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1.	 Exposure Data

1.1	 Identification

Chem. Abstr. Serv. Reg. No.: 1313-27-5
Chem. Abstr. Serv. Name: Molybdenum 
trioxide
IUPAC systematic name: Trioxomolybdenum 
(ECHA, 2016a)
Other common names: Molybdenum oxide, 
molybdenum (VI) oxide, molybdenum (VI) 
trioxide, molybdic acid anhydride, molybdic 
anhydride, molybdic oxide, molybdite

Mo

O

O

O

Molecular formula: MoO3

Relative molecular mass: 143.94
Density: 4.69 g/cm3 at 26 °C (HSDB, 2017)
Melting point: 795 °C (HSDB, 2017)
Boiling point: 1155 °C, sublimes (HSDB, 2017)
Solubility in water: 1.0 g/L at 20 °C (ECHA, 
2016a). It is slightly soluble in water at room 
temperature, the saturated solution being 
acid (pH 2.5) (ECHA, 2016a).

Molybdenum trioxide (MoO3) is a white solid 
at room temperature (HSDB, 2017).

Technical-grade molybdenum trioxide (see 
Section  1.2.1) typically contains 80% molyb-
denum trioxide, 6% molybdenum suboxides, 
4% iron molybdates, 3% quartz, 1% calcium 
molybdate, 0.45% copper compounds, 0.03% 
lead compounds, and 0.012% arsenic compounds 
(Christensen et al., 2015).

1.2	 Production and use

1.2.1	 Production process

Molybdenum trioxide occurs naturally as 
the rare mineral molybdite (Anthony et al., 
2001–2005), but is obtained commercially almost 
exclusively from molybdenite (molybdenum (IV) 
sulfide, MoS2) (Sebenik et al., 2012). Molybdenite 
ore is crushed, ground, and passed through flota-
tion cells to obtain about 90% molybdenum (IV) 
sulfide (Steifel, 2010). The remainder is mainly 
silica, with small amounts of aluminium, copper, 
and iron. Impure molybdenum trioxide, also 
called technical-grade or roasted molybdenum 
sulfide (CAS No.  86089-09-0), is obtained by 
roasting the molybdenum (IV) sulfide concen-
trate in air in a multiple-hearth furnace at a 
temperature of 600–650  °C (Sebenik et al., 
2012). Pure molybdenum trioxide is obtained by 
sublimation or by wet chemical methods (Steifel, 
2010). Other methods of molybdenum trioxide 
production exist. Hydrometallurgical routes, 
including solvent extraction, ion exchange, 
membrane-based separation, and precipitation, 

MOLYBDENUM TRIOXIDE 



IARC MONOGRAPHS – 118

268

have the advantage of producing molybdenum 
trioxide without emission of sulfur dioxide 
(Lasheen et al., 2015).

1.2.2	 Production volume

World molybdenum (as Mo metal) mine 
production was estimated at 281  000 tonnes 
for 2014 (Polyak, 2016). Table 1.1 lists the mine 
production by country (more specific infor-
mation about MoO3 is not available). About 
half of the total amount of mine production is 
converted into and used as molybdenum trioxide 
(Christensen et al., 2015). National production 
volume of molybdenum trioxide in the USA was 
estimated at 83 290 tonnes for 2014 (EPA, 2016).

Molybdenum trioxide is a high production 
volume chemical. High production volume 
chemicals “are produced or imported at levels 
greater than 1,000 tonnes per year in at least one 
member country/region” of the Organisation 
for Economic Co-operation and Development 
(OECD, 2009).

1.2.3	 Use

Technical-grade molybdenum trioxide is 
primarily and directly used in steel production. 
The rest is used in the synthesis of various molyb-
date salts (Stiefel, 2011).

In 2014 in the USA, metallurgical applica-
tions (corrosion inhibitor) accounted for ~88% of 
consumption. Christensen et al. (2015) estimated 
the world consumption of molybdenum trioxide 
to be divided between: ~80–90% for various steel 
applications; ~10% for catalysts (mainly for refin-
eries); and ~5% for super alloys.

The lead REACH (Registration, Evaluation, 
Authorisation and Restriction of Chemicals) 
registrant for molybdenum trioxide lists the 
current uses for this chemical as: catalyst manu-
facturing, an intermediate in the manufacture 
of molybdenum chemicals, surface treatment 
substances, molybdenum metal, frits and enamels 

(blue dye), liquid industrial paints, pigments, 
water treatment chemicals, lubricant additives, 
lubricants and greases, and an intermediate for 
reduction to molybdenum dioxide in steel and 
alloy production and in steel and alloy powder 
production (CLIMAX, 2016).

