Chapter 5 ## Associations with diseases other than cancer This chapter briefly reviews associations between fruit and vegetable intake and chronic diseases other than cancer, summarizing findings from the main epidemiological studies that have assessed fruit and vegetables directly or through an indicator of fruit and vegetable intake. The relationship between fruit and vegetables in the diet and chronic diseases has been reviewed recently by a joint FAO/WHO Expert Consultation panel (WHO, 2003), which rated the evidence to be convincing for a protective effect of fruit and vegetables against cardiovascular diseases (the panel defined convincing as epidemiological studies showing consistent associations between exposure and disease, with little or no evidence to the contrary). The beneficial effects of dietary fruit and vegetables are clearly demonstrated by scurvy, a well documented, dramatic consequence of a dietary deficiency in these foods (Passmore & Eastwood, 1986). Two main lines of research have drawn increasing attention to other long-term beneficial effects of fruit and vegetables. One line of research is based on knowledge. derived from the study of clinical deficiency conditions, of the physiological functions of specific components of fruit and vegetables, such as individual vitamins. The antioxidant, free radicalscavenging properties of fruit and vegetables have prompted investigations of cardiovascular diseases in relation to intake of single vitamins, and, more recently, of fruit and vege-tables as complex mixtures of naturally occur- ring chemicals that may have beneficial effects because of the simultaneous presence of several active components. A second line of research has developed from the "Seven Countries" investigation of coronary heart disease (Keys, 1983). The observation of the rarity of myocardial infarction cases in the late 1940s in areas of southern Italy, Spain and Greece led to the idea that diets low in saturated fat and rich in vegetables were cardio-protective (Keys, 1980). While this line of research focused mainly on the adverse role of saturated fats, it also provided the basis for more recent work on the possible protective role of omega-3 fatty acids of vegetable or marine-fish origin. It has in fact been hypothesized that the markedly low rate of coronary heart disease in the Greek island of Crete (Renaud et al., 1995) could be mainly due to a diet rich in the omega-3 α-linolenic acid of vegetable origin, a conjecture that has received some recent support (Renaud & Lanzmann-Petithory, 2002). These different lines of investigation are now converging in studies of how fruit and vegetables, with their micronutrient components, may influence not only the different pathogenetic steps of cardiovascular disease but also steps in the development of other chronic diseases. #### Cardiovascular diseases A number of ecological studies (Ness & Powles, 1997) have reported inverse correlations between mortality rates for coronary heart disease or stroke and the consumption of fruit and vegetables, assessed through food balance sheets or household surveys. This suggestive evidence is reinforced by the results of analytical studies of individuals, Several methodological considerations are relevant to the evaluation of such studies. Case-control studies of cardiovascular disease are few in number, while cohort studies often use only cursory measures of diet. Biomarkers of cardiovascular disease risk are also amenable to study: hypertension, hypercholesterolaemia and obesity can be regarded as intermediate steps linking diet to cardiovascular disease. Behavioural factors such as alcohol and tobacco use should be taken into account as confounding factors. Tables 121 and 122 summarize the key findings of case-control and cohort studies on the association between fruit and vegetables (or dietary indices closely related to fruit and vegetables) and coronary heart disease; Tables 123 and 124 summarize the studies for stroke: and Table 125 summarizes the studies for total cardiovascular disease. Overall the results of these