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4.1	 Digestion and metabolism

The composition of red meat and processed 
meat, as well as their potential contaminants, 
is described in detail in Section 1 of this 
Monograph. Red meat and processed meat are 
sources of high-quality protein, fat in highly 
variable amounts, and a range of micronutrients.  
The impact of the digestion of protein and fat, and 
the modifications that these macronutrients may 
undergo in the processing of meat, is addressed 
in this section. The specific components of red 
meat and processed meat, including haem iron, 
lipid oxidation products, heterocyclic aromatic 
amines (HAAs), polycyclic aromatic hydrocar-
bons (PAHs), and N-nitroso compounds (NOCs), 
that are potentially involved in carcinogenesis 
are discussed in Section 4.5.

After the hydrolytic breakdown of dietary 
proteins by the activity of proteases, and the 
absorption of the resultant amino acids and 
dipeptides in the proximal gut, fermentation of 
excess proteins may yield toxic compounds. The 
amount of protein that enters the colon depends 
on the protein content of the ingested food and 
the protein digestibility (Windey et al., 2012). 
Digestibility of dairy and animal proteins exceeds 
90%, and is generally higher than the digesti-
bility of plant proteins (70–90%). Storage and 
processing of meat before consumption may alter 
its protein digestibility. Cooking of beef affected 
bovine myofibrillar protein susceptibility to 

proteases in vitro, with increased or decreased 
rates depending on the nature of the proteases, 
and the time and temperature parameters 
(Santé-Lhoutellier et al., 2008). Similarly, Bax 
et al. (2012) reported that ageing and mincing 
had little impact on the in vitro digestion of pig 
muscle proteins, but heat treatment had temper-
ature-dependent effects. At 70  °C, the proteins 
underwent denaturation, enhancing the speed of 
pepsin digestion by increasing enzyme accessi-
bility to protein cleavage sites. At above 100 °C, 
the proteins underwent oxidation-related aggre-
gation, slowing the speed of pepsin digestion, but 
improving overall meat protein digestibility. In 
a study of miniature pigs fed meat from a calf, 
the true ileal protein digestibility averaged 95%, 
and was not affected by cooking temperature 
or by the level of meat intake (Bax et al., 2013). 
Chemical oxidation of pig myofibrillar proteins 
has been shown to reduce protein digestibility in 
vitro (Santé-Lhoutellier et al., 2007). Overall, the 
impact of thermal denaturation and oxidation 
of meat proteins during processing and storage 
on their digestibility, as well as the formation of 
carcinogenic compounds during digestion, is not 
well known.

On a normal mixed diet, the amount of  
protein rather than the source determines the 
quantity that reaches the colon (Silvester & 
Cummings, 1995). Hence, high-meat, low-fibre 
diets may stimulate protein fermentation in the 
colon, producing short- and branched-chain 

4. MECHANISTIC AND  
OTHER RELEVANT DATA
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fatty acids, ammonia, phenolic and indolic 
compounds, and hydrogen sulfide (O’Keefe, 
2008). Bacterial proteases and peptidases are 
more active when pH is neutral to alkaline. In 
the proximal colon, pH is more acidic due to the 
production of short-chain fatty acids, primarily 
from carbohydrate fermentation, but also from 
reductive deamination of many amino acids. 
In more distal parts of the colon, pH is higher 
and protein fermentation becomes more prom-
inent. In relation to meat intake, ammonia and 
hydrogen sulfide are the most critical compounds 
because of their known toxicity (Attene-Ramos 
et al., 2007; Windey et al., 2012). Meat is rich in 
sulfur-containing amino acids, possibly leading 
to higher hydrogen sulfide concentrations in the 
colon. However, hydrogen sulfide in the gut orig-
inates from both the fermentation of sulfur-con-
taining amino acids and dietary sulfate.

A diet high in red meat or processed meat 
may contain high levels of fat. The digestion of 
food lipids consists of a series of enzyme-cata-
lysed steps resulting in absorbable components, 
whereby the release of bile from the gallbladder 
is essential. It has been suggested that dietary 
fat promotes the development of cancer of the 
colorectum (Boyle et al., 1985; Reddy, 1992). 
Several mechanisms have been postulated to 
explain this association, including the stimu-
lating effect of high-fat intake on the secretion 
of secondary bile acids in the gut; this proposed 
mechanism has received the most attention. 
These bile acids may promote tumour formation 
by acting as aggressive surfactants on the mucosa, 
thus increasing cell loss and proliferation (Bruce, 
1987; Owen, 1997; Bernstein et al., 2005). Other 
proposed mechanisms for the promoting role of 
dietary fat include an increase in the amount of 
free fatty acids in the colonic lumen, which may 
damage the colonic epithelium and induce cell 
proliferation, and an augmented risk for obesity 
(Calle & Kaaks, 2004). Dietary fat intake is also 
associated with peroxidation of unsaturated fatty 
acids (see Section 4.5.2).

[The Working Group noted that the digestion 
of red meat and processed meat provides energy 
and supplies essential nutrients, such as amino 
acids, iron, other minerals (including zinc), long-
chain fatty acids, and various vitamins. At the 
same time, the digestion of protein and fat yields 
intrinsically toxic compounds. However, protein 
and fat are also present in dairy, fish, poultry, and 
other food products (Demeyer et al., 2015).]

4.2	 Mechanisms of carcinogenesis

This section summarizes the evidence for the 
key characteristics of carcinogens (Smith et al., 
2016), concerning whether red and processed 
meat intake is genotoxic, induces epigenetic 
effects, induces oxidative stress, and alters cell 
proliferation, cell death, and nutrient supply. 
Other mechanistic effects of red and processed 
meat intake, including whether it induces chronic 
inflammation and modulates receptor-mediated 
effects, are also addressed. Potential indirect 
mediators and studies of hemin and hemin chlo-
ride are summarized. Within each topic, studies 
are presented according to species (human and 
experimental systems) and test system (in vivo 
and in vitro), and red meat and processed meat 
studies are presented separately.

4.2.1	 Genetic and related effects

Red meat and processed meat have been tested 
in studies of DNA damage, gene mutation, chro-
mosomal damage, and epigenetic end-points. 
These studies are summarized in Table  4.1 to 
Table 4.6.

(a)	 Exposed humans

(i)	 DNA damage and DNA adducts
See Table 4.1
Regarding studies of red meat, Lewin et al. 

(2006) conducted a randomized crossover study 
in 21 human subjects fed diets that were high 
in red meat (420  g/day), vegetarian, or high in 
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Table 4.1 Genetic and related effects of red meat or processed meat in exposed humans

Tissue or 
body fluid

End-point Test Exposure Response, 
significance

Reference

Colon DNA adducts O6-CMG (IHC using 
polyclonal antibodies)

High–red meat (420 g), vegetarian, or high–red meat, high-
fibre diets for 15 days (randomized crossover study) (n = 21)

+ P < 0.0001 Lewin et al. 
(2006)

Rectum DNA adducts O6-MeG adducts (IHC using 
monoclonal antibodies)

Red meat (300 g/day) for 4 weeks (randomized crossover 
study) (n = 23)

+ P < 0.01 Le Leu et al. 
(2015)

Breast DNA adducts PhIP-DNA adducts (IHC 
using polyclonal antibodies)

Well-done meat consumption (assessed via questionnaire) in 
women (n = 49) undergoing reduction mammoplasty;

– Zhu et al. 
(2003)

Breast DNA adducts 32P-postlabelling Meat and HAA intake (assessed via FFQ) in women 
undergoing reduction mammoplasty (n = 44)

+ P < 0.05 Rohrmann 
et al. (2009a)

Urine DNA adducts 8-OHdG Barbecued pork (15 or 30 g/kg bw) (n = 13) + P < 0.05 Chien & Yeh 
(2010)

Colorectal 
carcinoma

Mutation K-RAS mutation Red meat consumption (assessed via FFQ) in colorectal cancer 
patients (n = 43)

– O’Brien et al. 
(2000)

Colorectal 
carcinoma

Mutation K-RAS mutation Red meat consumption in NLCS cancer patients (n = 608) – Brink et al. 
(2005)

Colon Mutation K-RAS mutation High–red meat (420 g), vegetarian, or high–red meat, high-
fibre diets for 15 days (randomized crossover study) (n = 21)

– Lewin et al. 
(2006)

Colorectal 
carcinoma

Mutation TP53 mutation Colorectal cancer patients (n = 185) divided according to red 
meat consumption assessed via FFQ

+ P = 0.01 Park et al. 
(2010)

Colorectal 
adenoma

Mutation APC mutation Red meat consumption (assessed via FFQ) in cases with 
colorectal adenoma (n = 184) vs controls (n = 259)

(+) Diergaarde 
et al. (2003)

Colorectal 
carcinoma

Mutation APC mutation Processed meat consumption (assessed via FFQ) in colorectal 
cancer patients (n = 185)

+ P = 0.04 Gay et al. 
(2012)

+, positive; –, negative; 8-OHdG, 8-hydroxy-2ʹ-deoxyguanosine; FFQ, food frequency questionnaire; HAA, heterocyclic aromatic amine; IHC, immunohistochemistry; NLCS, 
Netherlands Cohort Study; O6-CMG, O6-carboxymethyl guanine; O6-MeG, O6-methylguanine; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine
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red meat and fibre for 15 days. Compared with 
vegetarian diet, red meat intake significantly 
increased levels of O6-carboxymethyl guanine 
(O6-CMG), a DNA adduct putatively related to 
NOCs, in exfoliated colon cells. This adduct was 
detected by immunohistochemistry using poly-
clonal antiobodies. [The Working Group noted 
the lack of specificity of this method for this 
particular adduct).]

Increased levels of O6-methylguanine 
(O6-MeG), also a DNA adduct putatively related 
to NOCs, were shown by immunohistochemistry 
using monoclonal antibodies in rectal biopsies 
of human volunteers after an intake period of 
4 weeks that was high in red meat (300 g/day) in a 
randomized crossover study (Le Leu et al., 2015).

No statistically significant associations were 
found between dietary intake of well-done meat 
assessed by questionnaire and DNA adducts 
putatively related to 2-amino-1-methyl-6-
phenylimidazo[4,5-b]pyridine (PhIP) in normal 
breast tissue (Zhu et al., 2003). The study included 
106 women newly diagnosed with cancer of the 
breast, of which 49 women underwent reduction 
mammoplasty. PhiP-DNA adducts were assessed 
by immunohistochemistry using polyclonal 
antibodies. [The Working Group noted the lack 
of specificity of this method for these adducts. 
The type of meat was not specified.]

Fried meat [not specified] intake, assessed by 
food frequency questionnaire (FFQ), was signif-
icantly correlated with the presence of bulky, 
non-specific DNA adducts (32P-postlabelling 
analysis) in the breast tissue of 44 women under-
going reduction mammoplasty (Rohrmann et al., 
2009a).

Chien & Yeh (2010) showed that barbecued 
pork meat exposure increased oxidative DNA 
lesions in urine. They gave one meal of barbe-
cued pork meat (reported as 15 or 30 g/kg bw) to 
eight or five volunteers, respectively. Statistically 
significant increases in urinary 8-hydroxy-2′-de-
oxyguanosine (8-OHdG) were observed 2 or 
3 days after barbecued pork meat consumption. A 

correlation was found between PAH metabolites 
and 8-OHdG in urine (Chien & Yeh, 2010). [The 
Working Group noted the very high reported 
intake level of pork meat and of the borderline 
significance of the results.]

Regarding processed meat, the study by 
Rohrmann et al. (2009a) previously mentioned 
reported a significant correlation of intake 
(assessed by FFQ) with the presence of bulky, 
non-specific DNA adducts (32P-postlabelling 
analysis) in the breast tissue of 44 women under-
going reduction mammoplasty.

(ii)	 Gene mutation
See Table 4.1
Regarding red meat, no association was found 

between K-RAS mutation frequency and meat 
consumption, assessed by FFQ, in colorectal 
cancer samples from 43 patients (O’ Brien et 
al., 2000). Similarly, there was no association 
between tumours with K-RAS mutations and 
meat consumption in a large cohort study of 448 
patients with cancer of the colon and 160 patients 
with cancer of the rectum from the Netherlands 
Cohort Study (NLCS) (Brink et al., 2005).

In the randomized crossover study by Lewin 
et al. (2006) previously mentioned, no K-RAS 
mutations were present in the exfoliated colon 
cells of volunteers fed diets that were high in red 
meat (420 g/day), vegetarian, or high in red meat 
and fibre for 15 days.

A positive association between haem iron 
intake and risk of cancer of the colorectum 
harbouring G→A transitions in K-RAS and APC 
genes, and TP53 overexpression was found in 
a prospective study (Gilsing et al., 2013). In the 
European Prospective Investigation into Cancer 
and Nutrition (EPIC) study in Norfolk, England, 
TP53 mutations in cancer of the colorectum 
were examined in relation to dietary and life-
style factors (Park et al., 2010). Higher daily total 
meat and red meat intake (assessed by FFQ) was 
significantly associated with harbouring TP53 
mutations in cancer of the colorectum.
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In a case–control study in the Netherlands, 
Diergaarde et al. (2003) evaluated the associa-
tion between dietary factors and APC mutations 
in sporadic colon carcinomas (184 cases, 259 
controls). Direct sequencing was used to screen 
the mutation cluster region of APC in the colon 
tumours. Red meat intake appeared to be asso-
ciated with APC mutated tumours: the odds 
ratios (ORs) for the association between the two 
highest tertiles (58–87 g/day and ≥ 86 g/day) of 
red meat intake and APC mutations were 1.5 
(95% confidence interval, CI, 0.7–3.0) and 1.7 
(95% CI, 0.8–3.6), respectively.

Regarding processed meat, analyses of APC 
mutations and APC promoter 1A methylation 
were performed on 185 archival colorectal cancer 
samples from participants of the EPIC-Norfolk 
study, with the aim of relating these to a 7-day 
dietary and lifestyle data collected prospectively 
(Gay et al., 2012). Truncating APC mutations 
and APC promoter 1A methylation were identi-
fied in 43% and 23% of colorectal cancer samples 
analysed, respectively. Cases with APC mutations 
or APC promoter 1A methylation consumed 
significantly higher levels of processed meat 
and iron from red meat and red meat products. 
In a logistic regression model adjusted for age, 
sex, and cigarette smoking status, each 19 g/day 
(one standard deviation, SD) increment increase 
in processed meat consumption was associated 
with APC mutations with GC→AT transitions 
(OR, 1.68; 95% CI, 1.03–2.75).

(iii) Faecal water genotoxicity
See Table 4.2
Rieger et al. (1999) first reported that a diet 

high in fat and meat increased faecal water 
genotoxicity (tested with comet assay in HT-29 
cell cultures) in seven healthy volunteers over 
a period of 12 days. Compared with a diet rich 
in vegetables and poor in fat and meat, a diet 
rich in fat (total energy intake, 50%), meat, and 
sugar, and poor in vegetables and free of whole-
meal products [no exact composition was given], 

significantly increased faecal water genotoxicity. 
[type of meat was not specified].

Faecal water genotoxicity (tested with comet 
assay in HT-29 cell cultures) from two rand-
omized controlled studies of red meat (60  or 
420  g/day), a vegetarian diet, or haem iron 
supplements for 15  days in volunteers (n  =  21) 
was evaluated by Cross et al. (2006). Diet had no 
effect on faecal water genotoxicity (i.e. red meat 
had no effect). This study was performed under 
the same conditions as those described by Rieger 
et al. (1999), but did not confirm those results.

Hughes et al. (2002) studied the effect of vege-
tables, tea, or soy on faecal water genotoxicity 
(tested with comet assay in Caco-2 cell cultures) 
in 11 volunteers fed a high–red meat (420 g/day) 
diet for 15 days. Low to moderate levels of geno-
toxicity were observed. [The Working Group 
noted that the study did not contain a control 
group consuming a low–red meat diet.]

Faecal water from volunteers (n = 12) fed a 
red meat (420 g/day, males; 366 g/day, females) 
or vegetarian diet (Joosen et al., 2009) was tested 
for genotoxicity by comet assay in Caco-2 cells. 
Surprisingly, the vegetarian diet produced more 
DNA strand breaks than the red meat diet. No 
effect of diet was found in a similar study by the 
same authors (Joosen et al., 2010) assessing faecal 
water genotoxicity in volunteers (n = 13) fed a red 
meat versus fish diet.

More recently, Hebels et al. (2012) showed 
increased faecal water genotoxicity in a hetero-
geneous group of inflammatory bowel disease/
irritable bowel syndrome patients (n = 12) after 
7 days of high–red meat intake (300  g/day), 
compared with the results obtained before the 
intervention. In 10 of the subjects, faecal water 
genotoxicity significantly increased with red 
meat intake (tested with both standard comet 
assay and the formamidopyrimidine procedure 
to measure oxidative damage in Caco-2 cells). 
Microarray analyses in colon biopsies indicated 
significant modulation of various signalling 
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432 Table 4.2 DNA damage induction by human faecal water following meat consumption

Tissue, cell 
line

End-point Test Results Exposurea Comments Reference

HT-29 DNA strand 
breaks

Comet assay + High-fat (125.8 g) and high-meat diet (51.9 g) for 12 days 
(n = 7)

Type of meat not defined Rieger et al. (1999)

HT-29 DNA strand 
breaks

Comet assay – Red meat (60 or 420 g/day), vegetarian, or haem iron 
supplemented diet for 15 days (n = 21)

Cross et al. (2006)

Caco-2 DNA strand 
breaks

Comet assay – High–red meat (420 g/day) diet with vegetables, tea, or soy 
for 15 days (n = 11)

No control group 
consuming a low–red 
meat diet

Hughes et al. (2002)

Caco-2 DNA strand 
breaks

Comet assay – Red meat (n = 12) or processed meat (n = 16) (males, 420 g/
day; females, 366 g/day) or vegetarian diet for 10 days

Vegetarian diet 
increased genotoxicity of 
faecal water (P < 0.05)

Joosen et al. (2009)

Caco-2 DNA strand 
breaks

Comet assay – Red meat (males, 325 g/day; females, 260 g/day) or fish diet 
for 3 days (n = 13)

Joosen et al. (2010)

Caco-2 DNA strand 
breaks

Comet assay + High–red meat (300 g/day) diet for 7 days in IBD/IBS 
patients (n = 12)

Hebels et al. (2012)

a 	 Diet consumed before faecal water collection
+, positive; –, negative; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome
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pathways (e.g., cytoskeleton remodelling, devel-
opment, and immune response) (Hebels et al., 
2012).

Regarding processed meat, the study by 
Joosen et al. (2009) previously described found 
that faecal water from subjects on the vegetarian 
diet compared with that from subjects on the 
processed meat diet produced more DNA strand 
breaks, as assessed by comet assay in Caco-2 cells.