Furthermore, recent research initiatives 
indicate that uses of molybdenum trioxide 
may increase in the future due to its interesting 
properties in new technologies, for example: 
solar energy harvesting and storing, and bioc-
idal activity on material surfaces (Zollfrank 
et al., 2012; Lou et al., 2014). Some applications  
(catalyst, coatings, and ceramics) are facilitated 
by the use of molybdenum trioxide in the form of 
nanoparticles or nanotubes in combination with 
other molybdenum compounds (Jin et al., 2016).

1.3	 Measurement and analysis

Molybdenum trioxide is measured by the 
analyte molybdenum in air, blood, tissue, urine, 
or water samples (Table  1.2). Air sampling to 
determine molybdenum can be performed using 
the National Institute for Occupational Safety 
and Health (NIOSH) Method 7300 or 7303 
for elements by inductively coupled plasma. 

Table 1.1 Mine production of molybdenum,  
by country, 2014

Country Production (tonnes)

China 103 000
USA 68 200
Chile 48 770
Peru 17 018
Mexico 14 370
Canada 9 698
Armenia 7 100
Russian Federation 4 800
Islamic Republic of Iran 4 000
Mongolia 1 999
Turkey 1 300
Uzbekistan 530
Adapted from Polyak (2016)
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Molybdenum can be determined in other 
matrices by inductively coupled plasma mass 
spectrometry.

1.4	 Occurrence and exposure

Molybdenum trioxide occurs naturally as 
the rare mineral molybdite. However, environ-
mental levels of molybdenum trioxide have not 
been reported in the literature; it is therefore total 
elemental molybdenum that is discussed here.

1.4.1	 Environmental occurrence

Environmental exposure to molybdenum is 
negligible for most people.

(a)	 Water/air

Most natural water worldwide contains low 
concentrations of molybdenum of <  2–3  µg/L. 
Around areas of molybdenum mining or other 
industrial manufacturing of molybdenum, 
concentration in water may reach up to 400 µg/L 
in surface water and up to 25  000  µg/L in 
groundwater (Barceloux & Barceloux, 1999). 
Molybdenum concentration in water can vary 
widely over short distances, but waters with an 
elevated pH will have increased solubility of 
molybdenum and increased leaching of molyb-
denum from soil to water (Runnells et al., 
1977). Molybdenum in ambient air is typically 
very low, with concentrations in urban areas 

of 0.01–0.03 µg/m3 and approximately 10 times 
lower in rural areas, except where molybdenum 
mining or manufacturing occurs (Barceloux & 
Barceloux, 1999). Molybdenum trioxide could be 
present in waste water, with the majority coming 
from industrial sites that use molybdenum 
trioxide in catalysts or alloys. However, in coun-
tries where recycling facilities exist, molyb-
denum is often recycled due to its economic 
value. For this reason, it is generally believed that 
molybdenum trioxide in wastewater streams is 
typically low in developed countries (Danish 
Ministry of the Environment, 2015). For the 
majority of people worldwide, ambient air and 
drinking-water exposures to molybdenum are 
negligible compared with dietary intake, espe-
cially for exposures to molybdenum trioxide 
(Lener & Bíbr, 1984).

(b)	 Soil

The typical range of molybdenum concen-
trations found in soil is 1–2  mg/kg (Barceloux 
& Barceloux, 1999). The concentration of molyb-
denum varies considerably with the type of soil, 
however (Runnells et al., 1977); sedimentary 
soils contain higher concentrations of molyb-
denum than acidic soils, with molybdenum at 
concentrations of > 0.7 mg/kg and < 0.2 mg/kg, 
respectively (Barceloux & Barceloux, 1999).

Table 1.2 Analytical methods for molybdenum in different matrices

Sample matrix Assay 
procedure

Limit of 
detection

Method/reference

Air ICP-AES 0.8 ng/mL NIOSH 7300, NIOSH 7303
Blood (plasma or whole blood) ICP-AES 10 µg/10 mL NIOSH 8005
Plasma ICP-MS Keyes & Turnlund (2002)
Tissue ICP-AES 10 µg/g NIOSH 8005
Urine ICP-AES 2.0 µg/50 mL NIOSH 8310
Water (drinking, surface, and domestic and industrial wastewaters) ICP-AES 12 µg/L EPA 200.7
Water AAS 0.1 mg/L Franson (1985)
AAS, atomic absorption spectrometry; AES, atomic emission spectrometry; ICP, inductively coupled plasma; MS, mass spectrometry
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(c)	 Food