studies, on either coronary heart disease or stroke, are not entirely consistent. However, the inverse associations found in the larger studies, with better control for confounding factors, provide evidence supporting a protective effect. Blood pressure was significantly reduced in both normotensive and hypertensive subjects in two randomized controlled trials of vegetarian diets, in which animal products were replaced with vegetable products. In an eight-week randomized controlled trial on adults with mild hypertension, a diet enriched with fruit and vegetables (and less snacks and sweets) reduced both systolic and diastolic blood pressure (Appel et al., 1997). In another six-month trial, participants randomly assigned to an intervention to increase consumption of fruit and vegetables up to at least five daily portions showed a greater reduction in systolic and diastolic blood pressure than the control group (John et al., 2002). These studies indicate the potential effectiveness of a diet rich in fruit and vegetables in lowering blood pressure over intervals of weeks and months. In contrast, however, increasing fruit and vegetable consumption up to at least eight servings per day over one year in subjects with a recent history of adenomas did not reduce blood pressure or body weight, despite a modest reduction in serum cholesterol level (Smith-Warner et al., 2000). #### Other diseases Two recent randomized trials (Tuomilehto et al., 2001; Lindstrom et al., 2003) have shown that lifestyle and diet changes, including substitution of energy-dense dietary fats with fruit and vegetables, can improve glucose tolerance and prevent the onset of type II diabetes. Although these trials featured increased intake of fruit and vegetables, they were not designed to assess the independence of these changes from the effects of other fac- tors, including physical activity and weight loss. Virtually all diets that aim at avoiding excess weight, an established risk factor for diabetes as well as coronary heart disease, involve replacing high-fat foods with lowenergy density foods, such as fruit and vegetables. Higher intake of some fruits and vegetables rich carotenoids, or a higher estimated level of dietary carotenoids, has been associated with decreased risk of cataracts in some studies, in particular large prospective (Hankinsson et al., 1992; Brown et al., 1999). Less data are available on associations of fruit and vegetable consumption with other chronic conditions such as osteoporosis, senile macular degeneration, Alzheimer disease and Parkinson disease. Table 121. Case-control studies reporting measures of association between intake of fruit and vegetables and coronary heart disease | Author, year country | Cases/con-
trols,
gender | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |--|---|--|--|---------------------------|--------------|--|----------------------------| | Gramenzi
<i>et al.</i> , 1990,
Italy | 287 Acute
MI/649
hospital
controls,
F | FFQ (10) | Carrots: > 1 vs
< 1 portion/wk
(3)
Green veg.:
> 7 vs < 7
portion/w (3) | 0.7 | p < 0.01 | Age, education,
area of resi-
dence,
smoking, CHD
risk factors, other
foods | Crude dietary mea-
sure | | | | | Fresh fruit:
> 13 vs < 7
portion/w (3) | 0.6 | NS | | | | Tzonou <i>et al.</i> ,
1993, Greece | | FFQ (110) | Estimated
vitamin C:
highest vs
lowest (5) | 1.14
(0.67–1.95) | | Gender, age,
interviewer,
education,
BMI, exercise,
siesta, smoking,
alcohol,
coffee, energy | No food-based
analyses | ^{*}p for trend when applicable BMI, body mass index; CHD, coronary heart disease; FFQ, food frequency questionnaire, MI, myocardial infarction; NS not significant. Adapted and updated from Ness & Powles, 1997 Table 122. Cohort studies reporting measures of association between intake of fruit and vegetables and coronorary heart disease | Author, year country | Cases/cohort
size, gender
(years follow-
up) | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |--------------------------------------|---|--|--|---|--------------|----------------------------------|--| | Morris <i>et al.</i> ,