(iv)	 Mutagenic activity in urine
See Table 4.3
The first report of mutagenic activity in the 

urine of subjects after ingestion of meat was 
published in 1982 (Baker et al. 1982). Fried pork 
(150 g) was given to five subjects, and bacterial 
mutagenicity of urine was determined. Peaks in 
urinary mutagenicity (in Salmonella typhimu-
rium strains TA98 and TA1538 with S9) were 
detected 2–4 hours after ingestion.

Dolara et al. (1984) reported a modest increase 
in mutagenic activity in the urine of subjects fed 
pork fried in a pan at 200 °C. Mutagenic activity 
(in S. typhimurium strain TA1538 with S9) was 
present in 3 of 13 samples analysed and was 
much lower than that reported by Baker et al. 
(1982). Hayatsu et al. (1985) also documented 
mutagenicity (S. typhimurium strain TA98 with 
S9) in the urine of three volunteers 1.5 hours after 
consumption of fried ground beef.

Doolittle et al. (1989) studied the effects of 
different cooking methods on mutagenicity. As a 
small part of the study, the urinary mutagenicity 
of different cooking procedures was compared 
in 12 subjects (6 males, 6 females). Fried meat 
increased urinary mutagenicity (S. typhimurium 
strains TA98 and TA100 with S9) compared with 
boiled or baked meat.

Gabbani et al. (1998) determined urinary 
mutagenicity 24 hours after ingestion of two 
pan-fried hamburgers (2  × 100 g) in 32 volun-
teers. GSTM1 and NAT2 genotypes were also 
evaluated. Urinary mutagenicity was tested in 
S. typhimurium strains TA98 and YG1024, with 

the latter overexpressing O-acetyltransferase. 
Mutagenicity (a doubling over the spontaneous 
revertant number) was seen in the YG1024 
strain (in 23 of 32 samples), but not in the TA98 
strain. Furthermore, NAT2 slow acetylators had 
higher urinary mutagenicity. Similar results (i.e. 
increased mutagenic activity after a pan-fried 
hamburger meal) were shown by Pavanello et al. 
(2002) in a larger group of subjects (n = 50).

Peters et al. (2004) studied urinary mutagen-
esis in a group of 60 volunteers who consumed 
red meat cooked at 100  °C for 7  days followed 
by red meat cooked at 250 °C for an additional 
7  days. Both unhydrolysed and acid-hydro-
lysed urine samples, containing unmetabolized 
mutagens and both metabolized and unmetab-
olized mutagens, respectively, were tested in S. 
typhimurium strain YG1024. Unhydrolysed and 
hydrolysed urine samples were 22 and 131 times 
more mutagenic, respectively, in subjects who 
consumed red meat cooked at 250 °C compared 
with those who consumed red meat cooked at 
100 °C.

Shaughnessy et al. (2011) reported increased 
mutagenic activity (in S. typhimurium strains 
TA98 and YG1024) in the hydrolysed urine and 
faeces of subjects (n = 8) who consumed red and 
processed meat cooked at a high temperature of 
250 °C (11 minutes/side) for a period of 2 weeks.

Regarding processed meat, the previously 
mentioned study by Baker et al. (1982) reported 
increased urinary mutagenicity (in S. typhimu-
rium strains TA98 and TA1538 with S9) in five 
subjects fed fried bacon (150 g). Similarly, Dolara 
et al. (1984) reported a modest increase in muta-
genic activity in the urine of subjects consuming 
pan-fried bacon.

(v)	 Epigenetics
Regarding red meat, microRNA expression 

in the rectal mucosa of volunteers consuming 
a high–red meat diet, with or without supple-
mentation with butyrylated high-amylose maize 
starch (HAMSB), was evaluated by Humphreys 
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et al. (2014). Volunteers received the high–red 
meat diet for 4 weeks, with washout periods and 
different orders of treatments. HAMSB signifi-
cantly lowered a cluster of microRNAs (miR17–
92, designated oncomir-1) associated with 
carcinogenesis. This effect was attributed more to 
a decrease of these microRNAs by HAMSB than 
an increase of these microRNAs by red meat.

Tarallo et al. (2014) showed an association 
between microRNA (miR-92a) levels in the 
plasma of healthy individuals and consump-
tion of processed meat and other dietary factors 
(Tarallo et al., 2014).

(b)	 Human cells in vitro

See Table 4.4
The basic fraction of a beef extract did not 

induce chromosomal aberrations in human 
lymphocyte cultures (irrespective of the presence 
of S9) (Aeschbacher & Ruch, 1989). A small but 
statistically significant increase in sister-chro-
matid exchange was seen in the presence of S9.

No study of processed meat in human cells in 
vitro was available to the Working Group.

Table 4.3 Bacterial mutagenic activity of human urine following meat consumption

Salmonella 
typhimurium 
strain

Results Exposure Comments Reference

Without 
metabolic 
activation

With 
metabolic 
activation

TA98 and 
TA1538

NT + Fried pork or bacon (150 g), (n = 5) Baker et al. 
(1982)

TA1538 NT + Fried pork or bacon (2 g/kg bw), (n = 7) Modest effect Dolara et al. 
(1984)

TA98 – + Fried ground beef (130 g), (n = 3) Hayatsu et al. 
(1985)

TA98 and 
TA100

– + Meat and food cooked by different 
methods (n = 12)

Fried meat 
increased 
mutagenicity 
compared with 
boiled or baked 
meat

Doolittle et al. 
(1989)

TA98 NT – Two hamburgers (2 × 100 g) fried to taste 
(n = 32)

Gabbani et al. 
(1998)

YG1024 NT + Two hamburgers (2 × 100 g) fried to taste 
(n = 32)

23/32 urine samples 
were mutagenic; 
higher mutagenicity 
in NAT2 slow 
acetylators

Gabbani et al. 
(1998)

YG1024 NT + Two hamburgers (2 × 100 g) fried to taste 
(n = 50)

Pavanello et al. 
(2002)

YG1024 NT + Meat cooked at 100 °C for 7 days followed 
by meat cooked at 250 °C for 7 days 
(n = 60)

No effect with meat 
cooked at 100 °C

Peters et al. 
(2004)

TA98 and 
YG1024

NT + Red and processed meat cooked at 100 °C 
or 250 °C (2 weeks at each cooking 
temperature in a crossover design), (n = 8)

No effect with meat 
cooked at 100 °C

Shaughnessy 
et al. (2011)

+, positive; –, negative; NT, not tested
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(c)	 Non-human mammals in vivo

See Table 4.5

(i)	 DNA damage
In studies of DNA adducts after red meat 

consumption, Winter et al. (2011) quantified 
O6-MeG adducts by immunohistochemistry in 
CBJ57 mouse colonocytes after mice were fed 
different diets (containing 15% or 30% protein 
as casein or red meat, 30% protein with high- 
amylose maize starch) for 4 weeks. O6-MeG and 
para-cresol, a protein metabolite with reported 
genotoxic activity, significantly increased 
(P < 0.02) with consumption of red meat compared 
with casein. O6-MeG adducts were present at the 
apex of the crypts. Starch attenuated the increase 
in DNA adduct levels.

DNA damage in colonocytes (assessed by 
comet assay) was measured in Sprague-Dawley 
rats fed diets containing 25% cooked lean red 
meat (300  g/kg diet) or casein (15% or 25%), 
with or without high-amylose maize starch for 
4 weeks (Toden et al., 2006). When starch was 
absent from the diet, red meat caused a signifi-
cant increase in DNA damage (26%) compared 
with casein (P < 0.05). When starch was present 
in the diet, the red meat effect was not significant. 
The same authors later fed rats diets of 15%, 25%, 
or 35% cooked beef or chicken, with or without 
high-amylose maize starch (Toden et al., 2007). 

DNA single- and double-strand breaks (assessed 
by comet assay in colonocytes) were significantly 
higher in the groups fed high levels of both meats 
compared with those fed low levels of meat. Red 
meat was more active than chicken, and starch 
prevented the damage. Apoptotic cells were also 
increased by red meat (see Section 4.2.3).

The effect of red meat on colonocyte DNA 
damage was also studied in pigs (Belobrajdic 
et al., 2012). Ten male animals (Large White 
strain) were fed diets containing 300 g/kg of 
cooked red meat or the same diet supplemented 
with arabinoxylans (arabinoxylan-rich frac-
tion from wheat) for 4 weeks. The comet assay 
was performed on colonocytes, together with 
additional determinations (short-chain-fatty-
acids (SCFA), phenol, cresol in the feces, bacte-
rial profile). There was a significant decrease in 
DNA damage in the diet supplemented with 
arabinoxylans.

Regarding processed meat, 7-methyldeoxy
guanosine levels were measured by immuno-
slot-blot assay in the colonic DNA of Swiss mice 
fed hot dogs containing beef or pork (18% of the 
diet) for 7 days. The levels of this non-mutagenic 
adduct were similar in control (n = 5) and treated 
mice (n = 4) (Mirvish et al., 2002).

Table 4.4 Genetic and related effects of meat extract in human cells in vitro

Tissue, cell 
line

End-point Test Results Exposure Comments Reference

Without 
metabolic 
activation

With 
metabolic 
activation

Human 
lymphocytes

Chromosomal 
damage

Chromosomal 
aberrations

– – Beef extract 
(200 mg/mL)

Aeschbacher 
& Ruch 
(1989)

Human 
lymphocytes

Chromosomal 
damage

Sister-
chromatid 
exchange

– ± Beef extract 
(200 mg/mL)

Small but 
statistically 
significant 
increase

Aeschbacher 
& Ruch 
(1989)

+, positive; –, negative; ±, small magnitude of effect 
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436 Table 4.5 Genetic and related effects of red meat or processed meat in non-human mammals in vivo

Species, 
strain, sex

Tissue End-point Test Results Dose (LED or 
HID)

Route, duration, 
dosing regimen

Comments Reference

Mouse, 
CBJ57, male

Colon DNA adducts O6-MeG (IHC) + Diets of 15% or 
30% protein as red 
meat or casein, or 
30% protein with 
starch

Oral, 4 wk Starch inhibited the increase 
in DNA strand breaks with 
red meat

Winter et al. 
(2011)

Mouse, Swiss 
albino, male 
and female

Colon DNA adducts 7-MedG 
(immuno-slot-
blot assay)

– Hot dogs with 
beef and pork 
(18% of diet)

Oral, 7 days Mirvish 
et al. (2002)

Rat, Sprague-
Dawley, male

Colon DNA strand breaks Comet assay + Red meat (25%) 
or casein (15% or 
25%) diet, with or 
without starch

Oral, 4 wk Starch inhibited the increase 
in DNA strand breaks with 
red meat

Toden et al. 
(2006)

Rat, Sprague-
Dawley, male

Colon DNA strand breaks Comet assay + Red meat or 
chicken (15%, 
25%, 35%) diet, 
with or without 
starch

Oral, 4 wk Red meat more active than 
chicken; inhibitory effect of 
starch

Toden et al. 
(2007)

Pig, Large 
White, male

Colon DNA strand breaks Comet assay ± Cooked red meat 
(300 g/kg bw), 
with or without 
arabinoxylans

Oral, 2 meals/
day, 4 wk

Significantly lower DNA 
strand breaks with 
arabinoxylans; no control 
diet (without red meat)

Belobrajdic 
et al. (2012)

Mouse, Swiss 
albino, male

Urine Reverse mutation Salmonella 
typhimurium 
TA98

– Beef extract Oral or 
intraperitoneal

Dolara et al. 
(1980)

Mouse, Swiss 
albino, male

Host-
mediated 
assay

Reverse mutation Salmonella 
typhimurium 
TA98

– Beef extract Oral or 
intraperitoneal

Dolara et al. 
(1980)

Mouse, 
NMRI, male

Host-
mediated 
assay

Reverse mutation Salmonella 
typhimurium 
TA98

± Pan-fried 
sausage extract 
(500 mg/kg bw)

Intraperitoneal Low mutagenicity with 
Aroclor pretreatment

Gocke et al. 
(1982)
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Species, 
strain, sex

Tissue End-point Test Results Dose (LED or 
HID)

Route, duration, 
dosing regimen

Comments Reference

Mouse, 
C57BL, 
female

Whole 
body

Mutation Mouse spot 
test

– Pan-fried 
sausage extract 
(500 mg/kg bw)

Intraperitoneal, 
gestation period

Only one dose tested Gocke et al. 
(1982)

Mouse, 
NMRI, male 
and female

Bone 
marrow

Chromosomal 
damage

Micronuclei – Pan-fried 
sausage extract 
(1000 mg/kg bw)

Intraperitoneal Gocke et al. 
(1982)

Rat, Sprague-
Dawley

Caecal 
water

Chromosomal 
damage in cultured 
WIL2-NS cells

Micronuclei + Barbecued beef 
(in a high fat, low 
fibre, low calcium 
diet) or casein 
(in a low fat, high 
fibre and high 
calcium diet)

Oral, 15 days Benassi 
et al. (2007)

+, positive; –, negative; +/–, small magnitude of effect; 7-MedG, 7-methyldeoxyguanosine; HID, highest ineffective dose; IHC, immunohistochemistry; LED, lowest effective dose; O6-
MeG, O6-methyl-2-deoxyguanosine; wk, week

Table 4.5   (continued)
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(ii)	 Gene mutation
Dolara et al. (1980) reported no increase in the 

mutagenicity of the urine after administration of 
a beef extract to Swiss albino mice. Similarly, the 
beef extract did not have a mutagenic effect as 
assessed by intrasanguine host-mediated assay.

Regarding processed meat, the mutagenic 
activity detected by intrasanguine host-mediated 
assay in NMRI mice given an extract of pan-fried 
sausage was very low (Gocke et al., 1982). An 
extract of pan-fried sausage (500 mg/kg bw) fed 
to pregnant female C57Bl mice did not increase 
the frequency of coat-coloured spots in the mouse 
spot test (Gocke et al., 1982).

(iii)	 Chromosomal aberrations
A basic extract of pan-fried sausage (up to 

1000 mg/kg bw) did not increase the frequency 
of micronucleated erythrocytes in mouse bone 
marrow (Gocke et al., 1982).

The caecal water from Sprague-Dawley 
rats fed a high fat, low fibre, and low calcium 
diet containing barbecued beef as the protein 
source (equivalent to 17% of the total diet) for 2 
weeks significantly increased all the parameters 
assessed –  micronuclei, nucleoplasmic bridges, 
and nuclear buds  –in the WIL2-NS human 
B-lymphoblastoid cell line. Control rats were fed 
17% casein as the protein source in a diet low in 
fat, and high in fibre and calcium (Benassi et al., 
2007).

(d)	 Non-mammalian experimental systems

See Table 4.6

(i)	 Drosophila
No study of red meat in Drosophila was avail-

able to the Working Group. Regarding processed 
meat, an extract of pan-fried sausage did not 
increase the frequency of sex-linked recessive 
lethals in Drosophila (Gocke et al., 1982).

(ii)	 Bacteria
In red meat studies in vitro, extracts of the 

charred surface of broiled beef meat and fish, 
together with smoke produced from the broiling 
of fish, were first demonstrated to be mutagenic 
by Sugimura and colleagues Nagao et al. (1977). 
The charred parts of medium-broiled beef were 
suspended in dimethyl sulfoxide and tested using 
the Ames test. The dimethyl sulfoxide extract of 
the charred meat was mutagenic in S. typhimu-
rium strain TA98 with S9 prepared from the liver 
of rats treated with polychlorinated biphenyl 
(PCB). This mutagenic activity was much higher 
than that anticipated from the benzo[a]pyrene 
(BaP) content of the cooked food.

Commoner et al. (1978) reported that cooked 
red meat was highly mutagenic (in S. typhimu-
rium strain TA1538). Hamburger meat cooked 
rare, medium, or well done was extracted with 
methylene chloride, dried, and dissolved in dime-
thyl sulfoxide. Mutagenic activity was dependent 
on the presence of S9. The mutagens formed did 
not belong to the class of BaP or protein and 
amino acid pyrolysis products. Mutagens were 
produced during common cooking procedures, 
including the use of electrically heated hot plates.

A sharp rise in the frequency of mutations in S. 
typhimurium strain TA1538 with S9 was detected 
when beef was boiled for different periods of 
time and reached temperatures between 140 °C 
and 180  °C. The mutagenic activity of the beef 
(hamburger) cooked under different conditions 
was limited to the surface layer; uncooked meat 
or microwave-cooked meat did not produce 
mutagenic activity (Dolara et al., 1979).

Similarly, Pariza et al. (1979) demon-
strated that the mutagenic activity of pan-fried 
hamburger meat was dependent on cooking 
time and temperature. Mutagenic activity (in S. 
typhimurium strain TA1538) was not detected in 
uncooked hamburger or hamburger pan-fried 
at 143  °C. In contrast, hamburger pan-fried at 
191 °C or 210 °C for up to 10 minutes generated 
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Table 4.6 Genetic and related effects of red meat or processed meat in non-mammalian experimental systems

Species, strain End-point Test Results Dose (LED or HID) Comments Reference

Without 
metabolic 
activation

With 
metabolic 
activation

Drosophila 
melanogaster 
Berlin K 
(wildtype) and 
Basc tester strain

Mutation Sex-linked 
recessive lethal 
mutations

– NA Extract of pan-fried sausage 
(0.1 µg/fly)

Gocke et al. 
(1982)

Salmonella 
typhimurium 
TA98

Mutation Reverse mutation – + Extracts of the charred surface of broiled 
beef meat and fish (12 mg/plate)

Nagao et al. 
(1977)

Salmonella 
typhimurium 
TA1538

Mutation Reverse mutation – + Beef extract (0.1 g dry weight/plate) and red 
meat (5 g dry weight/plate) cooked under 
normal conditions

Commoner 
et al. (1978)

Salmonella 
typhimurium 
TA1538

Mutation Reverse mutation – + Extracts of boiled beef, or hamburger 
cooked at different times and temperatures 
(5 g dry weight/plate)

Negative results 
with uncooked 
or microwave-
cooked meat

Dolara et al. 
(1979)

Salmonella 
typhimurium 
TA1538

Mutation Reverse mutation – + Extract of hamburger cooked at different 
times and temperatures (10 g/plate)

Negative results 
with uncooked 
meat, or meat 
cooked at 
143 °C

Pariza et al. 
(1979)

Salmonella 
typhimurium 
TA98

Mutation Reverse mutation NT + Extract of meat cooked at 100 °C or 250 °C 
(0.06–1.25 g/eq per plate)

No effect at 
100 °C

Peters et al. 
(2004)

Salmonella 
typhimurium 
TA1538

Mutation Reverse mutation – + Beef extract 
(50 mg dry weight/plate)

Dolara et al. 
(1980)

Salmonella 
typhimurium 
TA98, TA1538

Mutation Reverse mutation – + Fried sausage extract 
(100 μg/plate)

Gocke et al. 
(1982)

+, positive; –, negative; HID, highest ineffective dose; LED, lowest effective dose; NA, not applicable; NT, not tested



IARC MONOGRAPHS – 114

440

considerable mutagenic activity. Higher muta-
genic activity was observed when S9 was from 
Aroclor 1254–treated rats.