Diet is the major source of exposure to 
molybdenum for most people. Dietary analysis of 
56 adults in Germany found molybdenum intake 
to be < 100 µg/day (Anke et al., 1991). Studies in the 
USA found a range of intakes over 120–240 µg/day 
for adults (Tsongas et al., 1980). Similarly, the 
European Food Safety Authority reported that 
dietary intake in European adults ranges over 
58–57 µg/day, and the United States Institute of 
Medicine reported a range of 120–240 µg/day 
in the USA (Institute of Medicine, 2001; EFSA, 
2013). Health Canada reported similar intakes in 
adults; during 1993–1999, average dietary intake 
of molybdenum for Canadians of all ages was 
estimated at 2.66 µg/kg body weight (bw) per day 
(Health Canada, 2011). Foods with the highest 
molybdenum content include legumes, leafy 
vegetables, beans, cereal grains, kidney, liver,  
and milk. Only small quantities are found in 
fruits, sugar-rich foods, and meat. The United 
States Institute of Medicine has established re- 
commended dietary allowances, which is the 
average daily intake sufficient to meet nutrient 
requirements of healthy people, based on age 
and sex. These range from 2  µg/day in infants 
to 45 µg/day in adult men and women (Institute 
of Medicine, 2001). Molybdenum deficiency 
is extremely rare, as is molybdenum over-
dose due solely to dietary intake. A tolerable 
upper intake level for molybdenum was deter-
mined by the European Food Safety Authority 
to be 0.01  mg/kg bw per day, equivalent to 
0.6 mg/person per day for adults (EFSA, 2006).

1.4.2	 Exposure of the general population

The general population will typically only be 
exposed to molybdenum through diet, including 
drinking-water, with negligible exposure due to 
ambient air or soil. The United States National 
Health and Nutrition Examination Survey 
(NHANES) measures molybdenum in urine 
of the general USA population. In 484 people 

aged 18–55 years sampled for NHANES during 
2011–2012, geometric mean urine molybdenum 
was 41.5 µg/L; no samples fell below the analyt-
ical limit of detection (Lewis & Meeker, 2015). 
The Canadian Health Measures Survey (CHMS) 
also measures for molybdenum in urine and 
blood in the general Canadian population. In all 
5319 subjects aged 6–79 years measured during 
2007–2009, the geometric mean urine molyb-
denum was 36.3 µg/L in urine and 0.68 µg/L in 
blood. In adults aged 20–79 years, the geometric 
mean urine and blood molybdenum were 
32.9  µg/L and 0.67  µg/L, respectively (Health 
Canada, 2011). During 2012–2013 11 healthy 
men in China with no occupational history of 
working with metals gave multiple urine samples 
over a 3-month period. Mean molybdenum was 
98.5  µg/L in 529 spot urine samples collected, 
with the first morning sample having a higher 
mean molybdenum concentration of 122.8 µg/L 
(Wang et al., 2016).

The molybdenum content in human breast-
milk ranges from <  0.1  µg/L to > 60 µg/L, 
depending on days postpartum and mothers’ 
diet. Infant formulas have more molybdenum 
than breast-milk (Gunshin et al., 1985; Casey & 
Neville, 1987; Yoshida et al., 2008; Mohd-Taufek 
et al., 2016).

1.4.3	 Occupational exposures

See Table 1.3
Common occupations with exposure to 

molybdenum trioxide include mining and 
metallurgy works, steel foundries, and welding 
and other hot work processes using steel.

Exposure to respirable molybdenum dust 
was measured for 25 male workers in a molyb-
denite roasting plant in Denver, Colorado in 
the 1970s, at which stationary dust samples 
were collected from three locations. Results 
showed that the 8-hour time-weighted average 
molybdenum concentration ranged over 
1.02–4.49 mg/m3. All 25 workers gave a plasma 
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Table 1.3 Occurrence of molybdenum in facilities using molybdenum trioxide

Reference Location, 
collection 
date

Occupation 
description

Sampling matrix, n Exposure 
levela

Exposure range Comments/additional data

Walravens 
et al. (1979)

USA, 
1979

Roasting plant miners Respirable air, n = 3 NR 1.02–4.49 mg/m3 Samples taken at three different locations in 
plant: base of roaster (1.02 mg/m3), first tier 
(1.58 mg/m3), and second tier (4.49 mg/m3) 
Total dust stationary samples collected at the 
first tier and second tier of the roasting plant 
18 people not in the roasting plant

Total dust, 
environmental, 
n = 2

NR 9.11–33.28 mg/m3

Plasma, n = 25 NR 9–365 μg/L
Student/research 
personnel

Urine, n = 14 1790 μg/L 120–11 000 μg/L
Urine, n = 18 53.66 μg/L 20–230 μg/L
Plasma, n = 24 NR < LOD–34 µg/L

Kucera et al. 
(2001)