1977, UK | 45 cases of
CHD (26 CHD
deaths)/337,
M
(10–20y) | 7-day weighed
diary | | No association
with fibre from
fruit, nuts,
pulses, veg. | | Age,
occupation,
follow-up | High energy intake cereal fibre protective | | Vollset &
Bjelke, 1983,
Norway | No. ischaemic
heart disease
not reported/
16 713,
M, F
(11.5y) | Postal dietary
survey (20) | Estimated vitamin C index | No association | | Age, sex, region, urbanization | Three subcohorts | | Author, year
country | Cases/cohort
size, gender
(years follow-
up) | Exposure assessment (no. of items) | Range con-
trast (no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |---|---|------------------------------------|--|---|---------------------|--|---| | Hirayama,
1990, Japan | Deaths – numbers not given/
265 118,
M, F
(17 y) | FFQ (7) | Green and
yellow veg.:
daily vs not (2) | No association | | | Census-based
cohort
Crude diet measure | | Lapidus <i>et</i>
<i>al.</i> , 1986,
Sweden | 23 MI (8 fatal;
15 non-fatal)/
1462
F
(12 y) | 24-h recall | Estimated vitamin C | No association | | Age, obesity,
smoking, CHD
risk factors, exer-
cise | Energy negatively associated with MI | | Fraser <i>et al.</i> ,
1992, USA | 134 non-fatal
MI, 260 fatal
CHD/26 473
M, F
(6 y) | FFQ (65) | Fruit index: > 2 vs < 1/d (3) | Non-fatal MI:
1.07
(0.58–1.96)
Fatal CHD:
1.08
(0.67–1.75) | | Age, sex, smok-
ing, exercise,
weight, blood
pressure | Seventh-Day
Adventists
Low-risk cohort
High fruit intake not
well discriminated | | Manson <i>et</i>
<i>al.</i> , 1992,
USA | 437 non-fatal
MI, 115 CHD
deaths/87 245,
F
(8 y) | FFQ | Estimated vitamin C: Highest vs lowest (5) | 0.80
(0.58–1.10) | | Age, smoking,
CHD risk
factors, vitamin
supplements | Nurses' Health
Study
Only reported as
abstract | | Fehily <i>et al.,</i>
1993, Wales | 148 CHD
events/2423,
M
(5 y) | FFQ | Estimated vitamin C: ≥ 66.5 vs ≤ 34.7 mg/d (5) | [0.63] | NS | Age, BMI, smok-
ing, CHD at base-
line | 25% had CHD at baseline | | Rimm <i>et al.,</i>
1993, USA | 667 CHD/
39 910,
M
(4 y) | FFQ (131) | Estimated
vitamin C
(median
values: 1162
vs 92 mg/day)
(5) | 1.25
(0.91–1.71) | <i>p</i> = 0.98 | Age, smoking,
diet, aspirin,
exercise, BMI,
energy, fibre,
alcohol, parental
history of MI, | Health professionals
study
Main finding was for
vitamin E
High vitamin C | | | | | Estimated
β-carotene
(median
values: 190.34
vs 3969
mg/day) (5) | Smokers:
0.30 (0.11–
0.82)
Former
smokers:
0.60
(0.38–0.94)
Non-smokers: | p = 0.02 $p = 0.04$ | other antioxidants | ranges | | Author, year
country | Cases/cohort
size, gender
(years follow-
up) | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |---|---|--|---|---------------------------|------------------|---|--| | Hertog <i>et al.,</i>
1993,
Netherlands | deaths/805 | Cross-check
diet history
interview | Apples: ≥110
vs <18 g/d (3) | 0.51
(0.23–1.16) | p = 0.12 | Age, diet, BMI,
exercise, CHD risk
factors, energy,
saturated fatty
acids, smoking,
history of MI | Main focus on
flavonoids | | Knekt <i>et al.,</i>
1994,
Finland | 244 CHD
deaths/5133,
M, F
(14 y) | Diet history interview | Fruit: > 159
vs ≤ 75 g/d
(M) and > 137
vs ≤ 77 g/d (F)
(3) | M: 0.77
(0.52–1.12) | p = 0.28 | Age, smoking,
CHD risk factors,
BMI, energy | Main focus on
antioxidants.
Similar effects in
F but NS | | | | | Veg.: > 117 vs
≤ 61 g/d (M)
and > 137 vs ≤
77 (F) (3) | M: 0.66
(0.46–0.96) | p=0.02 | | | | Gaziano <i>et</i>
al., 1995,
JSA | 48 fatal MI/
1299,
M, F
(4.75 y) | FFQ (43) | Estimated
β-carotene
index | 0.27
(0.10–0.74) | p =0.005 | Age, sex, smoking, cholesterol intake, alcohol, activities of daily living | Cause of death not confirmed in 15% | | Gale <i>et al.</i> ,
1995, UK | 182 CHD
deaths/730,
M, F
(20 y) | 7-day
weighed
record | Estimated vitamin C: > 44.9 vs ≤ 27.9 mg/d (3) | 0.8 (0.6–1.2) | <i>p</i> = 0.595 | Age, sex | Low vitamin C
intake and infre-
quent supplement
use
No food-based
analyses | | Gillman <i>et</i>
al., 1995,
JSA | CHD numbers.
not reported/
832
M
(20 y) | 24-h recall | | CHD no association | | CHD risk factors,
left ventricular
hypertrophy, BMI,
energy, alcohol,
exercise | Potatoes included
as fruit and veg.