Another study with S. typhimurium strain 
TA98 showed meat cooked only at a high temper-
ature of 250  °C had mutagenic activity (Peters 
et al., 2004).

Dolara et al. (1980) reported that the muta-
genic activity of a beef extract required the 
presence of S9 fractions from the liver of rats 
treated with PCB or 3-methylcholanthrene, but 
no induction was necessary when the liver came 
from Swiss albino mice. CD-1 mice had inter-
mediate activation capabilities, which increased 
after the addition of 0.75% butylhydroxyanisole 
to their diet. S9 from the liver of human donors 
had low-activation capabilities.

Regarding processed meat, an extract of 
pan-fried sausage was mutagenic in S. typhimu-
rium strains TA1538 and TA98 in the presence of 
S9 mix (Gocke et al., 1982).

4.2.2	Oxidative stress

(a)	 Humans

(i)	 Red meat
In a randomized crossover study, Pierre 

et al. (2006) measured the excretion of 1,4-dihy-
droxynonane mercapturic acid (DHN-MA), the 
major urinary metabolite of 4-hydroxynonenal 
(4-HNE). Eight volunteers were fed different 
diets providing 55, 55, 80, 205, and 110 mg/day 
of haem for 15 days: red meat (60 g/day) baseline 
diet, red meat (60  g/day) with non-haem iron 
diet, red meat (60 g/day) with haem iron in the 
form of liver pâté diet, red meat (60 g/day) with 
haem iron in the form of blood sausage diet, or 
red meat (120 g/day) diet. The blood sausage diet 
increased urinary DHN-MA by about two-fold 
(P < 0.001), but mean urinary 8-iso-prostaglandin 
F2α was similar in all groups (Pierre et al., 2006).

In contrast, Hodgson et al. reported no eleva-
tion in oxidative stress markers with consumption 

of lean red meat (Hodgson et al., 2007). Sixty 
participants were randomized to maintain their 
usual diet for 8 weeks or to partially replace 
carbohydrate-rich foods with 200 g/day of lean 
red meat. In terms of the mean between-group 
difference in comparison to the control diet, the 
red meat diet increased iron intake (3.2 mg/day; 
95% CI, 1.1–5.4), lowered urinary F2-isoprostane 
excretion (–137  pmol/mmol of creatinine; 95% 
CI, −264 to −9), and did not change plasma 
F2-isoprostanes (–12  pmol/L; 95% CI, −122 to 
100) or serum γ-glutamyltransferase (–0.8 U/L; 
95% CI, −3.2 to 1.5).

Montonen et al. (2013) reported an association 
between red meat intake and a blood oxidative 
stress marker. In 2198 participants selected from 
the EPIC-Potsdam study, higher consumption of 
red meat was significantly associated with higher 
levels of γ-glutamyltransferase, even after adjust-
ment for potential confounding factors related 
to body mass index (BMI), waist circumference, 
lifestyle, and diet (Montonen et al., 2013).

Lam et al. (2014) identified several genes 
involved in oxidative stress that were differentially 
expressed in patients with lung adenocarcinoma 
who consumed more red meat. Genome-wide 
expression (HG-U133A) was measured in the 
tumour tissue and non-involved lung tissue of 
64 patients with adenocarcinoma. Gene expres-
sion of 232 annotated genes in the tumour 
tissue significantly distinguished patients who 
consumed above or below the median intake of 
fresh red meat. Several genes were involved in 
lipid metabolism (e.g. NCR1, TNF, UCP3) and 
oxidative stress (e.g. TPO, SGK2, MTHFR) (Lam 
et al., 2014).

(ii)	 Processed meat
As previously noted, Pierre et al. (2006) 

reported that a blood sausage diet significantly 
increased DHN-MA by about two-fold. In a later 
study, Pierre et al. (2013) showed that cured meat 
intake increased lipid peroxidation and nitroso 
compounds in human stool. In a single-blind, 
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crossover, randomized controlled trial, 18 volun-
teers first followed a low-meat diet for a one week 
control period and were then fed the following 
diets for four days each, in a random order: 
cooked, cured pork shoulder meat (similar to 
air-exposed picnic ham, 180 g/day); cooked, cured 
pork shoulder meat with a calcium carbonate 
capsule (1 g/day of calcium); and cooked, cured 
pork shoulder meat with α-tocopherol (0.05%). 
Thiobarbituric acid reactive substances (TBARS) 
and apparent total N-nitroso compounds (ATNC) 
increased in the faecal water of volunteers given 
ham compared with control periods. Calcium 
carbonate normalized both biomarkers, whereas 
α-tocopherol normalized only lipid peroxidation 
in the faeces of volunteers (Pierre et al., 2013).

Belinova et al. (2014) showed that consump-
tion of “cooked-pork seasoned meat” was accom-
panied by increased oxidative stress marker levels 
in diabetic patients. In a randomized crossover 
study, 50 type 2 diabetic patients and 50 healthy 
subjects underwent two 3-hour meal tolerance 
tests. The acute effects of a processed hamburger 
meat meal (150 g/meal) were compared with those 
of a vegan meal (235 g/meal). During the post-
prandial phase, consumption of the hamburger 
meat meal was associated with a significant 
increase in TBARS in the diabetic patients, but 
not in the healthy subjects, compared with the 
consumption of the vegan meal. However, super-
oxide dismutase activity in the healthy subjects 
was significantly increased after the vegan meal 
compared with the hamburger meat meal. In 
the diabetic patients, plasma concentrations of 
superoxide dismutase, reduced glutathione, or 
ascorbic acid did not change during the post-
prandial phase for either meal (Belinova et al., 
2014).

No data concerning direct evaluation of red 
meat or processed meat in human cells in vitro 
were available to the Working Group.

(b)	 Rodents

(i)	 Red meat
Pierre et al. repeatedly showed that diets 

containing red meat or haemoglobin signifi-
cantly increased lipid peroxides in faecal water 
(TBARS) and urinary DHN-MA, a metabolite of 
the lipid oxidation product 4-HNE, in rats. In a 
seminal study by Pierre et al. (2004), groups of 
carcinogen-initiated rats were given one of three 
low-calcium, meat-based diets containing 60% 
freeze-dried meat products: raw chicken (low 
haem), beef (medium haem), or blood sausage 
(high haem). Two additional groups of rats were 
given a non-haem control diet supplemented with 
ferric citrate or a haem control diet supplemented 
with haemoglobin to match the iron and haem 
concentrations of the beef diet, respectively. The 
blood sausage diet increased TBARS in faecal 
water by 23-fold. The haemoglobin and beef 
diets increased TBARS in faecal water by two- to 
four-fold (all P < 0.01), but the chicken diet did 
not affect TBARS in faecal water compared with 
the control diets (Pierre et al., 2004). A recent 
carcinogenesis study confirmed that only diets 
containing haemoglobin increased faecal and 
urinary oxidation biomarkers (P < 0.001), inde-
pendent of dietary HAAs or nitrates and nitrites, 
and resulting faecal ATNC (Bastide et al., 2015). 
Other rat studies by the same researchers on 
beef meat, haemoglobin, or hemin chloride 
(see Section 4.2.6 for hemin chloride studies) 
confirmed that dietary haem induced faecal and 
urinary lipid peroxides (Pierre et al., 2003, 2006, 
2008; Guéraud et al., 2015). Additionally, dietary 
calcium phosphate (31  g/kg) normalized faecal 
TBARS induced by beef consumption (Pierre 
et al., 2008). In contrast, dietary antioxidant 
agents (rutin and butylated hydroxyanisole, 
0.05% each) and olive oil (5%) did not reduce 
faecal TBARS (Pierre et al., 2008).
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(ii)	 Processed meat
Several studies showed that cured meat 

intake increased lipid peroxidation and nitroso 
compound (ATNC) formation in rat stool (Pierre 
et al., 2010, 2013; Santarelli et al., 2010, 2013). For 
instance, Santarelli et al. (2013) reported increased 
urinary DHN-MA in rats fed nine different 
types of purchased cured meats, including hot 
dogs, sausages, raw and cooked ham, and pâté. 
Fermented, raw, dry sausages induced 1.8 times 
more TBARS in faecal water than hot dogs, but 
only hot dogs promoted preneoplastic lesions in 
the colon (see Section 4.3). Thus, no association 
was found between the occurrence of preneo-
plastic lesions and the biomarkers of lipid oxida-
tion (Santarelli et al., 2013).

No data from non-human mammalian in 
vitro studies of red meat or processed meat and 
oxidative stress were available to the Working 
Group.

4.2.3	Alteration of cell proliferation and cell 
death

(a)	 Humans

Regarding red meat, Le Leu et al. (2015) 
reported an increase in epithelial proliferation 
in the rectal biopsies of 23 volunteers given 
cooked lean red meat (300  g/day) for 4 weeks. 
Proliferating cell nuclear antigen (PCNA) 
staining revealed a 38% increase in positive 
cells per crypt (P < 0.001). Caderni et al. (1999) 
observed that subjects who reported consuming 
a diet low in red meat had decreased colorectal 
mucosa proliferation. The labelling index in the 
upper part of the crypt was increased in subjects 
at high risk of cancer of the colon. In a study of 69 
subjects who previously underwent surgery for at 
least two sporadic colon adenomas, dietary habit 
information was collected by FFQ, and prolif-
eration was measured by [3H]thymidine incor-
poration into colorectal biopsies. Subjects with 
low–red meat consumption showed decreased 

proliferation in the upper part of the crypt (mean 
± SD: 2.4 ± 2.1, 5.3 ± 4.6, and 5.9 ± 4.8 for low, 
middle, and high consumption, respectively; 
P < 0.01) (Caderni et al., 1999).

Humphreys et al. (2014) reported decreased 
expression of CDKN1A, an inhibitor of cell 
proliferation, and increased cell proliferation 
in the rectal cells of volunteers fed a high–red 
meat diet, with or without supplementation with 
HAMSB.

In contrast, O’Brien et al. (2000) observed no 
correlation between red meat consumption and 
rectal crypt cell proliferation. Crypt cell prolif-
eration was significantly higher in the normal 
mucosa of patients with left-sided colorectal 
carcinoma than in that of healthy controls. Meat 
consumption was assessed by FFQ, and crypt 
cell proliferation was determined using rectal 
biopsies obtained before surgery (O’Brien et al., 
2000).

Regarding processed meat, Pierre et al. 
detected no effect of cured meat intake (180 g/day 
of a model ham for 4 days) in 18 volunteers on 
faecal water cytotoxicity in two cell lines, nor on 
genotoxicity (measured by γ-H2AX induction) 
(Pierre et al., 2013).

No data concerning direct examination of 
red meat or processed meat on human cells in 
vitro were available to the Working Group. As 
described in Section 4.2.6, contrasting effects of 
hemin chloride on the proliferation of human 
colon cancer cells were shown in vitro.

(b)	 Rodents

Regarding red meat, apoptosis (determined 
by halo assay) increased in a dose-dependent 
manner in colonocytes isolated from rats fed 
diets containing 15%, 25%, or 35% cooked beef 
or chicken for 4 weeks (Toden et al., 2007). In 
contrast, lean beef meat was without effect on 
proliferation or apoptosis in the colon in mice 
fed a standard American Institute of Nutrition 
(AIN)-76 diet with 15% or 30% protein as casein 
or cooked, dried lean beef meat for 4 weeks 
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(Winter et al., 2011). Neither the amount nor 
the type of protein had an effect on cell prolifer- 
ation (Ki-67), cell mass (crypt height), or rate of 
apoptosis (terminal deoxynucleotidyl transferase 
dUTP nick end labelling, TUNEL, assay)

Khil & Gallaher (2004) showed no prolifer-
ative effect of dietary beef protein or beef tallow 
in 1,2-dimethylhydrazine (DMH)-initiated rats 
given either casein or beef as the protein source 
and soybean oil or tallow as the fat source in a 
2 × 2 factorial design for 9 weeks. However, there 
was a significantly greater apoptotic labelling 
index in the distal colonic mucosa of rats fed the 
beef tallow compared with the soybean oil (Khil 
& Gallaher, 2004).

Yang et al. (2002) showed that a beef-based 
diet (24% freeze-dried beef meat vs casein 
control) reduced caspase-3 activity and neutral 
ceramidase activity in the colonic mucosa, but 
had no effect on sphingomyelinase activity in the 
colonic mucosa.

Pierre et al. repeatedly showed that diets 
containing red meat or haemoglobin significantly 
increased faecal water cytotoxicity. In a seminal 
study, groups of carcinogen-initiated rats were 
given one of three low-calcium, meat-based diets 
containing 60% freeze-dried meat products: 
raw chicken (low haem), beef (medium haem), 
or blood sausage (high haem). Two additional 
groups of rats were given a non-haem control 
diet supplemented with ferric citrate or a haem 
control diet supplemented with haemoglobin to 
match the iron and haem concentrations of the 
beef diet, respectively. The haem control diet was 
supplemented with haemoglobin to match the 
haem concentration of the beef diet. The blood 
sausage diet enhanced erythrocyte cytolysis 
by more than 50-fold and CMT93 cell toxicity 
by  eight-fold compared with the non-haem  
control diet. The haemoglobin and beef diets 
increased CMT93 cell toxicity by four-fold 
compared with the non-haem control diet; the 
chicken diet did not increase CMT93 cell toxicity. 
A correlation was seen between haem intake 

and faecal water cytotoxicity (r  =  0.98), which 
was correlated with carcinogenesis promotion 
(r = 0.65; all P < 0.01) (Pierre et al., 2004). Other 
studies of dietary beef, haemoglobin, or hemin 
chloride have confirmed that dietary haem can 
induce faecal water cytotoxicity (Pierre et al., 
2003, 2008; Guéraud et al., 2015).

In in vitro studies, faecal water of rats given 
a diet with red meat or haemoglobin was more 
cytotoxic to the wild type Apc+/+ murine cells than 
to premalignant Apc–/+ murine cells (Pierre et al., 
2007; Bastide et al., 2015). Trapping of aldehydes 
from the faecal water of haem-fed rats reduced 
peroxides by 95% and cytotoxicity by 75%.

Regarding processed meat, several studies by 
a single research group showed that cured meat 
intake in rats can increase faecal water cyto-
toxicity. For instance, faecal water cytotoxicity 
increased three-fold in rats given a diet with 55% 
freeze-dried cooked ham for 100  days (Pierre 
et al., 2010). Santarelli et al. (2010) tested the effect 
on faecal water cytotoxicity of 16 types of cooked 
ham diets fed for 2 weeks to rats, with dark or 
light muscle colour (a proxy for haem level), low 
or high processing temperature, added nitrite or 
none, and plastic anaerobic packaging or none, 
in a 2 × 2 × 2 × 2 design. Faecal water cytotoxicity 
depended mostly on processing temperature, 
with cooked ham being more cytotoxic than raw 
ham, and nitrite, with nitrite being more cyto-
toxic than no nitrite. [The Working Group noted 
that both red meat and processed meat were 
cytotoxic.]

4.2.4	Other mechanisms of carcinogenesis

(a)	 Chronic inflammation

(i)	 Humans
Regarding red meat, four observational 

studies in humans (Azadbakht & Esmaillzadeh, 
2009; Montonen et al., 2013; Viscogliosi et al., 
2013; Ley et al., 2014) lent little or no support to 
the hypothesis that red meat intake is directly 
associated with inflammation markers. Three 
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intervention studies in volunteers found no effect 
of red meat intake on inflammation markers 
(Hodgson et al., 2007; Joosen et al., 2010; Maduro 
et al., 2013).

Regarding processed meat, two studies were 
identified. In a nested case–control study of 656 
women with type 2 diabetes and 694 healthy 
women from the Nurses’ Health Study (NHS), 
Schulze et al. (2005) observed that a dietary 
pattern including processed meat was strongly 
related to inflammatory markers. This dietary 
pattern was high in sugar-sweetened soft drinks, 
refined grains, diet soft drinks, and processed 
meat, but low in wine, coffee, cruciferous 
vegetables, and yellow vegetables. Among the 
inflammatory markers examined, interleukin-6, 
C-reactive protein, and E-selectin were corre-
lated with processed meat intake. Scores were 
adjusted for age and BMI, as well as for six other 
possible confounders (Schulze et al., 2005).

Spehlmann et al. (2012) reported an asso-
ciation between processed meat intake and 
inflammatory bowel disease in twins. In German 
monozygotic and dizygotic twins, where at least 
one sibling had inflammatory bowel disease 
(n  =  512), a high consumption of processed 
meat, including sausage, was one of the variables 
most significantly associated with Crohn disease 
or ulcerative colitis. Likewise, differences in 
consumption of red meat were also detected in 
all discordant twin and non-twin Crohn disease 
groups (Spehlmann et al., 2012).

The hypothesis associating N-glycolyl
neuraminic acid (Neu5Gc) and chronic inflam-
mation is discussed in Section 4.5.7 (Samraj 
et al., 2015).

No data from human in vitro studies of red 
meat or processed meat and inflammation were 
available to the Working Group.

(ii)	 Rodents
Regarding studies of red meat, mice fed 

grain-finished beef for 2 weeks showed enhanced 
prostaglandin E2 from peritoneal macrophages 
after inflammatory stimulation. The release 

of prostaglandin E2 was lowest with diets of 
range-fed beef, range-fed bison, and elk, and 
highest in mice fed grain-finished beef (P < 0.05). 
Prostacyclin release was highest in mice fed elk, 
intermediate in mice fed feedlot-finished beef 
or bison, and significantly decreased in mice 
fed range-fed bison, range-fed beef, or chicken 
(Broughton et al., 2011). [The Working Group 
noted that the study design did not include a 
no-meat control group. Thus, the comparison 
was done between types of meat, but the effect of 
meat per se was not assessed.]

Studies that reported on the effect of dietary 
haem on inflammation markers are described in 
Section 4.2.6 and Section 4.5.1.

(b)	 Modulation of receptor-mediated effects 
(hormones)

Regarding red meat, three observational 
human studies were found suggesting that red 
meat intake may be associated with slightly 
unfavourable insulin-like growth factor-1, sex 
hormone–binding globulin, or fasting insulin 
profiles. The associations (expressed as mean 
or median change across categories of red meat 
intake) were usually weak, and were often not 
confirmed by more than one study. In addition, 
sometimes the trend over categories lost statis-
tical significance when BMI was included in the 
model (Allen et al., 2000; Brinkman et al., 2010; 
Ley et al., 2014).

No data from in vitro human studies, or 
from experimental systems, on hormones or 
receptor-mediated effects were available to the 
Working Group.