NS Stainless steel vessel 
production 
welders

Total dust, 
personal, n = 15, 8 h

2.25 µg/m3 0.27–9.7 µg/m3 Closed-face cassette with 0.8 µm pores

Stainless steel vessel 
production 
drillers, cutters, 
assemblers

Total dust, 
personal, n =15, 
8 h

0.34 µg/m3 0.14–0.60 µg/m3

Stainless steel vessel 
production 
polishers

Total dust, 
personal, n = 9, 
8 h

1.86 µg/m3 0.03–4.2 µg/m3

Huvinen et al. 
(2002)

Finland, 
1999

Stainless steel 
production, 
steel melting shop

Air, personal, 
n = 6

Median 
0.3 µg/m3

Maximum 2.3 µg/m3 Details on sampling method not specified

a	 Arithmetic mean unless indicated otherwise
LOD, limit of detection; NR, not reported; NS, not specified
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sample, and 14 workers gave a urine sample. 
Plasma molybdenum concentrations ranged 
over 9–365 µg/L and urine molybdenum concen-
trations over 120–11 000 µg/L (Walravens et al., 
1979). These urine values are greater than those 
found by NHANES and Health Canada in the 
general population (see Section 1.4.2).

Twenty stainless steel vessel production 
workers were monitored for exposure to molyb-
denum in dust in a study published in 2001. The 
stainless steel used in the plant contained an 
average of 2.0–2.5% molybdenum. Workers were 
divided into groups defined by occupational task: 
welding, polishing, or other (drilling, cutting, or 
assembling). Molybdenum exposure for each 
group had a mean value of 0.3–2 µg/m3 over the 
range 0.03–9.7 µg/m3 (see Table 1.3; Kucera et al., 
2001).

Another study of occupational exposure 
published in 2002 took personal and area samples 
of molybdenum in a steel melting shop. From 
6 personal samples and 17 stationary samples, 
the median molybdenum concentration was 
0.3  µg/m3 (maximum value: 2.3  µg/m3) and 
0.6  µg/m3 (maximum value: 4  µg/m3), respect-
ively (Huvinen et al., 2002).

[The Working Group noted that air expo-
sures to molybdenum were about three orders 
of magnitude higher at the Colorado roasting 
plant compared with the metal working shops. 
However, the samples at the roasting plant were 
acquired several decades earlier than those from 
the metalworking shops.]

1.5	 Regulations and guidelines

A specific limit value for occupational expo-
sure to molybdenum trioxide of 0.5 mg/m3 as an 
8-hour total weight average (TWA) concentra-
tion only exists in Finland. No values for short-
term limit exist (GESTIS, 2017).

For insoluble molybdenum compounds 
in general, many countries have limit values 
ranging over 3–15  mg/m3 as an 8-hour TWA 

concentration. Corresponding short-term limit 
values range over 10–60  mg/m3. For soluble 
molybdenum compounds these ranges are 
0.5–5  mg/m3 (8-hour TWA) and 10–20  mg/m3 
(short-term limit value as Mo) (GESTIS, 2017).

Molybdenum trioxide has an official harmo-
nized classification in the EU Classification 
and Labelling Regulation. In Regulation (EC) 
No. 1272/2008, it is classified as a Category 2 
Carcinogen H351: “Suspected of causing cancer” 
as well as STOT SE 3: H335: “May cause respira-
tory irritation” and H319: “Causes serious eye 
irritation” (ECHA, 2016b).

2.	 Cancer in Humans

No data were available to the Working Group.

3.	 Cancer in Experimental Animals

3.1	 Mouse

See Table 3.1

3.1.1	 Inhalation

In a well-conducted good laboratory practice 
(GLP) study, groups of 50 male and 50 female 
B6C3F1 mice (age, 6 weeks) were exposed by 
whole-body inhalation to molybdenum trioxide 
(purity, ~99%; mass median aerodynamic diam-
eter, 1.3–1.8 µm) at concentrations of 0, 10, 30, 
or 100 mg/m3 for 12 min (T90) plus 6 hours per 
day, 5 days per week for up to 105 weeks on study 
(NTP, 1997; Chan et al., 1998). The body weights 
of the female mice were generally greater than 
those of the control group from week 11 until the 
end of the study. The survival of treated male and 
female mice was similar to that of controls. The 
incidence of metaplasia of the alveolar epithe-
lium was significantly increased in all exposed 
groups of males and females. The incidences of 
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Table 3.1 Studies of carcinogenicity with molybdenum trioxide in experimental animals

Study design 
Species, strain (sex) 
Age at start 
Duration 
Reference

Route 
Agent tested, purity 
Vehicle 
Dose(s) 
No. of animals at start 
No. of surviving animals

Incidence or 
multiplicity of lung 
tumours

Significance Comments

Full carcinogenicity 
Mouse, B6C3F1 (M) 
6 wk 
105 wk 
NTP (1997)

