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Carcinogenicity in humans

Exposure to 4-aminobiphenyl, o-tolu
idine, 2-naphthylamine, and benzi
dine (Fig.  2.1) has been consisten-
tly associated with the induction 
of cancer of the urinary bladder in 
humans. This association is based 
upon occupational exposures, pri-
marily of workers in the rubber and 
dye industries (IARC, 2010, 2012a). 
Similarly, occupational exposure to 
4,4′-methylenebis(2-chloroaniline) 
(MOCA; Fig. 2.1), a curing agent for 
polyurethane pre-polymers, causes 
cancer of the bladder in humans, al-
though the epidemiological data are 
not as strong as those for the other 
agents (IARC, 2010, 2012a). Certain 
azo dyes that are used in commercial 
products, for example, Direct Black 
38, Direct Blue 6, and Direct Brown 
95 (Fig. 2.2), are known to undergo 
azo reduction in vivo to yield the car-
cinogen benzidine. The overall eval-

uation for these dyes was raised to 
Group  1 based on this mechanistic 
information, although at present the 
corresponding epidemiological data 
are considered to provide inade-
quate evidence for the carcinogeni-
city of these dyes in humans (IARC, 
2010, 2012a).

Cigarette smoke contains 4-amino
biphenyl, o-toluidine, and 2-naphthyl-
amine, and tobacco smoking caus-
es cancer of the bladder in humans 
(IARC, 1986, 2004, 2010, 2012a, b). 
The contribution of 4-aminobiphenyl, 
o-toluidine, and 2-naphthylamine 
to the induction of smoking-related 
cancer of the bladder is confounded 
by the presence of numerous other 
carcinogens, including carcinogenic 
aromatic amines, in tobacco smoke. 
Cigarette smoking also causes oth-
er cancers (e.g. cancer of the lung, 
oral cavity, and pancreas, and pos-
sibly breast cancer), but at present 
it is unclear whether these cancers 

can be attributed to 4-aminobiphe-
nyl, o-toluidine, 2-naphthylamine, or 
other aromatic amines. Hair dyes 
are an additional source of expo-
sure to 4-aminobiphenyl and o-tolu-
idine (IARC, 2010, 2012a; Lizier and 
Boldrin Zanoni, 2012).

Exposure to phenacetin (Fig. 2.1), 
through its use as an analgesic, 
causes cancer of the kidney and 
ureter in humans (IARC, 2012c). 
Chlornaphazine (Fig. 2.1), a chemo
therapeutic agent that has been used 
for the treatment of Hodgkin lympho-
ma and for the control of polycythae-
mia vera, causes cancer of the 
bladder in humans, presumably due 
to metabolism to 2-naphthylamine 
(IARC, 2012c). An additional source 
of human exposure to o-toluidine 
is from the anaesthetic prilocaine 
(Fig. 2.1) (IARC, 2010, 2012a).

Exposure to herbal remedies pre-
pared from plant species of the ge-
nus Aristolochia has been causally  
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associated with the induction of 
urothelial cancer in humans (IARC, 
2002, 2012c). The induction of 
urothelial tumours has been attributed 
to the presence of aristolochic acid I 
and aristolochic acid II (Fig. 2.1).

Metabolism and DNA adduct 
formation

4-Aminobiphenyl, o-toluidine, 2-naph-
thylamine, and MOCA are metabolized 
to electrophilic N-hydroxyarylamines 
by hepatic cytochrome P450 en-
zymes (IARC, 2010, 2012a, c). The 
N-hydroxyarylamines undergo ac-
id-catalysed reactions with DNA 
to form a variety of DNA adducts. 
With the exception of MOCA, C8-
substituted deoxyguanosine adducts 
are typically the major products, 
along with smaller amounts of N2-
substituted deoxyguanosine and 
N6-substituted deoxyadenosine ad-
ducts (Fig.  2.3); with MOCA, only 
C8-substituted deoxyadenosine ad-
ducts have been detected (IARC, 
2010, 2012a). These DNA adducts 
can also be formed from reactive 
esters of N-hydroxyarylamines (e.g. 
N-sulfoxyarylamines and N-acetoxy
arylamines). Benzidine, which has 
two amino groups, also forms a C8- 
substituted deoxyguanosine adduct 
via a pathway involving an initial 
N-acetylation followed by N-hydroxyl
ation of the remaining amino function 
(Fig. 2.3).