(c)	 Telomere length

O’Callaghan et al. (2012) showed that telomere 
length in colonocytes in Sprague-Dawley rats 
decreased in proportion to the level of red meat 
(15%, 25%, and 35% for 4 weeks) in their diet. 
High-amylose starch attenuated the effect of red 
meat.
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4.2.5	Other relevant data and potential 
indirect mediators

(a)	 Dysregulation of the gut microbiota

Diet is a key factor in determining the compo-
sition of the human gut microbiota (Graf et al., 
2015). A role for microbiota in the development 
of cancer has been described (Louis et al., 2014; 
Garrett, 2015), acting via various mechanisms. 
Bacterial metabolites such as hydrogen sulfide, 
secondary bile acids, polyamines, and reactive 
oxygen species (ROS) may provoke inflam-
mation and affect carcinogenesis, while other 
metabolites such as acetate, propionate, and 
butyrate may exert protective activities (O’Keefe, 
2008). Pathogenic bacteria, in particular, exert 
proinflammatory effects and might thus increase 
carcinogenesis (Louis et al., 2014). Specifically, 
several studies have reported a positive associ-
ation between the gram-positive Streptococcus 
gallolyticus (previously named Streptococcus 
bovis) and cancer of the colorectum (Ellmerich 
et al., 2000; Tjalsma et al., 2006; Abdulamir et al., 
2011).

As discussed in Section 4.5.2(b), Martin et al. 
(2015) observed reduced faecal TBARS when 
haemoglobin-fed rats were treated with a cocktail 
of antibiotics. Some Lactobacillus strains report-
edly exert antioxidant behaviour by preventing 
the Fenton reaction (Sun et al., 2010), while other 
bacterial species such as Enterococcus faecalis can 
stimulate extracellular superoxide (Huycke & 
Moore, 2002). Although the lower faecal TBARS 
in antibiotic-treated rats in the study by Martin 
et al. (2015) could be the result of a diminished 
or altered colonic microbiome, this reduction 
could be attributed to the direct antioxidant or 
pro-oxidant effects of the applied antibiotics. For 
example, metronidazole, which was among the 
antibiotics administered by Martin et al. (2015), 
has been described to scavenge ROS in a cell-
free environment (Narayanan et al., 2007) and 
to have an antioxidant effect in colonic tissues 
(Pélissier et al., 2007).

[The Working Group noted that no direct 
data on the dysregulation of the gut microbiota 
by red meat or processed meat were available.]

(b)	 Type 2 diabetes

A link between high–processed meat intake 
and diabetes has been hypothesized, and 
epidemiological meta-analyses have observed 
a positive association between diabetes and a 
variety of cancers, including cancer of the liver 
(El Serag et al., 2006), pancreas (Ben et al., 2011), 
endometrium (Zhang et al., 2013), colorectum 
(Larsson et al., 2005), and bladder (Larsson et al., 
2006). Various mechanisms have been proposed, 
such as increased oxidative stress (Ihara et al., 
1999; Ceriello & Motz, 2004). Hua et al. (2001) 
reported lower insulin sensitivity in healthy meat 
eaters compared with lacto-ovo-vegetarians. 
Lowering the iron content of the body by phle-
botomy improved insulin sensitivity in the meat 
eaters. The development of insulin resistance 
increases circulating levels of insulin, triglycer-
ides, and non-esterified fatty acids, which may 
stimulate colon cell proliferation (Bruce et al., 
2000). Other possible mechanisms include the 
formation of NOCs, advanced glycation end 
products (AGEPs), trimethylamine N-oxide, 
branched amino acids, endocrine disruptor 
chemicals, and inflammation (Azadbakht & 
Esmaillzadeh, 2009; Tong et al., 2009; Kim et al., 
2015). [The Working Group noted that a high–
red meat and/or high–processed meat consump-
tion may have an indirect stimulating effect on 
carcinogenesis by contributing to an increased 
BMI, which has also been linked to insulin resist-
ance and an increased risk of diabetes.]

4.2.6	Studies of hemin and hemin chloride

In many rodent studies not previously 
mentioned, a model haem molecule was added 
to the diet as a surrogate for red meat: hemin 
chloride. This molecule is a protoporphyrin IX 
containing a ferric iron ion (haem B) stabilized 
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with a chloride ligand (Deo et al., 2015). It is not 
present in human diets, is not soluble in water, 
and quickly induces oxidation of polyunsatu-
rated oils.

(a)	 Hemin and proliferation

The Van der Meer group repeatedly showed 
that dietary hemin chloride increased colonic 
epithelial proliferation and faecal water cytotox-
icity in rats (e.g. Sesink et al., 1999, 2000, 2001). 
For instance, colonic epithelial proliferation 
increased in rats fed a purified diet supplemented 
with 1.3 µmol/g of hemin for 14 days. The faecal 
water of haem-fed rats contained approximately 
three-fold higher levels of faecal TBARS and was 
highly cytotoxic compared with that of control 
rats (Sesink et al., 1999). Cytotoxicity and prolif-
eration were independent of dietary fat content, 
but were suppressed by dietary calcium phos-
phate and by dietary chlorophyll both of which 
bind physically to hemin (Sesink et al., 2000, 
2001; de Vogel et al., 2005).

Winter et al. (2014) also showed that dietary 
hemin chloride increased proliferation in the 
short term and inhibited apoptosis in the long 
term in mice fed a high-fat, low-calcium control 
diet or a high-fat, low-calcium diet with hemin 
chloride (0.013%). Changes from 1 to 18 months 
showed increased cell proliferation (P < 0.01) in 
all groups, but only hemin chloride–fed mice 
showed reduced apoptosis (P  <  0.01) (Winter 
et al., 2014).

(b)	 Hemin and inflammation

Several studies investigated the effect of 
dietary hemin on inflammation markers, show- 
ing various effects on myeloperoxidase in the 
gut mucosa (decreased, increased, or no change). 
In mice, dietary hemin exacerbated colitis 
induced by trinitrobenzene sulfonic acid, but 
decreased myeloperoxidase activity (Schepens 
et al., 2011). In mice fed a “Western-type” diet 
with 40% fat (mainly palm oil) and low calcium 
(30 μmol/g) for 14 days, dietary hemin resulted 

in a ruffled intestinal epithelium, which was 
attributed to luminal necrosis. However, there 
was no indication of local inflammation: no 
infiltration of neutrophils or macrophages in 
the lamina propria, no change in the expres-
sion of inflammation markers for macrophages 
(CD14, CD68, CD11b, and F4/80) and for neutro-
phils (myeloperoxidase, lactoferrin, neutrophil 
elastase, and EMR4), and no effect on mucins 
or on gene expression of secreted MUC2 
(Ĳssennagger et al., 2012b). Finally, in rats 
given a high-fat safflower oil diet, dietary hemin 
chloride significantly increased colonic myelo- 
peroxidase activity (Guéraud et al., 2015).

(c)	 Hemin in vitro

Hemin chloride was a potent growth factor in 
iron-depleted human colon cancer HT-29 cells, 
but it showed dose-dependent cytotoxic effects 
on the same cell line (Klenow et al., 2009). It had 
hyperproliferative effects on Caco-2 cells medi-
ated by haem oxidase and hydrogen peroxide, 
which was shown using the inhibitors zinc 
protoporphyrin and catalase (Ishikawa et al., 
2010).

[The Working Group noted that dietary 
hemin chloride markedly increased faecal water 
cytotoxicity and proliferation of the colonic 
epithelium in rats and mice. However, the rele-
vance to red meat intake was unclear since the 
hyperproliferative effect was not reproduced 
with natural haemoprotein or meat.]

4.3	 Precancerous lesions

4.3.1	 Precancerous colorectal lesions

(a)	 Humans

(i)	 Red meat
Several cohort and case–control studies 

examined the association between red meat 
consumption and risk of colorectal adenomas. Of 
the cohort studies, all showed a positive, but not 
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statistically significant, association between red 
meat and risk of adenomas (Nagata et al., 2001; 
Chan et al., 2005a; Wu et al., 2006; Rohrmann 
et al., 2009b; Tantamango et al., 2011; Ferrucci 
et al., 2012). However, in a meta-analysis of these 
studies, the overall association was statistically 
significant: per 100  g/day increase in intake of 
red meat, the relative risk (RR) increased by 
20% (95% CI, 1.06–1.36) (Aune et al., 2013). 
The meta-analysis of 10 case–control studies 
also yielded a positive association (OR,  1.34; 
95% CI, 1.12–1.59). Several sensitivity analyses 
examined potential confounders, also addressed 
in Section 2.1.5 of this Monograph. These did 
not appreciably change the risk estimates, such 
that the associations of the meta-analysis were 
still statistically significant (Aune et al., 2013). 
As they are more likely to progress to adeno-
carcinomas than smaller adenomas, large 
adenomas were specifically evaluated in some 
studies, including the EPIC-Heidelberg study 
(OR, 1.98; 95% CI, 1.09–3.58; top vs bottom quin-
tile) (Rohrmann et al., 2009b) and the Health 
Professionals Follow-Up Study (HPFS) (OR, 
1.95; 95% CI, 0.97–3.91; top vs bottom quintile) 
(Wu et al., 2006). In single studies, differences 
in the adenoma characteristics and/or types of 
red meat were sometimes noted. For example, in 
the EPIC-Heidelberg study, a high intake of red 
meat and processed meat (combined) was related 
to an increased risk of colon adenomas (OR, 1.53; 
95% CI, 1.01–2.30) and large adenomas (as noted 
above), but there was no statistically significant 
association with adenomas at all sites or small 
adenomas (Rohrmann et al., 2009b). Ferrucci 
et al. (2012) did not observe an association 
between red meat consumption and all types of 
adenomas. However, they found a statistically 
significant association between grilled meat (OR, 
1.56; 95% CI, 1.04–2.36; top vs bottom quar-
tile), and also well-done or very well-done meat 
(OR, 1.59; 95% CI, 1.05–2.43), and risk of rectal 
adenomas. No association was found between 
these meat types and colon adenomas.

The meta-analysis by Aune et al. (2013) also 
examined the effects of meat intake by type, and 
reported statistically significant positive asso-
ciations between beef and pork intake and risk 
of adenoma (Aune et al., 2013). A meta-analysis 
of case–control studies reported a statistically 
significant increased risk of colorectal adenoma 
with beef consumption (meta-RR, 1.56; 95% CI, 
1.15–2.10; I2, 49.9%) (Carr et al., 2016).

(ii)	 Processed meat
Fewer studies examined the association 

between processed meat consumption and 
risk of colorectal adenomas. In the Prostate, 
Lung, Colorectal and Ovarian (PLCO) Cancer  
Screening Trial, a non-statistically significant 
increased risk of colorectal adenomas was 
observed with high–processed meat consump-
tion (OR, 1.23; 95% CI, 0.99–1.52; top vs bottom 
quartile) (Ferrucci et al., 2012). In the HPFS, an 
association was found between high–processed 
meat consumption and risk of distal colon 
adenomas (OR,  1.52; 95% CI, 1.12–2.08; top 
vs bottom quintile), which was stronger than 
that found for red meat (OR, 1.18; 95% CI, 
0.87–1.62; top vs bottom quintile) (Wu et al., 
2006). A combined analysis of these two studies 
revealed a 45% increase in the risk of colorectal 
adenoma (95% CI, 1.10–1.90) per 50  g increase 
in consumption of processed meat per day 
(Aune et al., 2013). The only study that examined 
adenoma recurrence did not find any statistically 
significant association between processed meat 
consumption and risk of recurrence for any 
adenoma types, advanced adenomas, or multiple 
adenomas (Mathew et al., 2004). Overall, case–
control studies showed positive associations 
between intake of processed meat and colorectal 
adenomas, but only a minority of these findings 
were statistically significant. For example, a 30% 
increased risk of adenoma (95% CI, 1.1–1.5) was 
observed in the Tennessee Colorectal Polyp 
Study (TCPS) with 1881 cases (Fu et al., 2011), 
but no increased risk of adenoma was found in 
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the PLCO trial with 3696 cases (OR, 1.04; 95% 
CI, 0.90–1.19) (Sinha et al., 2005b). A meta-anal-
ysis of eight case–control studies found a positive 
association that did not reach statistical signifi-
cance (OR, 1.23; 95% CI, 0.99–1.52) (Aune et al., 
2013).

Several studies reported on specific types of 
processed meats, including bacon and sausage. 
Higher intake of bacon and sausage was associ-
ated with an increased risk of colorectal adenoma 
(OR, 1.14; 95% CI, 1.00–1.30) in the PLCO trial 
(Sinha et al., 2005b). Similarly, in the TCPS, 
several different types of processed meats (e.g. 
hot dogs, sausage, or bacon) were associated with 
an increased risk of adenoma (Fu et al., 2011).

[The Working Group noted that the epidemio-
logical studies supported a positive association 
between red meat and processed meat consump-
tion and risk of colorectal adenomas. However, 
results differed with respect to the type of meat, 
as well as the site, size, number, and histology of 
the adenomas.]

(b)	 Experimental systems

(i)	 Red meat
Parnaud et al. (1998) first studied the 

effect of meat (beef, chicken, and bacon)  
on aberrant crypt foci (ACF). Azoxymethane-
induced F344 female rats were randomized to 
10 different AIN-76–based experimental diets, 
all high in calcium. Five diets were adjusted to 
include 14% fat and 23% protein (standard levels), 
and five other diets were adjusted to include 28% 
fat and 40% protein (high levels). Fat and protein 
were supplied by either lard and casein, olive oil 
and casein, beef, chicken with skin, or bacon. 
The meat diets contained 30% or 60% freeze-
dried, fried meat. The rats were fed ad libitum 
for 100 days, and ACF multiplicity (the number 
of crypts forming each focus) was assessed as a 
parameter related to tumour promotion. ACF 
multiplicity was similar among the rats, except 
for the bacon-fed rats.

The same investigators studied the effects 
of various meats on ACF, using diets high in 
calcium (Parnaud et al., 2000). Rats fed a diet 
containing beef, pork, or chicken meat had a 
lower concentration of faecal NOCs than those 
fed the control diet (P < 0.01). In the promotion 
experiment, unprocessed, cooked meat–based 
diets did not change the number or multiplicity 
of ACF compared with the control diet.

Hypothesizing that a high level of calcium 
in the diet may mask the potential carcino-
genicity of red meat, subsequent studies admin-
istered meat to azoxymethane-induced F344 
rats fed a low-calcium diet (0.8%; mimicking the 
“Western-type” diet). Accordingly, Pierre et al. 
(2004) formulated the meat-based diets to contain 
varying concentrations of haem with the addi-
tion of raw chicken (low haem), beef (medium 
haem), or black pudding (blood sausage, high 
haem). Chicken, beef, and black pudding were 
administered at 60% of the diet, thus providing a 
higher intake of protein than the standard nutri-
tional intake of protein (20% of the diet) for rats. 
Only diets with haem significantly promoted 
mucin-depleted foci (MDF) formation (P < 0.01), 
but all meat diets promoted ACF formation. MDF 
promotion was greater with the high-haem black 
pudding diet than with the medium-haem beef 
diet. MDF promotion was also correlated with 
increased lipid peroxides in faecal water, meas-
ured by TBARS, and cytotoxicity in erythrocytes 
and the mouse epithelial cell line CMT93 (r  = 
0.65; P < 0.01).

The same group of researchers tested whether 
calcium and various antioxidants would reduce 
the promotion of preneoplastic lesions in 
DMH-induced F344 rats fed red meat (Pierre 
et al., 2008). Three diets with 60% beef meat were 
supplemented with calcium phosphate (31 g/kg 
diet), antioxidant agents (rutin and butylated 
hydroxyanisole, 0.05% each), and olive oil (5%). 
The beef meat diet significantly increased the 
number of ACF (+30%) and MDF (+100%). These 
results were associated with increased faecal 
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water TBARS (4-fold) and cytotoxicity in CMT93 
cells (2-fold), and urinary DHN-MA excretion 
(15-fold). Calcium fully inhibited beef meat–
induced ACF and MDF promotion, and normal-
ized faecal TBARS and cytotoxicity; however, it 
did not reduce urinary DHN-MA. The antiox-
idant mix and olive oil did not normalize beef 
meat promotion or lipid peroxides.

The effects of red meat and whey protein on 
azoxymethane-induced ACF were studied by 
Belobrajdic et al. (2003). Wistar rats were fed 
red meat (barbecued kangaroo muscle meat) or 
whey protein concentrate to provide 8%, 16%, 
and 32% protein by body weight in a modified 
AIN-93 diet with low fibre, low calcium (0.1%), 
and high polyunsaturated fat. The 32% whey 
protein group had significantly fewer ACF in 
the proximal colon than the 16% and 32% red 
meat groups (P < 0.05). No effect of the diets was 
observed in the distal colon.

Khil & Gallaher (2004) examined the effects 
of individual red meat components (beef protein 
and tallow) on DMH-induced ACF and colon 
apoptosis and proliferation. DMH-induced 
Sprague-Dawley rats were fed either casein or 
beef protein as the protein source, and either 
soybean oil or tallow as the fat source, for 9 weeks 
in an AIN-93 standard diet. Rats fed tallow had 
fewer ACF (only determined in a portion of the 
distal colon) and significantly higher apoptosis 
compared with those fed soybean oil. In addi-
tion, faecal bile acid concentrations were signif-
icantly lower in rats fed tallow than in those fed 
soybean oil. There were no significant differences 
in mucosal cell proliferation.

[The Working Group noted that red meat 
given to carcinogen-initiated animals promoted 
the growth of preneoplastic lesions in the colon, 
and that this effect could be modified by factors 
such as calcium and antioxidants.]

(ii)	 Processed meat
In the study by Parnaud et al. (1998) previ-

ously mentioned, a significant reduction in ACF 
multiplicity was observed in bacon-fed, carcin-
ogen (azoxymethane)-initiated rats compared 
with control rats when calcium levels in the diet 
were high.

Parnaud et al. (2000) also assessed the effect 
of a high-fat, high-calcium, bacon-based diet 
on ACF number and multiplicity in the colon 
of F344 rats (Parnaud et al., 2000). As previ-
ously mentioned, other meats tested were pork, 
chicken, and beef. The faeces of the rats fed the 
bacon-based diets contained 10–20  times more 
NOCs than the faeces of the rats fed the casein-
based control diet (P  <  0.0001). No ACF were 
detected in the colon of uninitiated, bacon-fed 
rats. The number of large ACF per rat and ACF 
multiplicity were consistently reduced by 12% 
and 20% in rats fed a 30% or 60% high-fat, bacon-
based diet and by 17% in rats fed a 30% low-fat, 
bacon-based diet (all P  <  0.01). [The Working 
Group noted the lack of effect of dietary bacon 
on rat colon carcinogenesis in the context of a 
high-calcium diet.]