Poor exposure
measure | | Pandey <i>et</i>
al., 1995,
JSA | 231 CHD
deaths/1556,
M
(24 y) | Diet history
(twice, 1 year
apart) | Increment of 19 points in estimated vitamin C + β-carotene index (highest/lowest: vitamin C 138/66, β-carotene 5.3/2.3) | | | Age, family
history, CHD risk
factors, smoking,
BMI, energy, fats,
iron, education,
alcohol,
cholesterol intake | Few supplement takers | | Author, year
country | Cases/cohort
size, gender
(years follow-
up) | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |---|---|--|---|---|---------------------|--|--| | Knekt <i>et al.</i> ,
1996,
Finland | 473 CHD
deaths/5133
M, F
(26 y) | Diet history
interview | Highest vs
lowest (4) | RR between
0.50–0.89 for
apples,
berries (only
in women),
other fruit,
onions and
veg. | | Age, smoking, CHD risk factors, BMI | Main focus on flavonoids | | Kushi <i>et al.,</i>
1996, USA | 242 CHD
deaths/34 486,
F (post-
menopausal)
(7 y) | FFQ (127) | Vitamin C
from food and
supplements:
≥ 391 vs ≤
112.3 mg/d
(5)
Carotenoids
from food and
supplements:
≥ 13 465 vs ≤
4421 IU/d (5) | 1.49
(0.96–2.30)
1.03
(0.63–1.70) | p = 0.02 $p = 0.71$ | Age, energy, BMI,
WHR, smoking,
hypertension,
diabetes, HRT,
contraceptive use,
physical activity,
alcohol, marital
status, education | No analysis for
fruits and veg.
Intake of vitamin
C from foods and
supplements high
Result similar in
non supplement
takers | | Liu <i>et al.</i> ,
2000, USA | 126 MI/ 39 127,
F
(6 y) | FFQ. (131) | Fruit and veg.:
highest vs
lowest (5)
(median values:
10.2 vs 2.6
servings/d) | 0.63
(0.38–1.17) | p = 0.21 | Age, smoking, physical activity, alcohol, menopausal status, HRT use, BMI, vitamin supplement use, parental history MI, history of MI, diabetes, hypertension, hypercholesterolaemia | Women's Health
Study | | Liu <i>et al.,</i>
2001, USA | 1148 incident
CHD/15 220,
M
(12 y) | FFQ (8 veg.) | Veg.: > 2.5 vs
< 1 serving/d
(5) | 0.77
(0.60–0.98) | p = 0.03 | Age, randomization assigment, BMI, smoking, alcohol, physical activity, history of hypercholesterolaemia, hypertension and diabetes, multivitamin supplements | Physicians' Health
Study end-points:
MI plus coronary
artery bypass
grafting plus
percutaneous
transluminal
angioplasty | | Author, year
country | Cases/cohort
size, gender
(years follow-
up) | exposure
assessment
(no. of items) | Range contrast
(no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment
for confounding | Comments | |---|---|--|---|---------------------------|--------------------|--|---| | Joshipura <i>et</i>
<i>al.,</i> 2001,
USA | CHD 1063 M,
1127 F (fatal
and non-fatal)/
42 148 M,
84 251 F
(M: 8 y
F: 14 y) | FFQ (126, 15 fruits, 28 veg.) | Fruit and veg.:
highest vs
lowest (5) (medi-
an values: 9.15
vs 2.54 serv-
ings/d) | 0.80
(0.69–0.93) | | Age, smoking, alcohol, family history of MI, BMI, energy, multi-vitamins and vitamin E supplements, aspirin, physical activity, HRT, hypertension, hypercholesterolaemia | Nurses' and
Health
Professionals'
studies
Main contributors
green leafy
veg. and vitamin
C-rich fruits and
veg. | | Bazzano <i>et</i>
al., 2002,
USA | 1786 CHD
(639 deaths)/
9608,
M, F
(19 y) | FFQ (13,
3 fruits and
veg.) | Fruit and veg.: > 3 vs < 1 times/d (4) | | p = 0.07 $p = 0.8$ | Age, sex, race,
education, physical
activity, alcohol,
smoking, history
of diabetes,
energy, vitamin
supplements | National Health
and Nutrition
Examination
Survey Study | | Michels &
Wolk, 2002,
Sweden | 1558 CHD
deaths/
59 038,
F
(9.9 y) | FFQ (60)
Creation of
categories of
'good' diet
or RFS
(recommend-
ed foods score)
and 'bad; or
NRFS (non-
recommended