The carcinogenic activity of ar-
omatic amines in the bladder in 
humans has been attributed to an 
initial N-hydroxylation, catalysed 
by hepatic cytochrome P450 en-
zymes, followed by transport of 
the N-hydroxyarylamines to the 
bladder as either aglycones or 
N-glucuronide conjugates (Bois et 
al., 1995). In the bladder lumen, 
the N-hydroxyarylamine N-glucu

ronides can undergo acid-cata-
lysed hydrolysis to release the 
N-hydroxyarylamines, which can 
enter the bladder epithelium and re-
act with DNA either directly or after 
esterification. DNA adducts derived 
from 4-aminobiphenyl, o-toluidine, 
benzidine, and MOCA have been 
detected in bladder tissue or exfoli-
ated bladder cells from exposed in-
dividuals (IARC, 2010, 2012a; Böhm 
et al., 2011; Lee et al., 2014). With 
the exception of MOCA, which forms 
only C8-substituted deoxyadenosine 
adducts, the major – if not the only –  

adduct detected in each instance 
was a C8-substituted deoxyguano-
sine adduct. The importance of uri-
nary acidity for the hydrolysis of the 
N-hydroxyarylamine N-glucuronides 
and perhaps for the reaction of the 
N-hydroxyarylamines with urothe-
lial DNA has been demonstrated 
by the positive correlation between 
urinary acidity and the levels of ben-
zidine DNA adducts in exfoliated 
bladder cells from exposed workers 
(Rothman et al., 1997). Additional 
support for this mechanism comes 
from the observation of a positive 

Fig.  2.1. Structures of IARC Group  1 aromatic amines, drugs that are 
metabolized to Group 1 aromatic amines, and aristolochic acids. MOCA, 
4,4′-methylenebis(2-chloroaniline).
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correlation between urinary acidity 
and the incidence of bladder cancer 
in smokers (Alguacil et al., 2011).

The major metabolic activation 
pathway for aristolochic acid I and 
aristolochic acid II involves nitro 
reduction, followed by cyclization 
to give N-hydroxyaristolactams, 
which – in contrast to other 
N-hydroxyarylamides – do not ap-
pear to require additional activa-
tion to react with DNA (Stiborová 
et al., 2011, 2013). Nonetheless, 
N-hydroxyaristolactams have been 
shown to serve as substrates for 
human sulfotransferases, particu-
larly sulfotransferase family cy-
tosolic 1B member 1 (SULT1B1), 
forming highly reactive N-sulfoxy 
derivatives (Sidorenko et al., 2014). 
The major adducts resulting from 
the N-hydroxyaristolactams are N2-
substituted deoxyguanosines and N6-
substituted deoxyadenosines (Fig. 
2.4) (IARC, 2002, 2012c).

DNA adducts derived from aris-
tolochic acids have been detected 
in renal tissue from patients who 
had been exposed to aristolochic 
acid-containing herbal products and 
from individuals who had consumed 
wheat grains contaminated with 
Aristolochia (IARC, 2002, 2012c; 
Chen et al., 2012; Jelaković et al., 
2012; Schmeiser et al., 2012, 2014; 
Yun et al., 2013, 2014). Typically, 
the major lesion detected is an N6-
deoxyadenosine adduct derived 
from aristolochic acid I, accompa-
nied by smaller amounts of a similar 
adduct derived from aristolochic acid 
II and an N2-deoxyguanosine adduct 
derived from aristolochic acid I.

Alterations in the TP53 
tumour suppressor gene in 
humans

Mutations in the TP53 tumour sup-
pressor gene have been found in 
approximately 50% of all bladder 
cancers in humans (Petitjean et al., 
2007), with G:C base substitution 
mutations occurring to a greater 
extent than A:T base substitution 
mutations. 

TP53 gene mutations have been 
detected in bladder cancer patients 
exposed occupationally to 4-amino
biphenyl, 2-naphthylamine, and/or 
benzidine (Sørlie et al., 1998). The 
mutations occurred exclusively in 

higher-grade tumours (grades 2 or 3, 
i.e. moderately or poorly differentiat-
ed) and only at G:C base pairs. 

Mutant p53 protein has also been 
detected in workers exposed oc-
cupationally to benzidine (Xiang et 
al., 2007). The occurrence and the 
amount of mutant protein were pos-
itively correlated with the level of 
benzidine exposure and the extent 
of neoplastic changes in exfoliated 
urothelial cells.