Using diets containing low levels of calcium 
(0.8  g/kg diet), Pierre et al. (2010) showed that 
a freeze-dried, cooked, cured ham diet fed for 
100 days to DMH-induced F344 rats significantly 
increased the number of MDF in the colon. 
Promotion was associated with cytotoxicity 
and lipid peroxidation. In a short-term study 
(14  days) by the same authors, the cytotoxicity 
(tested in CMT93 cell lines) and lipid peroxida-
tion (TBARS) of faecal water, and the urinary 
marker of lipid peroxidation (DHN-MA), 
increased dramatically in ham- and hemin-fed 
rats; however, this effect was not observed in rats 
fed the haemoglobin diet or the sodium chloride 
(NaCl), nitrite, phosphate diet.

This group also demonstrated that experi-
mental cured meat diets (dark cooked pork meat 
with nitrite, oxidized; dark cooked meat with 
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nitrite, anaerobic; dark cooked meat, oxidized; 
dark raw meat, anaerobic; with dark meat 
obtained from supraspinatus and infraspinatus 
pig muscle, which contained 15–17 mg of haem 
per 100 g) fed to DMH-induced rats for 100 days 
significantly increased the number of ACF per 
colon compared with the no-meat control diet 
(Santarelli et al., 2010).

In another study, DMH-induced rats were 
fed a diet containing hot dogs or saucisson 
(fermented, raw, dry sausage) (40% and 50% on 
a dry basis) for 100 days (Santarelli et al., 2013). 
The hot dog diet significantly increased the 
number of MDF per colon. The saucisson diet 
increased the number of MDF per colon, but the 
increase lacked statistical significance compared 
with the no-meat control diet. The addition of 
calcium carbonate (150 µmol/g) to the hot dog 
diet decreased the number of MDF per colon and 
faecal ATNC compared with the hot dog diet 
without calcium carbonate.

In DMH-induced F344 rats, the addition 
of calcium or α-tocopherol to a diet containing 
cured pork meat (47% meat diet for 100 days) also 
significantly reduced the number of MDF per 
colon, but the number of ACF was not affected 
(Pierre et al., 2013).

[The Working Group noted that results from 
a single laboratory showed three different kinds 
of processed meat given to carcinogen-induced 
animals promoted the growth of preneoplastic 
lesions in the colon.]

(iii)	 Haem and other components of red and 
processed meat

Pierre et al. (2003) showed that haemoglobin 
or hemin, the ferric porphyrin component of 
haemoproteins, promoted ACF in azoxymeth-
ane-induced rats when dietary calcium was low. 
This result suggested that myoglobin, the haemo- 
protein present in red meat, could also promote 
cancer of the colon when dietary calcium is low.

Santarelli et al. (2010) further evaluated 4 of 
16 diets containing cured meat that modified 

biomarkers of haem-induced carcinogenesis 
promotion (faecal and urinary fat oxidation 
and cytotoxicity) in a short-term (14-day) 
study. The diets differed in muscle colour (a 
proxy for haem level), processing temperature, 
nitrite, and packaging. In DMH-induced rats 
fed for 100 days, only the cooked, nitrite-treated 
and oxidized, high-haem meat diets signifi-
cantly increased faecal levels of apparent total 
N-nitroso compounds (ATNC) and the number 
of MDF per colon compared with the no-meat 
control diet. Specifically, the cooked, nitrite-
treated and oxidized, high-haem meat diets 
increased the number of MDF compared with 
the cooked, non–nitrite-treated meat diet and 
with the non-oxidized, high-haem meat diet; 
faecal ATNC levels were 5–15 times higher in the 
cooked nitrite-treated and oxidized high-haem 
meat diets than in the other diet groups, but lipid 
oxidation products (TBARS) in faecal water and 
urinary DHN-MA were lower in these groups 
than in the other selected meat diet groups.

In DMH-induced F344 rats, various 
biomarkers (TBARS in faecal water and cytotox-
icity of faecal water in CMT93 cell lines, ATNC 
in faeces and urinary DHN-MA) were all signif-
icantly reduced by the addition of calcium to a 
diet containing cured pork meat (47% meat diet 
for 100 days), while α-tocopherol decreased only 
the concentration of haem in faecal water and 
DHN-MA in urine (Pierre et al., 2013). Within the 
same report, Pierre et al. (2013) also showed that 
the consumption of cured meat increased ATNC 
and lipid peroxidation (TBARS) in the faeces 
of human volunteers (both P  <  0.05). Calcium 
normalized both biomarkers in the human 
faeces, whereas α-tocopherol only decreased lipid 
peroxidation in the human faeces (all P < 0.05).

Bastide et al. (2015) investigated the role of 
various components present in red meat, includ- 
ing haem iron, HAAs, and endogenous NOCs, 
in causing promotion of cancer of the colon. The 
relative contribution of haem iron (1% of the 
diet), HAAs (PhIP and MeIQx, 50  +  25  μg/kg 
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diet), and NOCs (induced by sodium nitrite and 
sodium nitrate, 0.17 + 0.23 g/L drinking-water) 
was determined in chemically (azoxymethane) 
induced rats and in Min mice (fed a 2.5% haemo-
globin diet). Haem iron increased the number of 
preneoplastic lesions (MDF) in rats, but dietary 
HAAs and NOCs had no effect. Dietary haemo-
globin increased tumour load in the small intes-
tine of the Min mice (ApcMin/+) (control diet, 
67 ± 39 mm2; 2.5% haemoglobin diet, 114 ± 47 
mm2; P = 0.004). In vitro, faecal water from rats 
given dietary haemoglobin was rich in aldehydes 
and was cytotoxic to normal cells (Apc+/+), but not 
to Apc-deficient cell lines (Apc–/+). The aldehydes 
4-HNE and 4-hydroxyhexenal were more toxic 
to normal cells than mutated cells, and were only 
genotoxic to normal cells. Genotoxicity (meas-
ured by γ-H2AX for DNA double-strand breaks) 
was also observed in the small intestine of Min 
mice given haemoglobin.

[The Working Group noted that these studies, 
coming from a single laboratory, highlighted the 
contribution of haem iron in the promotion of 
preneoplastic lesions by red meat. One study also 
suggested that in cured meat–fed rats, the driving 
mechanism of promotion was due to NOCs, and 
not to lipid peroxidation products.]

4.3.2	Other precancerous lesions in exposed 
humans

(a)	 Barrett oesophagus

Barrett oesophagus is defined as the replace-
ment of oesophageal squamous epithelium with 
metaplastic columnar epithelium. Four epide-
miological studies, three case–control studies 
and one cohort study, examined whether the 
consumption of meat is related to risk of Barrett 
oesophagus (Kubo et al., 2009; O’Doherty et al., 
2011; Jiao et al., 2013; Keszei et al., 2013). Only 
the USA case–control study observed a statis-
tically significant association between total 
meat consumption and risk of Barrett oesoph-
agus (multivariate-adjusted OR,  1.91; 95% CI, 

1.07–3.38; top vs bottom tertile) (Jiao et al., 2013), 
but none of the other three studies observed this 
same risk (Kubo et al., 2009; O’Doherty et al., 
2011; Keszei et al., 2013). However, the USA 
case–control study by Jiao et al. (2013) did not 
differentiate between the consumption of red, 
white, and processed meat. In another USA case–
control study, there was no association between 
total meat, well-done meat, or barbecued meat 
consumption and risk of Barrett oesophagus 
(Kubo et al., 2009), but an analysis of the same 
case–control study reported a positive associa-
tion between a “Western-type” dietary pattern, 
which is characterized by a high intake of red 
and processed meat, and risk of Barrett oesoph-
agus (Kubo et al., 2008).

(b)	 Gastric intestinal metaplasia

Gastric intestinal metaplasia is considered a 
precursor lesion of cancer of the stomach (Correa 
et al., 1975). Based on four studies (Nomura et al., 
1982; Stemmermann et al., 1990; Fay et al., 1994; 
Chen et al., 2004), a meta-analysis reported a 
combined odds ratio of 1.68 (95% CI, 0.98–2.90) 
for the association between salted/salty meat 
and intestinal metaplasia, but the heterogeneity 
between studies was large (I2,  55.4%), which 
may have been due to their use of different defi-
nitions of foods (e.g. all processed meat, cured 
meat, or bacon only), types of dietary assessment 
methods, or subgroups of the population (some 
studies were conducted only among men) (Dias-
Neto et al., 2010).

4.4	 Cancer susceptibility

4.4.1	 Genetic polymorphisms

(a)	 Humans

(i)	 Red meat and certain meat components
Several studies have suggested an increased 

risk of cancer of the colorectum in individuals 
with NAT2 rapid acetylator status (individuals 
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with two “rapid” alleles), assessed by pheno-
typing or genotyping. However, meta-anal-
yses of the literature on NAT2 acetylator status 
(rapid/intermediate vs slow genotype or pheno-
type) have typically not confirmed such a main 
effect association (Brockton et al., 2000; Liu 
et al., 2012; Zhang et al., 2012). This is also true 
of other cancers, such as those of the lung (Cui 
et al., 2011), stomach (Zhong et al., 2010), and 
breast (Ochs-Balcom et al., 2007; Ambrosone 
et al., 2008), as well as non-Hodgkin lymphoma 
(Gibson et al., 2013). Unfortunately, adding to the 
difficulty of interpreting these data, only a few 
studies, and no meta-analysis or pooled anal-
ysis, have reported risk estimates specifically for 
rapid acetylators– the subset expected to be at the 
greatest risk. Instead, grouping intermediate with 
rapid acetylators has been the norm, especially 
for populations in which the latter phenotype is 
relatively rare (e.g. Europeans). The inconsistent 
results for NAT2 in cancer of the colorectum are 
in sharp contrast to those for NAT2 in cancer of 
the bladder; the slow NAT2 acetylator status has 
consistently been associated with an increased 
risk of cancer of the bladder (except for benzi-
dine (Rothman et al., 1996)), due to the ability 
of NAT2 to detoxify arylamines, as shown in a 
meta-analysis and found in a genome-wide asso-
ciation study (Marcus et al., 2000; Figueroa et al., 
2014).

A smaller number of studies have explored 
associations between polymorphisms in other 
genes involved in the metabolism of HAAs and 
PAHs (e.g. CYP1B1, GSTM1, GSTT1, SULT1A1, 
UGT2B17) and cancer risk. The results of these 
studies have also been inconsistent or have 
not been replicated (Andersen & Vogel, 2015). 
Genome-wide association studies have recently 
shown that common (i.e. allele frequency > 5%) 
genetic variants have only a small effect on cancer 
risk. Importantly, few of the risk variants identi-
fied in cancer genome-wide association studies 
have been in metabolic genes, suggesting that 
stratification of exposure and very large samples 

sizes are needed to identify such associations. 
Indeed, it can be expected that polymorphisms 
in xenobiotic-metabolizing enzymes (XMEs) 
involved in carcinogen activation or detoxifica-
tion would only affect cancer risk when there is 
a high, biologically sufficient level of exposure 
to a carcinogen. Thus, it is likely important to 
consider both the exposure and the genetic vari-
ants to detect an association with cancer risk.

Studies that have examined the combined 
effects of exposure (e.g. red meat, well-done 
meat, or HAA intake) and metabolic genotypes 
or phenotypes have mainly focused on cancer of 
the colorectum and its precursor, adenomatous 
polyps. Interactions were suggested between 
intake of red meat, well-done meat, or HAAs 
and NAT2 acetylator status (Welfare et al., 1997; 
Kampman et al., 1999; Chan et al., 2005b; Lilla 
et al., 2006; Nöthlings et al., 2009; Voutsinas 
et al., 2013), NAT1 (Ishibe et al., 2002; Gilsing 
et al., 2012), AHR (Wang et al., 2011), CYP1B1 
(Cotterchio et al., 2008; Wang et al., 2011), 
CYP1A1 (Turner et al., 2004, Little et al., 2006; 
Goode et al., 2007), CYP2E1 (Morita et al., 2009), 
EPHX1 (Cortessis et al., 2001; Ulrich et al., 2001; 
Goode et al., 2007), NQO1 (Turner et al., 2004), 
SULT1A1 (Cotterchio et al., 2008; Barbir et al., 
2012), and UGTs (Butler et al., 2005; Girard et al., 
2008), as well as with a combination of meta-
bolic genes (CYP1A2, CYP2E1, CYP1B1, and 
CYP2C9) (Küry et al., 2007) and with a polygenic 
risk score based on variants in AHR, CYP1A2, 
CYP1B1, NAT2, SULT1A1, UGT1A7, GSTM1, and 
GSTT1 (Fu et al., 2012) on the risk of colorectal 
neoplasia. A meta-analysis of three cohort studies 
(1404 cases, 2186 controls) (Chen et al., 1998, 
Chan et al., 2005b, Nöthlings et al., 2009) on 
the modifying effect of NAT2 on the association 
between red meat and cancer of the colorectum 
suggested an interaction between NAT2 status 
and meat intake. High–red meat intake or pref-
erence for browned meat was not associated with 
an increased risk of cancer of the colorectum 
in carriers of the slow NAT2 phenotype. In 
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contrast, NAT2 fast acetylators with high-meat 
intake were at increased risk (OR, 1.25; 95% CI, 
0.92–2.01) compared with NAT2 slow acetylators 
with low-meat intake (Pinteraction = 0.07) (Andersen 
et al., 2013). However, other studies, some with 
large sample sizes, failed to replicate this interac-
tion between red meat intake and NAT2 acetylator 
status on risk of cancer of the colorectum or 
adenoma (Barrett et al., 2003; Murtaugh et al., 
2004; Sørensen et al., 2008; Ananthakrishnan 
et al., 2015; Budhathoki et al., 2015). Of note, 
the recent pooled analysis conducted by the 
Genetics and Epidemiology of Colorectal 
Cancer Consortium (GECCO) (8290 cases, 9115 
controls) found no interaction between red meat 
or processed meat intake and NAT2 acetylator 
status in case–control and cohort studies (sepa-
rately and overall) (Ananthakrishnan et al., 
2015). High–red meat intake was similarly asso-
ciated with cancer of the colorectum in subjects 
with the rapid/intermediate NAT2 genotype 
(OR, 1.38; 95% CI, 1.20–1.59) and in subjects 
with the slow NAT2 genotype (OR, 1.43; 95% CI, 
1.28–1.61; Pinteraction = 0.9).

Only four studies of adenoma and/or cancer 
of the colorectum have considered NAT2 jointly 
with CYP1A2 activity, which, as previously 
mentioned, shows high inter-individual varia-
bility and may account for individual differences 
in susceptibility to HAAs. Two of the four studies 
were case–control studies, and both found 
that rapid NAT2 activity combined with rapid 
CYP1A2 activity was a risk factor for colorectal 
neoplasia or cancer of the colorectum in individ-
uals who ate well-done meat (Lang et al., 1994; 
Le Marchand et al., 2001). However, in one of the 
case–control studies, this association was limited 
to smokers (Le Marchand et al., 2001), which is 
consistent with the inducing effect of smoking on 
CYP1A2. In the third study, only NAT2 activity, 
and not CYP1A2 activity, showed an interac-
tion with HAA intake on the risk of adenoma 
(Voutsinas et al., 2013). The fourth study failed 
to observe any modifying effect of NAT2 or 

CYP1A2 activity, also measured by caffeine 
phenotyping, on the relationship between HAAs 
and adenoma (Ishibe et al., 2002).

Fewer studies have examined the interac-
tion between meat intake and genetic polymor-
phisms on the risk of other cancer sites. However, 
multiple reports have focused on cancer of the 
breast and NAT2 (Ambrosone et al., 1998; Gertig 
et al., 1999; Deitz et al., 2000; Delfino et al., 2000; 
Mignone et al., 2009; Lee et al., 2013), CYP1A2 
(Lee et al., 2013), GSTM1 (Zheng et al., 2002), and 
SULT1A1 (Lee et al., 2012). Similar to the litera-
ture on cancer of the colorectum, publications on 
cancer of the breast have been inconsistent.

Other cancer-related mechanisms, such as 
DNA repair, have been explored in studies of 
cancer, genetic variation, and meat intake. For 
example, a variant in MGMT, a gene involved in 
the repair of DNA damage caused by alkylating 
agents, including NOCs from the diet, was found 
to interact with both red and processed meat 
intake on the risk of cancer of the colorectum 
(Loh et al., 2010). Variants in the nucleotide exci-
sion repair enzyme gene, xeroderma pigmen-
tosum group D (XPD), have also been found 
to increase the risk of cancer of the colorectum 
when combined with a high intake of heavily 
browned red meat (Joshi et al., 2009).

Thus, a large number of studies have evaluated 
the role of genetic polymorphisms in an attempt 
to clarify the association between cancer suscep-
tibility and red meat consumption. Historically, 
these studies have focused on suspected mechan-
isms, and mainly on genes involved in the metab-
olism of carcinogens present in cooked red meat. 
The results of these candidate gene studies have 
mostly been inconsistent. Many were under-
powered and had multiple testing, publication, 
and reporting biases. Inconsistencies in the 
gene–meat interaction studies may also have 
resulted from differences in the comprehen-
siveness of the dietary assessments or the lack 
of consideration for cytochrome P450 (CYP) 
enzyme inducers (e.g. smoking). The strongest 
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evidence provided by these studies supported 
an interaction between NAT2, red meat intake, 
and risk of cancer of the colorectum. However, 
as previously noted, meta-analyses and pooled 
analyses (Brockton et al., 2000; Liu et al., 2012; 
Zhang et al., 2012; Ananthakrishnan et al., 2015) 
have failed to confirm a main effect or modifying 
effect of NAT2 or other genes on cancer of the 
colorectum or other cancers. Insufficient focus 
has been given to the group expected to be at 
the highest risk  – those with two rapid alleles. 
Data are lacking for populations in which this 
genotype is common, and that consume signif-
icant amounts of well-done meat and have high 
rates of cancer of the colorectum (e.g. Japan and 
Republic of Korea).

In recent years, genome-wide association 
studies have identified several cancer suscepti-
bility loci, each with a relatively small effect on 
risk. Statistical methods have been developed to 
analyse interactions between diet and variants 
across the entire genome. These analyses, with 
the currently available sample sizes, have rarely 
replicated results from candidate gene studies 
and have not identified interactions with red 
meat intake (Jiao et al., 2012; Kantor et al., 2014). 
However, larger sample sizes are needed to detect 
modest or weak interactions.

(ii)	 Processed meat
Processed meat has not always been exam-

ined separately from red meat in studies of 
genetic polymorphisms. A population-based 
case–control study in Hawaii, USA (Le Marchand 
et al., 2002a) found an increased risk of cancer of 
the colorectum in individuals who consumed a 
high amount of red meat or processed meat and 
who carried a variant in CYP2E1 that had been 
shown to alter enzyme activity (Lucas et al., 1995; 
McCarver et al., 1998; Le Marchand et al., 1999). 
This association was more pronounced for cancer 
of the rectum and was observed in individuals 
who consumed salted/dried fish and oriental 
pickled vegetables, both food sources of NOCs. 