foods score) | RFS: highest vs lowest (5) | 0.47
(0.33–0.68) | p < 0.0001 | Age, height, BMI,
parity, age at first
birth, education,
marital status,
alcohol, energy | Mammography
cohort
No association
with NRFS | ^{*}p for trend when applicable BMI, body mass index; CHD, coronary heart disease; FFQ, food frequency questionnaire; HRT, hormone replacement therapy; MI, myocardial infarction; NS, not significant; WHR, waist-to-hip ratio Adapted and updated from Ness & Powles, 1997 #### Table 123. Case-control study reporting measures of association between intake of fruit and vegetables and stroke | Author, year country | Cases/
controls,
gender | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories) | Relative risk Stat. sign.* (95% CI) | Adjustment for confounding | Comments | |-----------------------------------|-------------------------------------|--|--|-------------------------------------|--|---| | Barer <i>et al.</i> ,
1989, UK | 63 thrombotic
stroke/91,
M, F | Question-
naire | Estimated vitamin C index | No association | Age, sex, socio-
economic status,
smoking, alcohol,
non-steroidal anti-
inflammatory drugs,
build | Hospital cases
and controls
Crude measure
of habitual diet | ^{*}p for trend when applicable Adapted and updated from Ness & Powles, 1997 # Table 124. Cohort studies reporting measures of association between intake of fruit and vegetables and stroke | Author, year
country | Cases/cohort-
size, gender,
(years follow-
up) | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |---|---|--|---|--|-------------------|--|---| | Vollset &
Bjelke, 1983,
Norway | 438 cerebrovascular deaths/16 713, M, F (11.5 y) | Postal dietary
survey (20) | Estimated
vitamin C
index: highest
vs lowest (3) | 0.67
(0.52–0.87) | <i>ρ</i> = 0.0005 | Age, sex, region, urbanization | 3 subcohorts
Negative association
with fruit and veg. | | Hirayama,
1990, Japan | Deaths – numbers not given/
265 118,
M, F
(17 y) | FFQ (7) | Green and
yellow veg.;
daily vs not (2) | No association | <u>.</u> | | Census-based
cohort
Crude diet measure | | Lapidus <i>et</i>
<i>al.</i> , 1986,
Sweden | 13 strokes/
1462
F
(12 y) | 24-h recall | Estimated vitamin C | No association | 1 | Age, obesity,
smoking, CHD
risk factors, exer-
cise | | | Manson <i>et</i>
<i>al.</i> , 1994,
USA | 345 stroke
cases/ 87 245,
F
(8 y) | FFQ | Veg. score:
highest vs low-
est (5)
Carrots,
spinach
≥ 5/wk vs <
1/mo | 0.74
Carrots: 0.32
Spinach: 0.57 | p = 0.03 | Age, smoking | Nurses' Health
Study
No association for
fruit | | Gale <i>et al.,</i>
1995, UK | 124 stroke
deaths/730,
M, F
(20) y | 7-day weighed diet record | Estimated vitamin C: > 44.9 vs ≤ 27.9 mg/d (3) | 0.5 (0.3–0.8) | p = 0.003 | Age, sex, CHD
risk factors | Low vitamin C intake
and infrequent sup-
plement use
No food-based
analyses | | Author,
year
country | Cases/
cohort size,
gender
(years follow-
up) | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |--|---|--|---|--|---------------------|--|---| | Gillman <i>et</i>
al., 1995,
USA | 97 strokes (14
deaths)/832
M
(20 y) | 24-h recall | Fruit and veg.:
increment of 3
servings/d | 0.77
(0.60–0.98) | | Age, CHD risk
factors, BMI,
exercise, left
ventricular hyper-
trophy, energy,
fat, alcohol | Potatoes included in
fruit and vegetables
Poor exposure
measure
Same association for
mortality | | Joshipura
<i>et al.,</i> 1999,
USA | Ischaemic
stroke: 204
(M), 366 (F)/
38 683 (M),
75 596 (F)
(M: 8 y
F: 14 y) | FFQ (116,
15 fruits, 28
veg.) | Fruit and veg.:
highest vs
lowest (5)
(median values:
9.15 vs 2.54
servings/d) | 0.69