Urothelial tumours arising from 
exposure to aristolochic acids have 
been consistently shown to carry mu-
tations in the TP53 tumour suppres-
sor gene, of which the most common 
mutation is an A  →  T transversion 
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Fig. 2.2. Structures of benzidine-derived azo dyes. 
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mutation (reviewed in IARC, 2002, 
2012c; Hollstein et al., 2013; see also 
Schmeiser et al., 2012; Chen et al., 
2013; Hoang et al., 2013; Poon et 
al., 2013; Aydin et al., 2014). These 
mutations have been demonstrated 
in tumour tissue from patients who 
had consumed herbal preparations 
containing aristolochic acids and in 
urothelial cancer tissues of patients 
from regions with a high incidence of 
endemic (Balkan) nephropathy due 
to consumption of grains contaminat-
ed with Aristolochia. The presence 
of A  →  T transversion mutations is 
consistent with the observation that 
the major lesion detected in patients 
is an N6-deoxyadenosine adduct de-
rived from aristolochic acid I.

Tumour sites and the 
mechanism of tumour 
induction in experimental 
animals

4-Aminobiphenyl, 2-naphthylamine, 
and MOCA are bladder carcinogens 
in dogs (IARC, 2010, 2012a). Bladder 
tumours also occur in mice treat-
ed with 4-aminobiphenyl. As with 
humans, the induction of bladder 
tumours in dogs is thought to result 
from hepatic N-hydroxylation, trans-
port of the N-hydroxyarylamines 
to the bladder as either aglycones 
or N-hydroxyarylamine N-glucu
ronides, and subsequent hydro-
lysis of the N-hydroxyarylamine 
N-glucuronides in the bladder lumen 
to release the N-hydroxyarylamines. 

Support for this mechanism comes 
from the observation that the DNA 
lesions detected in the bladders of 
dogs treated with 4-aminobiphenyl or 
MOCA appear to be C8-substituted 
deoxyguanosine and deoxyaden-
osine adducts that are identical to 
the DNA adducts detected in blad-
der tissues or exfoliated bladder 
cells from humans exposed to these 
carcinogens (IARC, 2010, 2012a). 
2-Naphthylamine DNA adducts de-
tected in the bladders of dogs ex-
posed to 2-naphthylamine are en-
tirely consistent with a mechanism 
involving the formation of N-hydroxy-
2-naphthylamine (IARC, 2010).

In contrast to what is observed in 
humans, benzidine in not a bladder 
carcinogen in dogs. This lack of car-
cinogenicity has been attributed to 
the inability of dogs to N-acetylate 
aromatic amines (IARC, 2010). With 
most aromatic amines, N-acetylation 
is considered to be a detoxifica-
tion event; however, with benzi-
dine, N-acetylation appears to be 
required to give N-acetylbenzidine, 
which undergoes a subsequent 
N-hydroxylation of the second amino 
function. This metabolic pathway oc-
curs in humans but not in dogs.

4-Aminobiphenyl, o-toluidine, 
2-naphthylamine, benzidine, ben-
zidine-based dyes, and MOCA in-
duce hepatocellular tumours in mice 
(IARC, 2010, 2012a). DNA adducts 
derived from 4-aminobiphenyl and 
benzidine have been examined in liv-
er tissue from exposed mice, and the 
major DNA lesions detected in each 
instance were C8-substituted deoxy
guanosine adducts, consistent with 
formation of an N-hydroxyarylamine 
intermediate (IARC, 2010). In rats, 
DNA adducts derived from benzi-
dine-based dyes and MOCA have 
been examined in the liver, which 
is also a target tissue for these  

Fig. 2.3. Structures of representative DNA adducts obtained from Group 1 
aromatic amines. dR, deoxyribose. 
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carcinogens, and again the major 
DNA adducts detected in each in-
stance were consistent with forma-
tion of an N-hydroxyarylamine inter-
mediate (IARC, 2010).

In mice, there appears to 
be a balance between hepatic 
N-acetylation, which is considered 
to be a detoxification step, and he-
patic N-hydroxylation, which is con-
sidered to be an activation step. 
Should N-hydroxylation occur, the 
N-hydroxyarylamines can be further 
activated by hepatic O-acetylation to 
yield O-acetoxyarylamines, which 
can give rise to the DNA adducts 
detected in liver tissue (IARC, 2010). 

C8-substituted deoxyguanosine ad
ducts have also been detected in 
the bladder DNA of mice treated 
with 4-aminobiphenyl (Poirier et al., 
1995). These adducts presumably 
arise from hepatic N-hydroxylation 
and possibly O-acetylation of 
N-hydroxy-4-aminobiphenyl in the 
bladder epithelium.

The carcinogenicity of aristolochic 
acids has been assessed in rats and 
to a lesser extent in mice and rab-
bits, primarily by oral dosing (IARC, 
2002, 2012c). Aristolochic acid I and 
mixtures of aristolochic acids I and 
II consistently induce tumours of the 
forestomach in rats. Tumours of the 

kidney have been reported to occur 
sporadically. Mice treated with mix-
tures of aristolochic acids I and II 
develop tumours of the forestomach, 
kidney, and lung. In rabbits, mixtures 
of aristolochic acids I and II admin-
istered intraperitoneally are associat-
ed with tumours of the kidney, ureter, 
and peritoneal cavity.

