genes 
should also be considered. The size of the biopsies 
that are selected for investigation provides a clear 
example of the type of selection bias that can occur 
in studies on cancer genes. In bladder cancer, for 
example, it is likely that early-stage tumours are 
too small to allow the urologist to obtain a biopsy 
large enough for both research and clinical pur-
poses. However, large biopsies tend to correspond 
to more advanced cases, which in turn may show 
a higher proportion of mutations in certain genes 
(Yaeger etal., 1998). 

Detection bias is likely to be a common problem 
in case—control studies in which the risk factor 
investigated itself leads to increased diagnostic 
investigations and thus increases the probability 
that the disease is identified in that subset of per-
sons. 

Detection bias can be considered as a form of 
information bias, in that the probability of identi- 
fying the diseased people is conditional on the 
clinical information collected, which differs 
between categories of the risk factor. 

In molecular epidemiological studies, this may 
happen if molecular markers of early disease are 
prospectively analysed in a cohort. This will lead to 
easier detection of the eventual clinical disease in 
those who test positively, even if the marker is not 
necessarily intermediate in the causal chain lead- 
ing from exposure to disease. For example, 
exposure to certain agents, such as formaldehyde, 
can induce micronudei in mucosal cells of the oral 
cavity; these, in turn, may lead to earlier detection 
of oral cancer through subsequent periodic exam- 
ination of the workers with positive test results. A 
similar phenomenon can occur with identification 
of mutated oncogenes or tumour-suppressor genes 
in exposed workers, well before the onset of clini-
cal disease. 

Publication bias is particularly difficult to char-
acterize and quantify. Publication bias refers to the 
greater probability that studies with positive find- 
ings (e.g., those showing an association between 
p53 mutation spectrum and exposure) get pub- 
lished. A way to identify publication bias is to plot 
the result of each study of a particular phenome-
non (expressed, for example, as an odds ratio) 
against its size. In the absence of publication bias, 
the plot would be expected to show great variabil- 
ity with small samples and lower variability with 
large samples, around a central value of the true 
odds ratio. If publication bias occurs, negative 
results are not published, particularly if they arise 
from small investigations, and their results thus do 
not appear in the plot. For example, in the large 
database available at the International Agency for 
Research on Cancer on p53 mutations (Hainaut et 
al., 1998), the distribution of the proportion of 
mutations reported by different studies is skewed: 
all the studies with a proportion greater than 50% 
had less than 50 cases, while lower proportions 
were found in both small and large studies. This 
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distribution does not necessarily imply that publi-
cation bias occurred; it might also suggest that 
large studies were based on heterogeneous popula-
tions, with a variable prevalence of mutations, 
while small studies refer to small subgroups with 
specific exposures to carcinogens and a genuinely 
high proportion of mutations. 

Confounding occurs when a third variable cre-
ates a spurious association between the exposure at 
issue and the biomarker measurement. Several 
variables may act as confounders, for example if 
they modify the expression of oncogenes or 
tumour-suppressor genes. One such variable is 
chemotherapy: for example, cytostatic treatment 
for leukaemia induces characteristic cytogenetic 
abnormalities in chromosomes 5 and 7. 
Confounding arises if, for some reason, therapy is 
related to the exposure at issue. Disease stage is 
another potential confounder. Therefore, studies 
that aim to determine the expression of cancer 
genes in humans should be restricted to untreated 
patients or specific stages, or statistical analyses 
should be stratified according to treatment and 
stage. 

The definition of confounder in molecular epi-
demiology may be more subtle than in traditional 
epidemiology. In the study of metabolic polymor-
phisms in relation to cancer risk, a confounder can 
be an exogenous exposure which is associated not 
with another exogenous exposure, but rather with 
gene expression or enzyme induction (Tajoli & 
Garte, unpublished). For example, ethanol is an 
inducer of various metabolic enzymes, and, in 
turn, excessive intake has been related to colon 
cancer. The observation of an association between 
the phenotype for CYP2FJ and colon cancer could 
be ambiguous, since it could be attributed to a 
genuine role of this metabolic polymorphism or to 
confounding by ethanol, which on the one hand 
would increase the risk of colon cancer and on the 
other would induce the enzyme (thus creating a 
spurious association between the two). A some-
what different type of example concerns the 
observed association of the CYP1A2 polymor-
phism with variation in the risk of colon cancer; 
this association is plausible since CYP1A2 is 
involved in the metabolism of heterocyclic 
aromatic amines. However, it has also been shown 
that consumption of cruciferous and other vegeta-
bles induces the activity of the CYP1A2 enzyme  