Inhalation (whole-body 
exposure) 
MoO3, ~99% 
Clean air 
0, 10, 30, 100 mg/m3 
6 h + 12 min (T90)/d, 5 d/wk 
50, 50, 50, 50 
36, 33, 25, 37

Bronchioloalveolar adenoma Principal strengths: GLP study; physiological 
exposure route; both sexes used 
Statistical test: logistic regression test

9/50, 14/50, 10/49, 9/50 NS
Bronchioloalveolar carcinoma
2/50, 16/50, 14/49, 10/50 P < 0.001 (low dose), 

P < 0.001 (mid-dose),  
P = 0.017 (high dose)

Bronchioloalveolar adenoma or carcinoma 
(combined)
11/50, 27/50, 21/49, 18/50 P = 0.001 (low dose), 

P = 0.020 (mid-dose)
Full carcinogenicity 
Mouse, B6C3F1 (F) 
6 wk 
105 wk 
NTP (1997)

Inhalation (whole-body 
exposure) 
MoO3, ~99% 
Clean air 
0, 10, 30, 100 mg/m3 
6 h + 12 min/d, 5 d/wk 
50, 50, 50, 50 
25, 31, 33, 35

Bronchioloalveolar adenoma Principal strengths: GLP study; physiological 
exposure route; both sexes used 
Historical control incidence for NTP studies: 
adenoma, 61/939 (6.5 ± 3.2%) [range, 0–14%]; 
carcinoma, 38/939 (4.1 ± 3.2%) [range, 0–12%]; 
adenoma or carcinoma (combined), 97/939 
(10.3 ± 3.7%) [range, 0–16%] 
Statistical test: logistic regression test

1/50, 4/50, 8/49, 9/49 P = 0.018 (trend), 
P = 0.036 (mid-dose), 
P = 0.016 (high dose)

Bronchioloalveolar carcinoma
2/50, 2/50, 0/49, 6/49 P = 0.024 (trend)
Bronchioloalveolar adenoma or carcinoma 
(combined)
3/50, 6/50, 8/49, 15/49 P < 0.001 (trend),  

P = 0.003 (high dose)
Full carcinogenicity 
Mouse, A/J (M+F 
combined) 
6–8 wk 
30 wk 
Stoner et al. (1976)

Intraperitoneally 
MoO3, > 97% 
Saline 
0, 950, 2735, 4750 mg/kg bw 
19 times 
20, 20, 20, 20 
19, 13, 19, 15

Tumour [presumably adenomas] incidence Principal limitations: limited histopathological 
examination  
Equal number of M and F; incidences for M and F 
were combined

7/19, 4/13, 7/19, 10/15 [NS]
Tumour multiplicity
0.42 ± 0.10, 0.30 ± 0.08, 
0.50 ± 0.13, 1.13 ± 0.20*

*P < 0.05 (Student’s 
t test)
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Study design 
Species, strain (sex) 
Age at start 
Duration 
Reference

Route 
Agent tested, purity 
Vehicle 
Dose(s) 
No. of animals at start 
No. of surviving animals

Incidence or 
multiplicity of lung 
tumours

Significance Comments

Full carcinogenicity 
Rat, F344/N (M) 
6 wk 
106 wk 
NTP (1997)

Inhalation (whole-body 
exposure) 
MoO3, ~99% 
Clean air 
0, 10, 30, 100 mg/m3 
6 h + 12 min/d, 5 d/wk 
50, 50, 50, 50 
17, 10, 16, 17

Bronchioloalveolar adenoma Principal strengths: GLP study; physiological 
exposure route; both sexes used 
Principal limitations: poor survival of exposed and 
control animals 
Historical control incidence at laboratory: adenoma, 
16/347 (4.6 ± 4.0%) [range, 0–10%]; carcinoma, 4/347 
(1.2 ± 1.1%) [range, 0–2%]; adenoma or carcinoma 
(combined), 20/347 (5.8 ± 3.7%) [range, 0–10%] 
Adjusted incidences: adenoma, 0.0, 0.0, 0.0, 14.8%; 
adenoma or carcinoma (combined), 0.0, 5.3, 4.3, 
17.4% 
Terminal rate: adenoma, 0/17, 0/10, 0/16, 1/17; 
adenoma or carcinoma (combined), 0/17, 0/10, 0/16, 
1/17 
Statistical test: logistic regression test

0/50, 0/50, 0/50, 3/50 P = 0.017 (trend)
Bronchioloalveolar carcinoma
0/50, 1/50, 1/50, 1/50 NS
Bronchioloalveolar adenoma or carcinoma 
(combined)
0/50, 1/50, 1/50, 4/50 P = 0.034 (trend)