DNA adducts derived from aris-
tolochic acid I and aristolochic acid II 
have been detected in target tissues 
in mice (forestomach, kidney, and 
lung), rats (forestomach and kidney), 
and rabbits (kidney) (IARC, 2002, 
2012c; Debelle et al., 2003; Gillerot 
et al., 2003; Dong et al., 2006; Mei 
et al., 2006; Shibutani et al., 2007; 
Chan et al., 2008; Rosenquist et al., 
2010; Shibutani et al., 2010; Baudoux 
et al., 2012; McDaniel et al., 2012; 
Wang et al., 2012a; Yun et al., 2013, 
2014). Typically, three DNA adducts 
are detected: an N6-deoxyadenosine 
adduct derived from aristolochic acid 
I, an N6-deoxyadenosine adduct de-
rived from aristolochic acid II, and an 
N2-deoxyguanosine adduct derived 
from aristolochic acid I.

Oncogene alterations in 
experimental animals

Transversion mutations at codon 61 
of the H-Ras oncogene (CAA → AAA) 
have been observed in the livers of 
mice treated with 4-aminobiphenyl 
(IARC, 2010, 2012a). G → T trans-
version mutations in the cII trans-
gene have been detected in the liv-
ers and bladders of transgenic mice 
treated with 4-aminobiphenyl (Wang 
et al., 2012b; Yoon et al., 2012). The 
occurrence of these mutations at 
G:C base pairs is consistent with 
the observation that the major DNA 
adduct detected in target tissues  

Part 1 • Chapter 2. Aromatic amines and aristolochic acids

Fig. 2.4. Structures of DNA adducts derived from aristolochic acids through 
N-hydroxyaristolactam intermediates. dR, deoxyribose. 
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after exposure to 4-aminobiphenyl 
is a C8-substituted deoxyguanosine 
adduct.

Transversion mutations at co-
don 61 of the H-Ras oncogene 
(CAA  →  CTA) have been detected 
in tumours from rats and mice fed 
mixtures of aristolochic acids I and 
II and/or aristolochic acid I (IARC, 
2002, 2012c; Wang et al., 2011, 
2012a). A  →  T transversion muta-
tions have also been detected in 
the cII transgene of rats and the cII 
and lacZ transgenes of mice treated 
with mixtures of aristolochic acids I 
and II, and in the gpt transgene of 
mice treated with aristolochic acid I 
or aristolochic acid II (IARC, 2012c; 
McDaniel et al., 2012; Xing et al., 
2012). The occurrence of these mu-
tations at A:T base pairs is consistent 
with the observation that the major 
DNA lesions detected in target tis-
sues after exposure to aristolochic 
acids are N6-substituted deoxyaden-
osine adducts.

Summary

In humans, exposure to aromatic 
amines and aristolochic acids that 
are IARC Group 1 carcinogens has 
been associated with induction of 
tumours of the urinary tract. With ar-
omatic amines, the primary tumour 
site is the bladder; with aristolochic 
acids, the primary site for tumour for-
mation is the kidney. Experimental 
animals treated with aromatic 
amines or aristolochic acids develop 
tumours of the urinary tract; tumours 
also arise in other tissues, primarily 
the liver.

Aromatic amines and aristolo
chic acids that are IARC Group  1 
carcinogens are metabolized by 
amine oxidation (in the case of ar-
omatic amines) or nitro reduction 
(in the case of aristolochic acids) to 
N-hydroxyarylamine metabolites in 
both humans and experimental an-
imals. These N-hydroxyarylamine 
intermediates can react directly 

with DNA or be further activated by 
O-esterification to give rise to DNA 
adducts, predominantly at deoxy-
guanosine (primarily with aromatic 
amines) and deoxyadenosine (pri-
marily with aristolochic acids), in tu-
mour target tissues of humans and 
experimental animals.

Mutations of the TP53 tumour 
suppressor gene consistent with the 
major DNA adducts derived from ar-
omatic amines and aristolochic acids 
have been detected in tumours from 
exposed humans. Similarly, muta-
tions of the H-Ras oncogene con-
sistent with the major DNA adducts 
derived from aromatic amines and 
aristolochic acids have been found 
in target tissues of experimental 
animals.

Disclaimer

The views expressed in this chapter 
do not necessarily represent those 
of the United States Food and Drug 
Administration.
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