(Kall et al., 1996), and we know that vegetables 
reduce the risk of colon cancer (Potter, 1996) 
(perhaps through their content in antioxidants, 
acting via pathways unrelated to the CYP1A2 
enzyme). Therefore, the association between 
CYP1A2 and colon cancer can be confounded by 
dietary habits: specifically, a positive association 
between the CYP1A2 phenotype and colon cancer 
may be missed or underestimated because protec-
tive factors such as cruciferous vegetables induce 
CYP1A2 (an example of negative confounding). In 
general, the assessment of inducible enzymes is 
problematic in case-control studies. 

In conclusion, the selection and validation of 
biomarkers for chemopreventive trials should con-
sider the potential limitations of observational 
studies. 

Interpretation of causal pathways 
We can refer to the causal model proposed by a 
philosopher, Wesley Salmon (1984), to devise a 
framework for the interpretation of causal path-
ways in carcinogenesis and in the role played by 
different biomarkers. Salmon proposes two differ-
ent models for causality, which are supposed to be 
complementary. The first model was suggested by 
Reichenbach many years earlier, and was simply 
based on probabilistic computation (the 'positive 
relevance' criterion). The basic idea is that two 
events (A and B) have a common cause C if we can 
show (1) that the joint probability of A and B is 
greater than the product of their separate proba-
bilities, i.e., p(AB)>p(A)p(B); (2) that the introduc-
tion of C into the equation entirely or at least 
partially explains the association between A and B. 
Condition (1) simply expresses the concept that 
the probability that two events occur jointly is the 
product of the individual probabilities if the two 
events are independent, while it is greater than the 
product if they are not independent. Condition 2 
means that the joint occurrence of A and B can be 
explained by a common third event: for example, 
subjects A and B both have an angiosarcoma of the 
liver, and they were both exposed to vinyl chloride 
(VC) in the same plant. We can calculate that the 
probability of such joint events by simple chance 
is very low (condition 1). In addition, hypothesizing 
that the common exposure is VC, we observe that 
all the excess risk (observed/expected cases) is 
explained by such exposure (condition 2). 
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However, according to Salmon, this line of rea-
soning is not sufficient, precisely for the reason we 
have considered in the case of metabolizing 
enzymes and dietary habits. In that example, we 
were not able to disentangle the complex relation-
ships between cruciferous vegetables, the CYPIA2 
metabolic polymorphism and the risk of colon 
cancer. Salmon suggests that a way to establish 
whether an event is a genuine cause, in addition to 
the statistical considerations above, is to include it 
in a process, and establish whether along the 
process there is what he calls the propagation of a 
'mark'. In other words, a genuine causal process is 
one in which you can follow a 'mark that propa-
gates over the course of time, precisely because the 
causal events are able to induce a structural change 
that becomes a part of the effect. 

This reasoning is quite relevant to the identifica-
tion of good intermediate-effect markers for chemo-
prevention. According to a classical example, 
yellow fingers are a risk indicator for lung 
cancer: lung cancer patients have yellow fingers 
more frequently than population controls, thus 
fulfilling Reichenbach's definition of causality 
(positive relevance). However, clearly yellow fingers 
are just an indirect marker of exposure to tobacco 
smoke, and not a genuine cause of lung cancer. 
This is because they do not fulfil Salmon's second 
criterion of causality, the propagation of a marker 
along the process. In fact, whereas one can identify 
p53 mutations in the lung cancers that are charac-
teristic of tobacco carcinogens, thus following the 
structural changes left by tobacco into the lung, 
the same does not hold true for yellow fingers. 

In the field of chemoprevention, we propose 
that certain types of DNA adduct may fulfil such 
requirements to be used as surrogate end-points. 
Mutations in cancer genes tend to be late events, 
and they are too rare to be detected in healthy sub-
jects (in a study of 60 normal subjects in Lyon and 
Paris, no p53 mutation in serum was found; P. 
Hainaut, personal communication), although 
clearly they may be structural 'marks' for cancer. At 
the other extreme, protein adducts tend to reflect 
exposure faithfully, but they are not repaired and 
are probably weaker predictors of cancer. The 
advantage of DNA adducts is that apparently they 
represent the cumulative unrepaired DNA damage, 
and thus they may be used to test several types of 
chemopreventive agent. 
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