Inhalation (whole-body 
exposure) 
MoO3, ~99% 
Clean air 
0, 10, 30, 100 mg/m3 
6 h + 12 min/d, 5 d/wk 
50, 50, 50, 50 
28, 24, 24, 23

Bronchioloalveolar adenoma or carcinoma 
(combined)
0/50, 2/50, 0/50, 2/50 NS

bw, body weight; d, day(s); F, female; GLP, good laboratory practice; M, male; min, minute(s); MoO3, molybdenum trioxide; NS, not significant; NTP, National Toxicology Program; wk, 
week(s)

Table 3.1   (continued)
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carcinoma of the bronchioloalveolar were signif-
icantly increased in male mice (2 out of 50, 16 out 
of 50, 14 out of 49, and 10 out of 50) for all treated 
groups, and there was a significant positive  
trend in the incidence in females (2 out of 50, 
2 out of 50, 0 out of 49, and 6 out of 49). The 
incidences of adenoma of the bronchioloalveolar 
were significantly increased in female mice (with 
a significant positive trend) exposed to 30 mg/m3 
and 100 mg/m3 (1 out of 50, 4 out of 50, 8 out of 49, 
and 9 out of 49) and the incidences of adenoma 
or carcinoma (combined) of the bronchioloalve-
olar were significantly increased in female mice 
exposed to 100 mg/m3 (3 out of 50, 6 out of 50, 
8 out of 49, and 15 out of 49) and in male mice 
exposed to 10 mg/m3 and 30 mg/m3 (11 out of 50, 
27 out of 50, 21 out of 49, and 18 out of 50). [The 
Working Group noted the strengths of the study: 
this was a GLP study, a physiological exposure 
route was employed, and both sexes were used.]

3.1.2	 Intraperitoneal injection

Four groups of 20 A/J mice (equal numbers 
of male and female mice; age, 6–8 weeks) were 
given intraperitoneal injections of 0 (vehicle 
control), 950, 2735, or 4750 mg/kg bw (total doses) 
reagent-grade molybdenum trioxide (purity 
>  97%; impurities unspecified) in saline three 
times per week for a total of 19 injections (except 
saline controls: 24 injections). After 30 weeks, 13, 
19, and 15 animals were still alive in the three 
treated groups. At that time, these animals and 
19 surviving vehicle controls were killed and their 
lungs examined macroscopically for tumour 
induction; a few of the grossly visible nodules 
were examined microscopically to confirm the 
typical appearance of adenomas of the lung. 
The incidences of mice with lung tumours were 
7 out of 19, 4 out of 13, 7 out of 19, and 10 out 
of 15 [no statistically significant differences], 
and the average number of lung tumours per 
mouse (multiplicity) was 0.42 ± 0.10, 0.30 ± 0.08, 
0.50 ± 0.13, and 1.13 ± 0.20 (average ± standard 

error) for the 0, 950, 2735, or 4750  mg/kg bw 
groups, respectively. Lung tumour multiplicity 
in the 4750  mg/kg bw group was significantly 
(P < 0.05) higher than the vehicle control group 
(Stoner et al., 1976). [The Working Group noted 
the limitations of the study: the non-physiological 
route of exposure, the limited histopathological 
examination, and the combination of tumour 
incidences for male and female mice.]

3.2	 Rat

See Table 3.1

3.2.1	 Inhalation

In a well-conducted GLP study, groups of 
50 male and 50 female Fischer 344/N rats (age, 
6 weeks) were exposed by whole-body inhalation 
to molybdenum trioxide (purity, ~99%; mass 
median aerodynamic diameter, 1.3–1.8  µm) at 
concentrations of 0, 10, 30, or  100 mg/m3 for 
6  hours plus 12  min per day, 5  days per week 
for 106 weeks on study (NTP, 1997; Chan et al., 
1998). Mean body weights of male and female 
exposed rats were similar to those of controls 
throughout the study. The survival of exposed 
and control rats was poor, but survival of male 
and female exposed rats was similar to those of 
their respective controls. The incidence of chronic 
inflammation of the alveolar was significantly 
increased in male and female treated rats. The 
incidences of adenoma of the bronchioloalveolar 
(0 out of 50, 0 out of 50, 0 out of 50, and 3 out 
of 50 for 0, 10, 30, and 100 mg/m3, respectively) 
and of adenoma or carcinoma (combined) of the 
bronchioloalveolar (0 out of 50, 1 out of 50, 1 out 
of 50, and 4 out of 50) were increased in male rats 
with a significant positive trend (P = 0.017 and 
P  =  0.034, respectively); these incidences were 
within historical control incidence ranges. The 
incidences of carcinoma of the bronchioloalve-
olar were 0 out of 50, 1 out of 50, 1 out of 50, and 
1 out of 50 in male rats. No significant increase 
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in the incidence of lung neoplasms occurred 
in female rats. [The Working Group noted the 
strengths of the study: this was a GLP study, a 
physiological exposure route was employed, and 
both sexes were used. The Working Group also 
noted the poor survival of exposed and control 
male and female rats.]