An association with the same CYP2E1 variant 
and cancer of the stomach was also observed 
(Nishimoto et al., 2000; Chen et al., 2004).

Finally, a genome-wide search for diet–gene 
interactions identified an interaction between 
processed meat intake and a variant (rs4143094) 
on 10p14 (near GATA3) on the risk of cancer of the 
colorectum (Figueiredo et al., 2014). Although the 
mechanism was unclear, GATA3 was involved in 
cell maturation, proliferation arrest, and survival. 
Loss, or silencing, of expression of GATA genes 
has been described in colorectal tumours.

[The Working Group noted that few studies 
have explored the role of genetic susceptibility as 
a potential modifier of the association between 
processed meat and cancer. These studies have 
typically been small, and have not allowed for 
any conclusions to be drawn.]

(b)	 Experimental systems

Two studies by the same research group 
showed that mice humanized for CYP1A2 are 
more susceptible to HAAs (e.g. PhIP) than wild-
type mice (Cheung et al., 2011; Li et al., 2012). 
[The Working Group noted that the doses used in 
these studies were greater than human exposure 
levels, and the relative levels of hCYP1A2 expres-
sion may have exceeded the range in humans.]

4.4.2	Microflora

Evidence is also available concerning indi-
vidual differences in intestinal microflora profiles 
that may affect the carcinogenic effect of red meat. 
In rodents, the gut microbiota has been shown 
to facilitate haem-induced hyperproliferation 
by opening the mucous barrier (Ijssennagger 
et al., 2015). Similarly, it has been suggested that 
intestinal microflora play an important role in 
the bioactivation of HAAs. Kassie et al. (2004) 
inoculated intestinal flora collected from either 
vegetarians or meat eaters into germ-free rats. 
The rats were fed a diet mimicking the donors’ 
diets, in terms of the origin of the protein and 
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fat (animal or plant). After oral administration 
of 2-amino-3-methylimidazo[4,5-f]quinoline 
(IQ), DNA damage in both colon and liver cells, 
as determined by comet assay, was significantly 
lower in animals harbouring the flora from vege-
tarians than in those harbouring the flora of the 
meat eaters.

The human intestinal microbiota 
has been shown to selectively convert 
PhIP to a major metabolite, 7-hydroxy-
5 - m e t h y l - 3 - p h e n y l - 6 , 7, - 8 , 9 , - t e t r a - 
hydropyridol[3ʹ,2ʹ:4,5]imidazo[1,2-a]pyrimi-
din-5-ium chloride (PhIP-M1) (Vanhaecke 
et al., 2008a). PhIP-M1 was found to cause cell 
division arrest and induce DNA strand breaks 
in the human epithelial intestinal colon carci-
noma Caco-2 cell line (Vanhaecke et al., 2008b), 
suggesting that the ability of the colon micro-
biota to bioactivate PhIP may affect the risk of 
cancer of the colorectum. [The Working Group 
could not make any conclusions regarding effect 
modification due to the microbiota.]

4.5	 Meat components potentially 
involved in carcinogenesis

4.5.1	 Haem iron

(a)	 Iron intake and digestion

One of the defining characteristics of red meat 
is its haem iron content. Two types of iron occur 
in foods: haem iron (organic) and non-haem iron 
(inorganic) (Fonseca-Nunes et al., 2014). Haem, 
which is made up of an iron atom surrounded 
by a porphyrin ring, is included in haemoglobin 
and myoglobin, and is involved in supplying 
oxygen to the body’s tissues (Bastide et al., 2011). 
The redness of meat is mainly determined by its 
concentration of myoglobin, with the oxidation 
state and sixth ligand of iron determining the 
specific colour of meat. Haem iron in nitrite-
cured meat is mostly nitrosylated (Demeyer 
et al., 2015).

Iron overload has many adverse health 
effects, irrespective of the iron source. While the 
human body maintains homeostatic control of 
this trace element, the absorption of haem iron in 
the small intestine is less regulated and more effi-
cient (15–40%) than the absorption of non-haem 
iron (Layrisse et al., 1969; Carpenter & Mahoney, 
1992; Hooda et al., 2014). Red meat is the largest 
dietary source of haem iron. Non-haem iron, 
which is present in both animal and vegetable 
sources, accounts for the majority of total dietary 
iron intake and has a wide range of absorption 
(1–40%). The absorption of non-haem iron is 
influenced by the body’s iron stores, hypoxia, 
and erythropoietic activity, as well as by the 
intake of vitamin C, calcium, and haem iron 
(Layrisse et al., 1969; Carpenter & Mahoney, 
1992; Fonseca-Nunes et al., 2014).

Haem in meat may undergo modifications 
during processing and digestion. Depending on 
the time and temperature, myoglobin is dena-
tured after cooking, and the haem moiety is 
liberated. Haem iron can also be converted, to 
varying degrees, into non-haem iron by heat treat-
ment (Kristensen & Purslow, 2001; Purchas et al., 
2006). Purchas et al. (2006) showed an overall 
loss of iron from cooking of beef, together with 
a marked shift from soluble haem and non-haem 
iron to their insoluble forms. However, after simu-
lated stomach and duodenal digestion, solubility 
was regained to a significant extent. Kristensen & 
Purslow (2001) reported that NaCl, widely used in 
meat processing, increased the haem:non-haem 
ratio in cooked meat by preventing the haem 
molecule from liberating iron, whereas calcium 
ions had a negative effect on the haem:non-haem 
ratio during cooking of meat. Thus, the type of 
processing and the cooking conditions affected 
the content and solubility of haem and free iron 
in meat, determining the absorption of iron 
in the proximal gut, and thus the amount that 
entered the distal gut.
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(b)	 Mechanisms of carcinogenesis

Possible mechanisms by which haem iron 
may promote colon carcinogenesis include its 
catalytic effect on the formation of NOCs and 
on the oxidation of polyunsaturated fats. A third 
potential mechanism involves its direct effect 
on colon cells (Bastide et al., 2011; Corpet, 2011; 
Fonseca-Nunes et al., 2014).

A first possible mechanism of tumour promo-
tion by haem iron is related to NOC forma-
tion by N-nitrosation of amines and amides by 
bacterial decarboxylation of amino acids from 
meat in the presence of a nitrosating agent. A 
controlled feeding study showed that high–red 
meat consumption is associated with greater 
excretion of ATNC (Cross et al., 2003). ATNC is 
a collective term that encompasses nitrosyl iron, 
S-nitrosothiols, nitrosamines, and nitrosamides. 
In another controlled feeding study, the endoge-
nous production of NOCs was further enhanced 
when the diet contained haem iron from blood 
sausage compared with red or white meat (Cross 
et al., 2003; Hammerling et al., 2015). The main 
ATNC in the faeces of study participants fed a 
red meat diet was nitrosyl haem, but in those 
fed cured meat, NOCs predominated (Joosen 
et al., 2009; Corpet, 2011). Similarly, in animal 
studies, diets containing red and processed meat 
increased faecal NOCs (Mirvish et al., 2003; 
Demeyer et al., 2015). Some NOCs are carcino-
genic compounds, inducing multisite tumours in 
animals (Lijinsky, 1992).

Several mechanisms have been suggested 
to explain the effect of haem on faecal ATNC 
content. One hypothesis concerns the combined 
action of haem and free thiols on NOC forma-
tion. Nitrosothiols are readily formed under the 
acidic conditions of the stomach, a process that is 
promoted by haem, and may release nitric oxide 
(NO) once they are exposed to the alkaline and 
reductive conditions of the small and large intes-
tine, thereby stimulating the nitrosylation of 
haem iron. Nitrosyl haem is an NO donor and can 

act as a nitrosating agent in the lower gut (Kuhnle 
et al., 2007). Although an increase in ATNC 
after consumption of red and processed meat 
has been demonstrated, the potential carcino-
genicity of the NOCs formed in the gut is unclear 
(Demeyer et al., 2015); this is addressed further 
in Section 4.5.5. A second hypothesis that has 
been proposed is that changes in the microbiota 
may be related to NOC production (Ijssennagger 
et al., 2012, 2013, 2015). Ijssennagger et al. (2012) 
showed a distinctive shift in the colonic microbial 
composition of mice fed a Westernized diet (40% 
fat) supplemented with 0.5 µmol/g of haem iron 
compared with mice fed the same diet without 
haem iron. After 2 weeks, the colonic contents 
of the mice given haem iron contained higher 
amounts of Bacteroidetes (gram-negative) and 
lower amounts of Firmicutes (gram-positive) 
than those not given haem iron supplemen-
tation. After the haem iron supplementation, 
Ijssennagger et al. (2012) also observed an increase 
in the nitrate-reducing capacity of the colonic 
microflora, while the sulfate-reducing capacity 
was unchanged. This increase by haem iron in 
the nitrate-reducing capacity might be impor-
tant, as considerable inter-individual variation 
was observed in the ability of different individual 
porcine and human microbiota to form NOCs 
and NOC-specific DNA adducts (Engemann 
et al., 2013; Vanden Bussche et al., 2014). Similarly, 
Van Hecke et al. (2014b) showed that haem iron 
had a stimulating effect on O6-CMG production 
during in vitro fermentation of meat.

A second possible mechanism of tumour 
promotion by haem iron involves its ability to 
catalyse the oxidation of polyunsaturated fats 
(Corpet, 2011). The formation of lipid oxidation 
products is discussed in Section 4.5.2. Tumour 
promotion was found to be associated with 
increased urinary excretion of DHN-MA, a 
fat peroxidation biomarker, in rats after intake 
of haem (Pierre et al., 2006). An increase in 
this biomarker was also observed in humans 
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consuming blood sausage, which is high in haem 
(Pierre et al., 2006).

A third possible mechanism of tumour 
promotion by haem iron involves a direct effect 
of haem or one of its metabolites on colon cells. 
In vitro studies by Glei et al. (2002) showed 
that, when haemoglobin was added to a culture 
medium, it was taken up by human colon cells 
and participated in the induction of oxidative 
DNA damage such as DNA breaks and oxidised 
bases. As reported in Section 4.2.6, the Van der 
Meer group (e.g. Sesink et al., 1999) showed that 
supplementing a diet with hemin chloride, which 
is not present in food, increased epithelial prolif-
eration and enhanced apoptosis in the colonic 
mucosa, and induced cytotoxicity in faecal water. 
Cytotoxicity-induced stress, rather than oxida-
tive stress of surface cells, was the determinant 
of hemin-induced hyperproliferation.

(c)	 Epidemiological studies

Methods for estimating haem intake in 
epidemiological studies are varied. The infor-
mation on haem iron concentrations in meats 
was sparse, partially due to the lack of appro-
priate analytical methods, and the variable 
concentrations across the range of meat types 
(e.g. beef, chicken, or pork), cuts of meats from 
the same animal, and methods of preparation 
(Kongkachuichai et al., 2002; Lombardi-Boccia 
et al., 2002; Cross et al., 2012). Two methods 
for estimating haem iron were to use 40% of 
total iron from meat (Lee et al., 2005) or to use 
meat-specific proportions (65% for beef; 39% for 
pork, ham, bacon, pork-based luncheon meats, 
and veal; and 26% for chicken and fish) (Balder 
et al., 2006). Recently, a haem iron database and 
complementary FFQs were developed to esti-
mate haem iron intake from meats prepared by 
different cooking methods to a range of doneness 
levels (Cross et al., 2012) for use in etiological 
studies.

The inconclusive data for an association 
between haem iron intake and a variety of 

cancers may be partially explained by inconsist-
encies in the methods used to measure haem iron 
intake. Haem iron was positively associated with 
colorectal adenomas in two cohort studies: the 
PLCO trial (Ferrucci et al., 2012) and the National 
Institutes of Health – American Association of 
Retired Persons (NIH-AARP) Diet and Health 
Study (Cross et al., 2010). In a meta-analysis of 
five prospective studies, the summary relative 
risk for cancer of the colon was 1.18 (95% CI, 
1.06–1.32) for those in the highest versus lowest 
category of haem iron intake (Bastide et al., 
2011). In two other meta-analyses of eight studies 
each, the summary relative risks for cancer of 
the colorectum were 1.14 (95% CI, 1.04–1.24) for 
the highest versus the lowest category of haem 
iron intake (Qiao & Feng, 2013) and 1.08 (95% 
CI, 1.00–1.17) for an increase of 1 mg/day in the 
intake of haem iron (Fonseca-Nunes et al., 2014). 
Although these analyses were suggestive of a 
significant but modest increased risk, the meas-
urement of haem iron intake differed in each of 
the studies included.

In the NIH-AARP study, individuals in the 
highest category of haem iron intake were at 
increased risk of cancer of the lung (Tasevska 
et al., 2009) and prostate (Sinha et al., 2009), as 
well as chronic liver disease mortality (Freedman 
et al., 2010), but not hepatocellular carcinoma 
(hazard ratio, HR, 0.95; 95% CI, 0.68 –1.32; 
top vs bottom quintile) (Freedman et al., 2010), 
non-Hodgkin lymphoma (Daniel et al., 2012b), 
or cancer of the breast (Kabat et al., 2010); haem 
iron intake was also not associated with cancer of 
the breast in the PLCO trial (Ferrucci et al., 2009). 
In a meta-analysis of four studies, the summary 
relative risk for cancer of the breast was 1.03 (95% 
CI, 0.97–1.09) (Fonseca-Nunes et al., 2014), and 
the summary relative risk for cancer of the lung 
was 1.12 (95% CI, 0.98–1.29) for an increase of 
1 mg/day in the intake of haem iron (Fonseca-
Nunes et al., 2014). Results were heterogeneous 
for cancer of the stomach (Fonseca-Nunes et al., 
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2014) and oesophagus (Cross et al., 2011a; Steffen 
et al., 2012).

Regarding specific gene mutations in 
colorectal tumours, haem iron intake was 
positively associated with an increased risk of 
colorectal tumours with P53 overexpression, but 
not colorectal tumours without P53 overexpres-
sion in the NLCS (Gilsing et al., 2013). Haem iron 
intake was associated with an increased risk of 
colorectal tumours harbouring G→A transitions 
in K-RAS and APC, and overexpression of TP53 
(Gilsing et al., 2013).

4.5.2	Lipid oxidation products

(a)	 Lipid oxidation in meat

The oxidation of unsaturated fatty acids in 
meat results in the formation of lipid oxida-
tion products, which are in part cytotoxic and 
genotoxic (Kanner, 2007; Guéraud et al., 2010). 
Polyunsaturated fatty acids are especially sensi-
tive to oxidation, which proceeds via a free radical 
chain reaction involving initiation, propagation, 
and termination steps. Transition metals, espe-
cially iron, catalyse this reaction, in the presence 
of oxygen, producing unstable ROS, including 
superoxide, hydrogen peroxide, and hydroxyl 
radicals. The ROS initiates a chain of oxidative 
reactions, generating lipoperoxyl radicals and 
lipid hydroperoxides. Lipid hydroperoxides 
may decompose to several low-molecular-mass 
break-down products, such as aldehydes and 
hydroxyalkenals, or condense to polymers. The 
main lipid peroxidation by-products are malon-
dialdehyde (MDA) and 4-HNE (Marnett, 2000; 
Fig. 4.1); both of these lipid oxidation end prod-
ucts are risk factors to human health (Kanner, 
2007; Bastide et al., 2011). MDA is most abundant 
and can reach 300  µM or more in meat prod-
ucts (Kanner, 2007). It is also toxic and binds to 
DNA and proteins, or undergoes further oxida-
tion to more reactive epoxy derivatives that can 
be mutagenic in bacterial, mammalian, and 
human cells (Basu & Marnett, 1983; Esterbauer, 

1993; Guéraud et al., 2010; Bastide et al., 2011). In 
foods, MDA is bound mainly to the lysine resi-
dues of proteins, from which it is released in the 
course of digestion, as N-α-acetyl-ϵ-(2-propenal)
lysine (Piche et al., 1988).

The fat fraction of meat also contains choles-
terol, and it is known that dietary fatty acids 
and dietary cholesterol are co-oxidized (Kanner, 
2007). Cholesterol oxidation via lipid free radi-
cals results in the formation of many oxidation 
by-products, such as oxycholesterol, which has 
cytotoxic, pro-oxidant, and proinflammatory 
activities (Lemaire-Ewing et al., 2005). The 
amount of oxycholesterol in cholesterol-rich food 
products, including precooked meat and poultry, 
can reach 10–100 µM (Kanner, 2007).

The degree of lipid oxidation during the 
manufacturing of processed meat and storage 
of fresh and processed meat before consumption 
depends on many factors, such as the iron and 
polyunsaturated fatty acid content; the presence 
of endogenous or added antioxidants, and other 
additives; and the processing and storage condi-
tions (Morrissey et al., 1998). When good storage 
and processing practices are followed, the levels 
of lipid oxidation products in meat at the time 
of consumption are low. Oxidation of myoglobin 
and other proteins also occurs, which can inter-
fere with lipid oxidation (Faustman et al., 2010).

(b)	 Lipid oxidation during digestion of meat

The composition of meat and the conditions 
prevailing in the different compartments of the 
digestive tract, including interactions with other 
foods, determine the extent of formation of lipid 
oxidation products during the digestion of meat. 
Saliva in the mouth, acidic gastric juice in the 
stomach, emulsifying pancreatic and bile juice in 
the small intestine, and anaerobic fermentation 
by the microbiota in the large intestine all influ-
ence lipid oxidation in the gut. Kanner & Lapidot 
(2001) showed that lipid oxidation in heated 
muscle tissue was enhanced in the stomach due 
to the low pH and dissolved oxygen.



Red meat and processed meat

459

Extensive evidence is available indicating 
that haem iron in red and processed meat is a 
key factor in promoting lipid oxidation (Carlsen 
et al., 2005). Feeding rats heated red turkey  
cutlets, which are high in haem, increased 
lipid hydroperoxides and MDA in the stomach 
(Gorelik et al., 2008). As previously noted, urinary 
excretion of DHN-MA was increased in rats fed 
haem and in humans fed blood sausage (Pierre 
et al., 2006). Plasma MDA concentrations were 
higher in rats fed beef versus chicken (Toden 
et al., 2010). Higher MDA, 4-HNE, and hexanal 
concentrations resulted from in vitro duodenal 

and colonic digests of beef compared with pork, 
followed by chicken (Van Hecke et al., 2014a).