(0.52–0.92) | | Age, smoking, alcohol, family history of MI, BMI, energy, multivitamin and vitamin E supplements, aspirin use, physical activity, HRT, hypertension, hypercholesterolaemia | Nurses' and Health
Professionals' Studies
Most contribution
from cruciferous veg.,
green leafy veg.,
citrus fruits, including
juice | | Bazzano <i>et</i>
al., 2002,
USA | 888 stroke,
218 fatal/
9608,
M, F
(19 y) | FFQ (13, 3
fruits and
veg.) | Fruit and veg.:
> 3 vs < 1
time/d (4) | Mortality:
0.58 (0.33–
1.02)
Incidence:
0.73 (0.57–
0.95) | p = 0.05 $p = 0.01$ | Age, sex, race,
education, physi-
cal activity,
history of dia-
betes, alcohol,
smoking, energy,
vitamin supple-
ments | National Health and
Nutrition Examination
Survey Study | | Michels &
Wolk, 2002,
Sweden | 684 stroke/
59 038, F
(9.9 y) | FFQ (60) Creation of categories of 'good' diet or RFS (recom- mended foods score) and 'Bad' or NRFS (non- recommended foods score) | RFS: highest
vs lowest (5) | 0.40
(0.22–0.73) | p = 0.007 | Age, height,
BMI, parity,
age first birth,
education,
marital status,
alcohol, energy | Mammography cohort
No association with
NRFS | ^{*}p for trend when applicable BMI, body mass index, CHD, coronary heart disease; FFQ, food frequency questionnaire; HRT, hormone replacement therapy; MI, myocardial infarction Adapted and updated from Ness & Powles, 1997 Table 125. Cohort studies reporting measures of association between intake of fruit and vegetables and total circulatory disease | Author, year
country | Cases/cohort
size, gender
(years follow-
up) | Exposure
assessment
(no. of items) | Range con-
trast (no. of
categories) | Relative risk
(95% CI) | Stat. sign.* | Adjustment for confounding | Comments | |---|--|--|--|--|--------------|---|--| | Enstrom <i>et</i>
<i>al.,</i> 1992,
USA | 929 cardiovas-
cular disease
deaths/11 348,
M, F
(10 y) | 24-h recall
and FFQ | Estimated vitamin C index: ≥ 50 vs < 50 mg/d (2) | SMR (relative
to US whites):
No regular sup-
plement: 0.90
(0.82–0.99)
Regular
supplements:
0.66 (0.53–0.82) | | Age, sex, smoking,
education, race,
disease, exercise,
alcohol, energy,
nutrients | National Health
and Nutrition
Examination
Survey | | Gaziano <i>et</i>
al., 1995,
USA | 161 fatal
cardiovascular
disease/1299,
M, F
(4.75 y) | FFQ (43) | ≥ 1 vs < 1/d | Carrots: 0.40
(0.17–0.98)
Salads: 0.49
(0.31–0.77) | | Age, sex | Cause of death not confirmed in 15%. Significant inverse association with estimated β-carotene index | | Cox <i>et al.,</i>
2000, UK | 392 cardio-
vascular
events (162
fatal)/3389,
M, F
(7 y) | FFQ (31,
considering
seasons) | Daily vs
never (5) | Salads: inverse
association (con-
sumption either
in winter and
summer for F;
only in winter for
M). Fruit: Inverse
association (con-
sumption either
in winter and
summer only in
F) | | Age, smoking,
socioeconomic
status | | | Strandhagen
et al., 2000,
Sweden | 209 non-fatal
cardio-vascular
events, 226
deaths/730
M
(26 y) | FFQ | 6-7 vs 0-1
times/wk
(4) | Fruit (M)
16 y follow-up:
0.87 (0.76–0.96)
26 y follow-up:
0.92 (0.84–1.00)
Veg.: no asso-
ciation | p = 0.051 | Smoking, hypertension, serum cholesterol (no age control, since all men were born same year) | | | Rissanen <i>et</i> al., 2003,
Finland | 115 cardio-
vascular dis-
ease deaths/
1950,
M
(12.8 y) | Food record | Fruits,
berries and
vegetables:
> 408 vs <
133 g/d (5) | 0.66 (0.28–1.55) | p = 0.13 | Age, examination year, BMI, CHD risk factors, energy, intake of vitamins C and E, β-carotene, lycopene, folate, fibre | | ^{*}p for trend when applicable BMI, body mass index; CHD, coronary heart disease; FFQ, food frequency questionnaire Adapted and updated from Ness & Powles, 1997