4.	 Mechanistic and Other 
Relevant Data

4.1	 Toxicokinetic data

4.1.1	 Humans

No studies on molybdenum trioxide (MoO3) 
in exposed humans were available to the Working 
Group.

Regarding elemental molybdenum (Mo), 
several publications from the same labora-
tory reported on toxicokinetics of radiolabelled 
elemental molybdenum following exposure 
to four healthy men. Turnlund and colleagues 
used a compartmental model based on isotope 
excretion patterns to determine molybdenum 
absorption, distribution, and elimination 
(Turnlund et al., 1995, 1998, 1999; Thompson 
& Turnlund, 1996; Novotny & Turnlund, 2006). 
Four healthy men were fed a low-molybdenum 
diet (22 μg/day or 0.23 μmol/day) for 102 days, 
followed by a high-molybdenum diet (467 μg/day 
or 4.9 μmol/day) for 18 days. Molybdenum was 
very efficiently absorbed, distributed, and 
excreted, primarily in the urine (Turnlund et al., 
1995; Thompson & Turnlund, 1996).

4.1.2	 Experimental systems

Exposure-dependent increases in blood 
molybdenum concentrations were seen in 
male and female F344/N rats and B6C3F1 mice 
exposed to 0, 10, 30, or 100 mg/m3 molybdenum 
trioxide via inhalation for 106 and 105 weeks, 

respectively (NTP, 1997; Chan et al., 1998; see 
Section 3). Blood concentrations of molybdenum 
were greater in exposed male rats than in exposed 
female rats. [The Working Group noted that the 
reported effects on respiratory tract tissues of 
male rats and female mice suggest distribution 
of molybdenum to lungs, although this was not 
directly examined in these studies.]

Metabolism and excretion of molybdenum 
were not reported in either of these studies.

4.2	 Mechanisms of carcinogenesis

The sections that follow summarize the 
evidence for key characteristics of carcinogens 
(Smith et al., 2016), addressing whether molyb-
denum trioxide is genotoxic and induces inflam-
mation. There were insufficient data for the 
evaluation of other key characteristics of human 
carcinogens.

4.2.1	 Genetic and related effects

See Table 4.1
No data in exposed humans, human cells in 

vitro, or in experimental systems in vivo were 
available to the Working Group.

Molybdenum trioxide did not induce 
sister-chromatid exchanges or chromosomal 
aberrations in cultured Chinese hamster 
ovary cells in vitro (NTP, 1997). Molybdenum 
trioxide was not mutagenic in the five tested 
strains of Salmonella typhimurium. All tests 
were conducted with and without S9 metabolic  
activation enzymes (NTP, 1997).

4.2.2	Chronic inflammation

In a 106-week chronic inhalation study in 
male and female F344/N rats, molybdenum 
trioxide increased the incidence and severity 
of inflammation in the lung (NTP, 1997; Chan 
et al., 1998; Ozaki et al., 2002; see Section 3). This 
effect was not observed in mice.
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4.2.3	Other mechanisms

Data on other key characteristics of carcino-
gens were sparse, and no such data were available 
to the Working Group from exposed humans or 
from experimental systems in vivo.

Molybdenum trioxide nanoplates were more 
cytotoxic to the invasive MCF-7 breast cancer 
cells than the MCF-7 parental cell line, with 
significant differences in cytotoxicity starting at 
50 μg/mL (Anh Tran et al., 2014).

In a mouse germline stem cell model, 
molybdenum trioxide nanoparticles were more 
cytotoxic than soluble molybdenum salts. The 
nanoparticulate molybdenum exerted its cyto-
toxic effects via cellular metabolic activity, but 
only at higher doses (≥  50  μg/mL); very low 
concentrations (5–10 μg/mL) induced membrane 
leakage (Braydich-Stolle et al., 2005).

Molybdenum trioxide gave positive results 
in the assay for cell transformation in the Syrian 
hamster embryo, requiring a dose of ≥ 75 μg/mL 
to demonstrate morphological transformation 
(Kerckaert et al., 1996).

Lewis et al. (1996) noted that molybdenum 
trioxide has been predicted to generate oxygen 
radicals due to its metal ion redox potential 
(Lewis et al., 1996).

4.3	 Cancer susceptibility

No data were available to the Working Group.

4.4	 Other adverse effects

In a chronic (106-week) inhalation study 
in male F344/N rats, molybdenum trioxide  
exposure (100 mg/m3 dose only) induced fibrosis 
and metaplasia in the lung (NTP, 1997; Ozaki 
et al., 2002).