A large proportion of ingested haem iron 
reaches the colon (Pierre et al., 2008), and could 
thus stimulate oxidation reactions in the colonic 
contents. However, lower MDA, 4-HNE, and 
hexanal concentrations resulted from in vitro 
colonic compared with duodenal digests (Van 
Hecke et al., 2014a, b; Vanden Bussche et al., 
2014). This could be due to the anaerobic condi-
tions in the colon, degradation or metabolism 
into other compounds. The colonic microbial 
composition likely also has an influence on 

Fig. 4.1 Generic scheme of polyunsaturated fatty acid peroxidation
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oxidation processes (Huycke & Moore, 2002; Sun 
et al., 2010; Martin et al., 2015).

The high-fat content of many processed meats 
is likely to result in an increased production of 
lipid oxidation products. In vitro digestion of a 
heated pork product containing 5% or 20% pork 
lard resulted in a higher production of 4-HNE 
and hexanal compared with heated lean pork 
containing 1% fat (Van Hecke et al., 2014b). The 
fatty acid profile is also important. Urinary MDA 
and DHN-MA in rats increased when haem 
iron was combined with fish oil (high in n-3 
fatty acids) and safflower oil (high in n-6 fatty 
acids), but not with hydrogenated coconut oil 
(98% saturated fatty acids) (Guéraud et al., 2015). 
Similarly, levels of hepatic 4-HNE-histidine 
protein adducts were higher when haem iron 
was combined with safflower oil compared with 
hydrogenated coconut oil.

During the heating of meat, the content of 
free Fe2+ increases through destruction of the 
haem-porphyrin moiety, oxymyoglobin releases 
oxygen with production of hydrogen peroxide, 
and antioxidant enzymes (e.g. glutathione 
peroxidase) are inactivated (Kanner, 1994). 
This stimulates the Fenton reaction, and thus 
the formation of lipid oxidation products. Rats 
consuming cooked meat products had increased 
faecal TBARS and urinary DHN-MA compared 
with rats consuming raw meats (Santarelli et al., 
2010). Similarly, heating compared with not 
heating a pork product increased the formation 
of MDA, 4-HNE, and hexanal before and during 
digestion (Van Hecke et al., 2015).

Nitrite salt is widely used as a curing agent in 
meat processing. Nitrite has antioxidant proper-
ties in processed meat. The formed nitric oxide 
myoglobin, nitric oxide ferrous complexes, and 
S-nitrosocysteine have antioxidant properties, 
and nitric oxide inhibits the Fenton reaction 
(Kanner, 1994). In acidic conditions, such as in 
the stomach, nitrous acid generates dinitrogen 
trioxide and water, which is in equilibrium with 
nitric oxide (NO) and nitrogen dioxide (NO2) 

(Honikel, 2008). The balance between NO and 
ROS has been described as a determinant of the 
effect of nitrite on oxidant reactions whereby a 
1:1 ratio of NO to ROS enhances lipid peroxida-
tion, whereas an excess of NO inhibits oxidation 
(Darley-Usmar et al., 1995). A study using rats 
showed that addition of nitrite to meat products 
reduced TBARS in faecal water (Santarelli et al., 
2010). Chenni et al. (2013) found that intake of 
nitrite through drinking-water (1  g/L) reduced 
haem-induced lipid peroxidation in the colon of 
rats by 25%. During in vitro digestion of different 
nitrite-cured meat products, the formation of 
lipid oxidation products was markedly inhibited 
(Van Hecke et al., 2014a, b, 2015). However, this 
inhibition was less efficient when the fat content 
of the diet was high (20% fat), and absent when 
the meat products were subjected to intense 
heating. The intensely heated meat products, 
in which nitrite was less efficient at preventing 
oxidant reactions, contained less residual nitrite.

(c)	 Absorption, distribution, metabolism, and 
excretion

A vast amount of literature is available 
concerning the biotransformation of lipid oxida-
tion products. With respect to toxic aldehydes, 
the Working Group refers to extensive reviews 
of Esterbauer et al. (1991) and of Guéraud et al. 
(2010), and of Poli et al. (2008) for 4-HNE specifi-
cally. Most lipid peroxidation–derived aldehydes 
such as 4-HNE can travel across membranes by 
passive diffusion. Metabolism occurs in most cells 
and tissues, and is rapid and complete. As a first 
and major step is conjugation with glutathione 
by Michael addition, which may be considered 
a detoxification reaction, facilitating urinary 
excretion. Other modifications of the aldehyde 
function may also occur (e.g. reduction into an 
alcohol or oxidation into an acid). The liver and 
the kidneys are the organs primarily involved in 
the elimination of 4-HNE. DHN-MA appears to 
be the major urinary metabolite of 4-HNE. MDA 
is metabolized to carbon dioxide and water via 
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transformation into acetaldehyde, but it is also 
found unmodified in urine and plasma (Guéraud 
et al., 2010).

(d)	 Mechanisms of carcinogenesis

Due to their chemical reactivity, aldehyde 
breakdown products of lipid oxidation can 
covalently modify nucleic acids, proteins, and 
lipids (Guéraud et al., 2010). They also serve as 
biomarkers of oxidative stress, and are important 
in cell signalling in both pathological and phys-
iological conditions, mainly in cell cycle regula-
tion. 4-HNE is able to exert cytotoxic, mutagenic, 
and genotoxic effects. Similarly, MDA has muta-
genic and genotoxic properties (Esterbauer, 1993; 
Guéraud et al., 2010).

After meat consumption, the levels of lipid 
peroxidation products and their adducts or 
metabolites increase. For instance, lipid hydro- 
peroxides and MDA accumulation increased 
more than twofold in the stomach contents of 
rats fed red turkey cutlets and after pyloric liga-
tion. Postprandial plasma MDA levels increased 
significantly by 50%. The addition of red wine 
polyphenols altered these outcomes (Gorelik  
et al., 2008). In a human study by Brown 
et al. (1995), urinary MDA increased from 2.1 to 
23.1  µmol/day with the consumption of high 
quantities of cooked meat over a 7-day period. 
After consumption of red meat by rats and 
humans, excretion of both MDA and DHN-MA 
increased in the urine (Pierre et al., 2006, 2008).

4.5.3	Heterocyclic aromatic amines

The following discussion is restricted to 
studies involving exposure to HAAs as a result 
of the consumption of red meat or processed 
meat, together with studies that reported find-
ings directly relevant to the issue of whether such 
exposure may account for any risk of cancer. The 
weight accorded to such data depended, among 
many other considerations, on current knowl-
edge of the carcinogenicity of individual HAAs 

and of HAAs as a class. See IARC Monographs 
Volume 56 (IARC, 1993).

Meats cooked at a high temperature contain 
HAAs (see Section 1.2.3 and Fig. 1.2). HAAs are 
pyrolysis by-products formed from the reaction 
between creatine or creatinine found in muscle 
meats, amino acids, and sugars (Wakabayashi 
et al., 1992; Sugimura et al., 2004). HAA forma-
tion increases with the temperature and duration 
of cooking, and depends on the type of meat and 
cooking method (Cross & Sinha, 2004). More 
than 20 individual HAAs have been identified. 
After meat consumption of a fried beef meal 
by human subjects, 24-hour hydrolysed urine 
contained 2–8.5% PhIP and 13–32% MeIQx of 
the ingested dose (Reistad et al., 1997).

Most HAAs are potent bacterial mutagens, 
based on the Ames S. typhimurium test (Ames 
et al., 1973; Felton et al., 2007). In 1993, the 
Working Group concluded that HAAs are possibly 
or probably carcinogenic to humans, including 
IQ (Group 2A), MeIQ (Group 2B), MeIQx  
(Group 2B), and PhIP (Group 2B) (IARC, 1993).

(a)	 Mechanisms of carcinogenesis

Most HAAs are not mutagenic or carcino-
genic in their parent form. HAAs acquire the 
capacity to form DNA adducts and potentially 
cause DNA damage only after metabolic activa-
tion. HAAs undergo rapid and extensive metab-
olism by phase I and II XMEs (Alexander et al., 
1995; Turesky & Le Marchand, 2011), which can 
lead to either bioactivation or detoxification of 
the HAAs, as discussed in Section 4.4.

HAA–DNA adduct formation is considered 
a biomarker for the mutagenic and carcinogenic 
potential of these xenobiotic compounds (Cheng 
et al., 2006). Many HAAs have been shown to 
form DNA adducts in both in vitro and in vivo 
experiments (Cheng et al., 2006; Turesky & Le 
Marchand, 2011). The major reaction of the 
N-hydroxy-HAA derivatives with DNA occurs 
at deoxyguanosine (dG) to produce dG-C8-HAA 
adducts, where bond formation occurs between 



IARC MONOGRAPHS – 114

462

the C8 atom of dG and the activated exocyclic 
amine group of the HAA (Schut & Snyderwine, 
1999; Turesky & Vouros, 2004). For IQ and 
MeIQx, DNA adducts also form at the N2 group 
of dG and the C5 atom of the heterocyclic ring 
structures (Turesky & Vouros, 2004; Turesky 
& Le Marchand, 2011). While the amount of 
dG-N2 adducts formed is small relative to the 
dG-C8 isomers, the dG-N2 adducts can persist 
in vivo (Turesky & Vouros, 2004; Turesky & Le 
Marchand, 2011).

In addition to DNA adduct formation, HAAs 
may exhibit other carcinogenic mechanisms. 
For example, PhIP may also possess estrogenic 
activity at very low doses (10−9 to 10−11 M), which 
can invoke a mitogenic response (Lauber et al., 
2004). PhIP at doses as low as 10−11 M had direct 
effects on a rat pituitary lactotroph model, and 
induced cell proliferation and the secretion 
of prolactin. These PhIP-induced effects were 
suppressed by an estrogen receptor inhibitor. 
Such hormone-like activities of PhIP provide 
mechanistic plausibility for carcinogenicity in 
the breast (Lauber & Gooderham, 2007).

Considerable interspecies differences have 
been found in the carcinogenicity, mutagenicity 
and metabolism of HAAs (Hengstler et al., 1999). 
Carcinogenicity studies have been performed in 
rats, mice, and monkeys (Ohgaki et al., 1985; 
Adamson et al., 1990; Hengstler et al., 1999). In 
rodents, long-term feeding of HAAs induced 
tumours of the oral cavity, liver, stomach, 
colon, pancreas, and prostate gland in males 
and mammary gland in females (Turesky & Le 
Marchand, 2011). IQ was shown to be a potent 
hepatocarcinogen in cynomolgus monkeys, but 
MeIQx failed to induce hepatocellular carcinoma 
after a 5-year dosing period (Hengstler et al., 
1999). Species differences in mutagenicity were 
most pronounced for MeIQx in S. typhimurium 
strain TA98 (Ames test) using liver microsomes 
from cynomolgus monkeys, rats, and humans. 
Higher mutation rates occurred with human and 
rat, than with cynomolgus monkey microsomes. 

DNA adduct levels were highest in male rats, 
followed by female rats, and were much lower in 
cynomolgus monkeys after an oral MeIQx dose. 
Species differences in the bioactivation of PhIP 
were also observed among in human, rat, and 
mouse hepatic microsomes, with those of human 
origin having the highest capacity to catalyse 
the initial activation step to N-hydroxy-PhIP 
(Hengstler et al., 1999).

The total dose required to induce tumours 
formation varied for each HAA, was species-de-
pendent, and could range from 0.1 to 64.6 mg/kg 
per day in rodents (Turesky & Le Marchand, 
2011). Doses of HAAs used in the animal feeding 
studies exceeded by several orders of magnitude 
the levels of HAAs found in the human diet 
(Stavric, 1994). However, several HAA–DNA 
adducts have been detected in human tissue 
(Turesky & Le Marchand, 2011). The results 
reported by Garner et al. (1999) suggest that 
humans metabolize HAAs differently compared 
with rats. After low-dose oral administration of 
MeIQx and PhIP, humans developed higher DNA 
adduct formation in colonic tissue compared 
with rats. Similarly, Mauthe et al. (1999) showed 
that low-dose MeIQx formed DNA adducts in 
the human colon. This implied that the human 
colon may be more sensitive to this compound 
than the mouse or rat colon. Using accelerator 
mass spectrometry, a tool for measuring isotopes 
with attomolar sensitivity, Turteltaub et al. (1999) 
showed that protein and DNA adduct levels in 
rodents were dose-dependent. The adduct levels 
in human tissue and blood were generally greater 
than those in rodents administered equivalent 
doses. Furthermore, the metabolite profiles 
for both MeIQx and PhIP differed substan-
tially between humans and rodents, with more 
N-hydroxylation (bioactivation) and less ring 
oxidation (detoxification) in humans. There are 
also important differences between humans and 
rats in CYP activity and regioselectivity of HAA 
oxidation, which can affect the toxicological 
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properties of these compounds (Turesky, 2007; 
Turesky & Le Marchand, 2011).

(b)	 Epidemiological studies

Estimating HAA exposure in epidemiological 
studies has been difficult due to the variability of 
these compounds across the range of meat types, 
cooking methods and doneness levels. Moreover, 
there is a lack of gold-standard biomarkers to 
validate the questionnaires. Surrogate measures 
of HAA intake, such as cooking methods, meat 
doneness, and surface browning, have been used 
to investigate the etiological association between 
these mutagens and cancer risk. In addition, 
questionnaires with detailed cooking and done-
ness information have been linked to an HAA 
database to estimate individual HAA intake 
in the USA (Sinha, 2002; Sinha et al., 2005c), 
Sweden (Augustsson et al., 1997), and Germany 
(Rohrmann et al., 2009b). The HAA database 
was created by measuring levels of HAAs in a 
variety of meats cooked by different high-tem-
perature methods to a range of doneness levels 
(rare, medium, well done, and very well done) 
(Sinha et al., 1995, 1998a, b). For example, while 
grilled, well-done chicken contains high levels of 
HAAs, roasted chicken contains very low levels 
of HAAs.

Urinary HAA biomarkers are good indicators 
of short-term intake, but such one-time measures 
cannot be used to estimate an individual’s usual 
exposure level (Cross & Sinha, 2004; Turesky & Le 
Marchand, 2011; Busquets et al., 2013). Adducts 
in DNA, haemoglobin, and serum albumin have 
also been evaluated, but their utility in epidemio-
logical studies at the present time is unclear 
(Turesky & Le Marchand, 2011). There is enthu-
siasm for using HAA levels in hair as a long-term 
measure of exposure, but the use of this measure 
in epidemiological studies is still being evaluated 
(Kobayashi et al., 2007; Turesky & Le Marchand, 
2011; Kataoka et al., 2013; Iwasaki et al., 2014) 
(see also Section 1.4.2).

Putative DNA adducts of several HAAs have 
been detected in human tissues by non-specific 

32P-postlabelling (Totsuka et al., 1996) or  
immuno-histochemistry methods (Zhu et al., 
2003; Tang et al., 2007), and studies have reported 
on the analysis of presumed PhIP–DNA adducts 
after acid hydrolysis of DNA in human lympho-
cytes or colon DNA samples (Friesen et al., 1994; 
Magagnotti et al., 2003). However, few studies 
have unambiguously identified and quantified 
intact HAA–DNA adducts in human biospec-
imens by specific tandem mass spectrometry–
based methods (Gu et al., 2012).

Using detailed meat cooking questions and 
linkage to the HAA database, case–control and 
prospective studies have evaluated the association 
between HAA intake and cancer risk (Alaejos 
et al., 2008; Zheng & Lee, 2009; Abid et al., 2014). 
The results have been mixed, depending on the 
cancer site and the study population. Results 
considered here are from large prospective 
cohort studies. Both MeIQx and DiMeIQx were  
positively associated with cancer of the 
colorectum in the NIH-AARP study (Cross et al., 
2010), but not with colorectal adenoma inci-
dence in the PLCO trial (Ferrucci et al., 2012). 
In contrast, MeIQx was associated with colon 
adenomas in a cohort of men from the USA 
(Wu et al., 2006). PhIP intake has been linked to 
colorectal adenomas in the PLCO trial (Ferrucci 
et al., 2012) and in the EPIC-Heidelberg cohort 
study (Rohrmann et al., 2009b), but not to cancer 
of the colorectum in the NIH-AARP study (Cross 
et al., 2010). PhIP, MeIQx, and DiMeIQx were 
not associated with cancer of the colorectum in 
the Multiethnic Cohort Study (Ollberding et al., 
2012).

Cancer of the prostate was not associated 
with PhIP, MeIQx, or DiMeIQx in the EPIC-
Heidelberg study, the NIH-AARP study, or the 
Agricultural Health Study (AHS) (Koutros et al., 
2008; Sinha et al., 2009; Sander et al., 2011). 
In contrast, in the HPFS, intake of PhIP from 
red meat was associated with advanced cancer 
of the prostate (Rohrmann et al., 2015). In the 
PLCO trial, PhIP, but not MeIQx or DiMeIQx, 
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was associated with risk of cancer of the prostate 
(Cross et al., 2005).

In various prospective studies, none of the 
HAAs considered were associated with cancer of 
the breast (Ferrucci et al., 2009; Kabat et al., 2009; 
Wu et al., 2010). Although DiMeIQx was linked 
to cancers of the gastric cardia (Cross et al., 2011) 
and pancreas (Stolzenberg-Solomon et al., 2007; 
Anderson et al., 2012), no association was found 
with cancers of the lung (Tasevska et al., 2009, 
2011) or liver (Freedman et al., 2010). Similarly, 
no association between MeIQx intake and cancer 
of the liver was seen (Freedman et al., 2010). 
However, MeIQx intake was linked to cancers 
of the lung (Tasevska et al., 2009) and pancreas 
(Anderson et al., 2012) in the NIH-AARP study 
and PLCO trial, respectively. In the NIH-AARP 
study, both MeIQx and DiMeIQx were associated 
with a decreased risk of chronic lymphocytic 
leukaemia and small lymphocytic lymphoma 
(Daniel et al., 2012b). PhIP was linked to an 
increased risk of renal cell carcinoma (Daniel 
et al., 2012a), but not to cancers of the lung 
(Tasevska et al., 2009, 2011), bladder (Ferrucci 
et al., 2010b), pancreas (Stolzenberg-Solomon 
et al., 2007), or liver (Freedman et al., 2010).

(c)	 HAAs and inter-individual genetic 
susceptibility

As HAAs can be activated or detoxified by 
phase I and phase II metabolic reactions, various 
studies have evaluated single-nucleotide poly-
morphisms in the genes encoding XMEs. Results 
were mixed for interactions between XME poly-
morphisms and HAA consumption for colorectal 
adenomas or carcinomas (Ishibe et al., 2002; Le 
Marchand et al., 2002b; Chan et al., 2005b; Lilla 
et al., 2006; Girard et al., 2008; Shin et al., 2008; 
Yeh et al., 2009; Ferrucci et al., 2010a; Wang 
et al., 2011; Fu et al., 2012; Gilsing et al., 2012; 
Voutsinas et al., 2013). Some studies evaluated 
XMEs and HAAs for cancer of the breast (Lee 
et al., 2013), prostate (Nowell et al., 2004), and 
bladder (Lin et al., 2012). Many of these studies 

had a small number of cases with inadequate 
power or examined only a small set of single-nu-
cleotide polymorphisms from a limited number 
of candidate genes. As the balance of activating 
and detoxifying enzymes is thought to influence 
carcinogen metabolism, comprehensive studies 
including numerous markers across multiple 
genes involved in xenobiotic metabolism are 
essential for studying this complex association. 
Furthermore, the inconsistencies in the data may 
have resulted partly from the inability of most 
studies to estimate specific HAAs, due to a lack 
of information regarding cooking technique 
and doneness level, or appropriate availability of 
biomarkers.