5.	 Summary of Data Reported

5.1	 Exposure data

Molybdenum trioxide (MoO3) is a white solid 
with rare natural occurrence in the form of the 
mineral molybdite. It is obtained commercially 
almost exclusively from roasting molybdenite 
(molybdenum sulfide). Molybdenum trioxide is a 
high production volume chemical. Globally, more 
than 100 000 tonnes of molybdenum trioxide are 
estimated to be produced annually, the majority 
for direct use in steel production. Other signifi-
cant uses include catalysts and super alloys, and 
upcoming developments include the harvesting 
and storing of solar energy, and biocidal activity 

Table 4.1 Genetic and related effects of molybdenum trioxide in experimental systems in vitro

Species Tissue, cell 
line

End-point Test Results Concentration  
(LEC or HIC)

Reference

Without 
metabolic 
activation

With 
metabolic 
activation

Chinese 
hamster

CHO cells Chromosomal 
damage

Chromosomal 
aberrations

– – HIC, 10 μg/mL NTP (1997)

Chinese 
hamster

CHO cells Chromosomal 
damage

Sister-chromatid 
exchange

– – HIC, 10 μg/mL NTP (1997)

Prokaryote 
(bacteria)

Null TA100, 
TA1535, 
TA1537, 
TA97, TA98

Mutation Reverse mutation – – HIC, 
10 000 µg/plate

NTP (1997)

–, negative; CHO, Chinese hamster ovary; HIC, highest ineffective concentration; LEC, lowest effective concentration
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on material surfaces. Environmental expo-
sures to molybdenum trioxide are negligible. 
Occupational exposures may occur mainly in 
mining and metallurgy works, steel foundries, 
and welding and other hot work processes using 
steel. Molybdenum air concentrations meas-
ured in a plant producing molybdenum trioxide 
in the 1970s ranged from 1.02 to 4.49  mg/m3, 
and associated plasma and urine molybdenum 
concentrations were significantly higher than 
in the general population. In contrast, in two 
recent studies of metal workers, molybdenum air 
concentrations were all < 0.01 mg/m3.

5.2	 Human carcinogenicity data

No data were available to the Working Group.

5.3	 Animal carcinogenicity data

Two well-conducted carcinogenicity studies  
under GLP conditions are described in 
Sections  3.1.1 and 3.2.1: an inhalation study in 
male and female mice and an inhalation study in 
male and female rats, respectively. Section 3.1.2 
describes an intraperitoneal injection study in 
male and female strain A mice.

In the inhalation study in mice, molybdenum 
trioxide significantly increased the incidence of 
carcinoma of the bronchioloalveolar in male 
mice (with a significant positive trend), the inci-
dence of adenoma of the bronchioloalveolar in 
female mice (with a significant positive trend), 
and the incidence of adenoma or carcinoma 
(combined) of the bronchioloalveolar in female 
(with a significant positive trend) and male mice. 
There was also a positive trend in the incidence 
of carcinoma of the bronchioloalveolar in female 
mice. In the inhalation study in rats, there was 
no statistically significant increase in tumour 
incidence in male and female rats. In male rats, 
however, there was a significant positive trend 
in the incidence of adenoma and adenoma or 

carcinoma (combined) of the bronchioloalveolar; 
the incidences were within historical control 
ranges. In the intraperitoneal injection study in 
mice, molybdenum trioxide increased the multi-
plicity (but not the incidence) of lung tumours 
(presumably adenomas) in male and female mice 
combined.

5.4	 Mechanistic and other relevant 
data

No toxicokinetic studies of molybdenum 
trioxide in humans or in experimental animals 
were available.

With respect to the key characteristics of 
human carcinogens, there is weak evidence that 
molybdenum trioxide is genotoxic or induces 
chronic inflammation. No data were available in 
exposed humans. Data on other key characteris-
tics of carcinogens were sparse.

No in vivo genotoxicity assay data were avail-
able. In vitro, molybdenum trioxide was positive 
in an assay for cell transformation but was not 
genotoxic in Chinese hamster ovary cells or in 
several Salmonella strains.

Molybdenum trioxide increased the inci-
dence and severity of chronic lung inflammation 
in a 2-year inhalation study in both male and 
female rats, but not in mice. An analysis of the 
male rats from this bioassay showed increased 
incidence of lung fibrosis and metaplasia.

6.	 Evaluation

6.1	 Cancer in humans

There is inadequate evidence in humans for 
the carcinogenicity of molybdenum trioxide.
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6.2	 Cancer in experimental animals

There is sufficient evidence in experimental 
animals for the carcinogenicity of molybdenum 
trioxide.

6.3	 Overall evaluation

Molybdenum trioxide is possibly carcinogenic 
to humans (Group 2B).
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