4.5.4	Polycyclic aromatic hydrocarbons

The following discussion is restricted to 
studies involving exposure to PAHs as a result 
of the consumption of red meat or processed 
meat, together with studies that reported find-
ings directly relevant to the issue of whether such 
exposure may account for any risk of cancer. The 
weight accorded to such data depended, among 
many other considerations, on current knowl-
edge of the carcinogenicity of individual PAHs 
and of PAHs as a class. See IARC Monographs 
Volume 92 (on PAHs) (IARC, 2010) and Volume 
100F (on BaP) (IARC, 2012a).

The carcinogenicity of PAHs, specifically BaP 
(e.g. from active smoking, inhaling second-hand 
tobacco smoke, or working in coal- and tar-based 
industries) has prompted scrutiny of other 
circumstances of PAH exposure (e.g. from air 
pollution and dietary intake). In non-smoking, 
non–occupationally exposed populations, diet is 
frequently the major source of exposure to PAHs 
(IARC, 2010). Dietary intake of PAHs is often 
assessed by reference to levels of BaP, which is 
recognized as a good marker of PAH exposure. 
When fed to mice, BaP caused multiple tumour 
types, particularly in the upper gastrointestinal 
tract (IARC, 2010). PAHs can be formed during 
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the curing and processing of meat, and can be 
generated during cooking through pyrolysis of 
fat, particularly if the meat is charred or burned 
(Phillips, 1999). See Section 1 for further discus-
sion on PAH levels and PAH occurrence in 
different meat preparations.

(a)	 Mechanisms of carcinogenesis

The carcinogenic mechanisms of PAHs 
are extensively reviewed in IARC Monographs 
Volume 92 and Volume 100F, and include activa-
tion and detoxification by phase I and II XMEs.

In a study of 114 subjects (48 women, 66 
men), Cocco et al. (2007) reported that frequent 
intake of grilled meat was a predictor of urinary 
1-hydroxypyrene levels of 0.50 μg/g creatine or 
greater. In the study previously described in 
Section 4.2 by Chien & Yeh (2010), consumption 
of barbecued meat (with higher PAH content) 
resulted in a significant correlation between 
urinary 8-OHdG concentrations, and 1-hydroxy-
pyrene and 3-hydroxy-BaP concentrations.

A case–control study reported higher  
PAH–DNA adduct levels in colorectal adenoma 
cases (median, 1.4 adducts per 108 nucleotides) 
than in polyp-free controls (median, 1.2 adducts 
per 108 nucleotides; P = 0.02) (Gunter et al., 2007). 
The DNA adduct levels were measured by chemi-
luminescence immunoassay (using an antiserum 
elicited against DNA modified with (±)-7β,8α-
dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-
benzo[a]pyrene, which recognizes several PAHs 
bound to human DNA). Rothman et al. (1990, 
1993) found PAHs in urine and DNA adducts in 
white blood cells. These data support that PAHs 
are absorbed from the consumption of grilled 
meat and have a genotoxic effect.

(b)	 Epidemiological studies

Dietary intake of PAHs, irrespective of 
the dietary source, has been examined in rela-
tion to a range of tumour types, including 
colorectal adenoma (Sinha et al., 2005a), cancer 
of the breast (Rundle et al., 2000; Jeffy et al., 

2002; Mordukhovich et al., 2010), cancer of the 
stomach (Liao et al., 2014), and renal cell carci-
noma (Daniel et al., 2011). Some positive associ-
ations were reported, specifically in relation to 
colorectal adenoma.

Based on the BaP intake of participants, deter-
mined using the Computerized Heterocyclic 
Amines Resource for Research in Epidemiology 
of Disease (CHARRED) developed by the 
National Cancer Institute (NCI), various studies 
have evaluated PAHs. While studying the asso-
ciation between meat intake and cancer of the 
colon, a case–control study in North Carolina, 
USA (Butler et al., 2003), determined levels 
of BaP intake. Associations with BaP intake, 
stratified by race, were imprecise, but stronger 
effects were seen among African Americans than 
among white Americans. In a large prospective 
study of meat consumption and risk of cancer 
of the colorectum, BaP intake was not associ-
ated with cancer of the colorectum (Cross et al., 
2010). In a study of screening-detected colorectal 
adenoma (Sinha et al., 2005b) evaluating dietary 
intake of PAHs, an increased risk of adenoma 
of the descending colon and sigmoid colon was 
observed with BaP intake. exposure to BaP from 
meat consumption was not associated with a 
risk of cancer of the colorectum in an investiga-
tion of the postulated association between high 
consumption of meat and colorectal carcinoma 
in a case–control study in Western Australia 
(Tabatabaei et al., 2010).

No association between PAHs and cancer of 
the breast was found in a large population-based 
case–control study that evaluated dietary intake 
of PAHs from cooked meat, determined by 
self-administered Block FFQs (Steck et al., 2007). 
However, this same study did find an association 
with intake of BaP from meat in postmenopausal 
women whose tumours were positive for both the 
estrogen receptor and progesterone receptor.

Daniel et al. (2011) undertook a case–control 
study that examined exposure to PAHs from 
meat intake in 1192 newly diagnosed renal cell 
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carcinoma patients and 1175 controls. Risk of 
malignancy increased with intake of BaP. Risk 
of renal cell carcinoma was more than two-fold 
higher in African Americans and current 
smokers.

In a population-based case–control study, 
Girard et al. (2008) investigated whether cancer 
of the colon was associated with genetic varia-
tions in UGT1A1 and UGT1A9. The UGT1A1–53 
and −3156 genotypes significantly modified the 
association between dietary BaP and cancer of 
the colon. The strongest association between 
dietary BaP exposure was observed in those with 
less than 7.7 ng/day of BaP exposure and low-ac-
tivity genotypes. These data support the hypoth-
esis that UDP-glucuronosyltransferases (UGTs) 
modify the association between meat-derived 
PAH exposure and cancer of the colon.

4.5.5	N-Nitroso compounds

The following discussion is restricted to 
studies involving exposure to NOCs as a result 
of the consumption of red meat or processed 
meat, together with studies that reported find-
ings directly relevant to the issue of whether such 
exposure may contribute to any risk of cancer. The 
weight accorded to such data depended, among 
many other considerations, on current knowl-
edge of the carcinogenicity of individual NOCs 
and of NOCs as a class. See IARC Monographs 
Volume 89 (IARC, 2007) and Volume 100E 
(IARC, 2012b) for NOCs, and Volume 94 (IARC, 
2010) for ingested nitrate and nitrite.

NOCs can be produced during processing, 
storage, and preparation of foods. They are  
formed by the reaction of secondary amines 
(R1NHR2) and N-alkylamides (R1NH·CO·R2) 
with nitrite in food or in the acidic environment 
of the stomach (Honikel, 2008). Metabolism 
of nitrosamines or spontaneous breakdown of 
nitrosamides can give rise to reactive alkylating 
intermediates, which can be identified by their 
reaction with DNA and other macromolecules. 
Nitrosation of primary amino acids, including 

glycine and methionine, may also give rise 
to alkylating intermediates (Issenberg 1976; 
Mirvish, 1995). NOCs are genotoxic carcinogens 
associated with particular mutational signatures 
(Rao, 2013).

The general term NOC covers all substances 
with N-nitroso groups, including N-nitrosamines 
and N-nitrosamides. However, the analyt-
ical method generally used to analyse NOCs 
in digestion does not differentiate between 
N-nitrosamines and other compounds such 
as S-nitrosothiols, O-nitroso compounds, and 
iron nitrosyls (Kuhnle & Bingham, 2007). Given 
this lack of specificity, the term ATNC has 
been used to describe the substances measured 
by this technique. Nitrosyl haem and nitroso-
thiols have been identified as major constit-
uents of both faecal and ileal ATNC, and the 
formation of these compounds increases signif-
icantly after consumption of a diet rich in red 
meat. Nitrosothiols are readily formed under 
the acidic conditions of the stomach, a process 
that is promoted by haem. Haem becomes easily 
nitrosylated under the anaerobic and reductive 
conditions of the lower gut to form nitrosyl 
haem, which is an NO donor and can act as a 
nitrosating agent. In turn, nitrosothiols can act 
as NO donors and nitrosating species. Thus, the 
combined actions of haem and free thiol groups 
can promote the endogenous formation of NOCs 
(Kuhnle et al., 2007).

Nitrite used in meat processing is involved in 
many reactions with myoglobin, proteins, and 
lipids (Honikel, 2008; Skibsted, 2011; Demeyer 
et al., 2015; Fig.  4.2). When combined with 
myoglobin, these reactions result in nitrosomyo- 
globin in cured meat and nitrosyl haemochro-
mogen after cooking, which are responsible for 
the characteristic colour of cured meats. Residual 
nitrite in cured meat proteins may be important 
as a “hidden NO-generating pool”, a source of 
nitric oxide for numerous reactions during the 
storage and cooking of cured meats (Skibsted, 
2011).
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The occurrence of nitrate, nitrite, and NOCs 
in meat is discussed in Section 1. Mirvish et al. 
(2002) reported that NOC and NOC precursor 
levels in hot dogs were about 10 and 4 times higher, 
respectively, than those in fresh meat. The NOC 
precursors were considered of greater relevance 
to carcinogenicity, as they are more stable and 
approximately 1000 times more abundant than 
NOCs. The main NOC precursors identified 
were N-glycosyl amino acids and peptides. Dich 
et al. (1996) described dietary intake of nitrate, 
nitrite, and N-nitrosodimethylamine (NDMA) 
in 5304 men and 4750 women who participated 

in the Finnish Mobile Clinic Health Examination 
Survey in 1967–1972. Dietary nitrite was mainly 
provided by meat products (specified as cured 
meats, cooked sausage, and salami), contributing 
about 95% of the total intake. The mean daily 
intake of NDMA was calculated to be 0.052 µg, 
approximately half of which was derived from 
meat products.

Fig. 4.2 Nitric oxide formed from nitrite during meat curing can participate in numerous reactions 
modifying proteins and pigments
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(a)	 Absorption, distribution, metabolism, and 
excretion

Few studies have reported on the absorption, 
distribution, metabolism, and excretion of NOCs 
after meat consumption. Human saliva contains 
nitrate and nitrite due to enterosalivary circula-
tion (Mirvish et al., 2000). Since rats convert a 
low amount of salivary nitrate into nitrite, it has 
been argued that the rat may not be a good model 
for humans (Cockburn et al., 2013). Therefore, 
Chenni et al. (2013) tested the relevance of this 
enterosalivary cycle by giving haem iron–fed 
rats drinking-water containing sodium nitrite, 
mimicking human salivary nitrite levels. They 
observed increased faecal ATNC. Phillips et al. 
(1975) showed that NDMA is absorbed in the 
rat stomach and the small intestine. Zhou et al. 
(2014) also reported increased urinary ATNC 
in rats fed sodium nitrite and/or hot dogs. In a 
rat model, Santarelli et al. (2010) showed that 
a combination of nitrite curing, cooking, and 
oxidation of red meat increased faecal ATNC. 
In addition, rats fed a diet containing commer-
cially purchased hot dogs or fermented, raw, dry 
sausages had increased faecal ATNC compared 
with those fed a control diet without meat 
(Santarelli et al., 2013). Intake of sodium nitrite 
(0.17 g/L) and sodium nitrate (0.23 g/L) through 
drinking-water increased faecal ATNC in rats on 
a 1% haemoglobin diet (Chenni et al., 2013).

Several mechanisms have been proposed 
to explain the effect of red meat on the forma-
tion of NOCs. Lunn et al. (2007) observed no 
difference in ATNC levels in the ileal output 
of ileostomists and in the faecal output of 
healthy subjects consuming large amounts of 
red meat. In contrast to the stomach contents, 
which consisted only of nitrosothiols, nitrosyl 
iron was present in higher concentrations than 
nitrosothiols in ileal and faecal samples, with 
no difference in ATNC composition between 
both sample types (Kuhnle et al., 2007). Thus 
nitrosothiols formed in the acidic stomach may 
release NO once they are exposed to the alkaline 

and reductive conditions of the small and large 
intestine, thereby stimulating the nitrosylation 
of haem iron. However, the consequences of the 
formation of these products are unclear (Hogg, 
2007). On the one hand, nitrosyl haem and 
nitrosothiols could act as nitrosating agents and 
promote the formation of NOCs in the intestinal 
epithelium (Kuhnle et al., 2007). On the other 
hand, nitrosothiols and nitrosyl iron may act as 
a protective mechanism by capturing NO and 
facilitating its excretion, thereby limiting the 
formation of DNA alkylating agents.

In a series of human intervention studies, 
Bingham and colleagues demonstrated a dose–
response increase in faecal excretion of ATNC 
with red meat intake. This was not observed with 
vegetable proteins, white meat, or an Fe2+ supple-
ment, but mimicked by a haem iron supplement 
(provided by blood sausage) (Bingham et al., 
1996; Hughes et al., 2001; Bingham et al., 2002; 
Cross et al., 2003). Holtrop et al. (2012) conducted 
three dietary trials in obese men consuming 
body weight maintenance or weight loss diets, 
and measured NOCs in faecal samples. The 
meat-based weight loss diets increased levels of 
faecal NOCs (P  <  0.001). Red meat intake was 
positively correlated with the faecal log NOC 
concentrations (r = 0.60; P < 0.001).

The genotoxic effects of faecal ATNC were 
investigated using different comet assay protocols 
in individuals consuming high levels of red meat 
(Cross et al., 2006a). The inter-individual effects 
were variable, and diet, mean transit time, and 
weight had no effect on faecal water genotoxicity; 
see also Lewin et al. (2006), as discussed in Section 
4.2. Rats treated with the N-nitrosopeptide 
N-acetyl-Nʹ-prolyl-Nʹ-nitrosoglycine showed the  
presence of O6-CMG in the intact small intes-
tine. This was also observed in HT-29 cells 
treated with diazoacetate (Lewin et al., 2006). 
Since the analysis of ATNC includes both toxic 
and non-toxic compounds, the quantification of 
O6-CMG might offer a more specific insight into 
the formation of genotoxic NOCs.
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Although Lunn et al. (2007) and Kuhnle 
et al. (2007) observed no difference between 
ileal and faecal ATNC and its individual 
components, suggesting no influence of the 
colonic microbiota on NOC formation, other 
research has suggested a major facilitating 
role of the gut microbiota. Using a pig caecum 
model containing nitrate and amines/amides, 
Engemann et al. (2013) showed large inter- 
individual variation in porcine microbiota to 
form N-nitrosamines N-nitrosomorpholine 
(NMOR) and N-nitrosopyrrolidine (NPYR), 
and N-nitrosamides N-methyl-N-nitrosourea 
and N-ethyl-N-nitrosourea. Moreover, a clear 
increase in NOCs was observed in time, with 
the microbiota responsible for the reduction of 
nitrate to nitrite. In accordance, Vanden Bussche 
et al. (2014) found considerable inter-individual 
variation in human microbiota for the in vitro 
formation of the NOC-specific DNA adduct 
O6-CMG during fermentation of white and red 
meat. This large inter-individual variation was 
also acknowledged by Van Hecke et al. (2014a, b, 
2015). However, in vitro formation of O6-CMG 
was stimulated by a higher haem iron content, 
a higher fat content, and more intense heating 
conditions, while nitrite curing was not perceived 
to be of influence, despite the large impact of the 
applied microbiota (Van Hecke et al., 2014a, b, 
2015).

A broad body of evidence indicates that 
the formation of NOCs may be inhibited by 
agents including ascorbic acid and α-tocoph-
erol (Mirvish, 1986). The inhibitory effects of 
nitrite, l-ascorbic acid, and α-tocopherol on the 
formation of NOCs in processed meat products 
were evaluated by comparing samples of sausage 
with different concentrations of these reduct-
ants (Pourazrang et al., 2002). Revertants in the 
S. typhimurium (TA100) microsome assay were 
significantly reduced (P  <  0.05) by 60% when 
the reductants were added to the samples. In the 
study of Hughes et al. (2002) described in Section 
4.2 evaluated the effect of soy and other dietary 

components on faecal NOC excretion with 
consumption of a high–red meat (420  g/day) 
diet in 11 male volunteers randomized to 15-day 
dietary periods. Soy significantly suppressed 
faecal ATNC concentrations (P = 0.02), but vege-
tables and tea extract did not affect mean faecal 
ATNC concentrations or faecal water genotox-
icity. However, faecal weight increased and was 
associated with reduced transit time, decreasing 
contact between ATNC concentrations, nitrite, 
and ammonia and the large bowel mucosa.

(b)	 Mechanisms of carcinogenesis

For decades, experimental animal data have 
afforded insight into the increased risk of cancer 
in humans that is attributable to the consumption 
of different categories of meat, and specifically 
the possible role of NOCs (Olsen et al., 1984); 
see also Santarelli et al. (2010), as discussed in 
Section 4.3.

G→A transitions in K-RAS occur in cancer 
of the colorectum and are characteristic of 
the effects of alkylating agents such as NOCs 
(Bingham et al., 1996). The methylating agent 
N-methyl-N-nitrosourea produced predomi-
nantly (>  80%) transitions (GC→AT), whereas 
potassium diazoacetate, a stable form of nitro-
sated glycine, produced transitions (GC→AT) 
and transversions (GC→TA and AT→TA) in 
equivalent amounts (Gottschalg et al., 2007). The 
similarity in the patterns of mutations induced 
by potassium diazoacetate with those observed 
in mutated P53 in human gastrointestinal tract 
tumours suggests that nitrosation of glycine (or 
glycine derivatives) may contribute to character-
istic human P53 mutation profiles.

(c)	 Epidemiological studies

Studies addressing the association between 
risk of cancer and dietary intake of nitrate, nitrite, 
or nitrosamines refer to meat as well as other 
relevant foods (Loh et al., 2011). [The Working 
Group noted that dietary intake of nitrate and 
nitrite does not necessarily reflect NOC intake.]
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In the EPIC-Norfolk study (Loh et al., 2011), 
dietary NDMA intake was significantly asso-
ciated with an increased risk of cancer of the 
rectum in women. There was no significant 
association between cancer risk across quartiles 
and dietary nitrite and endogenous NOCs. In 
a case–control study in Canada, NDMA intake 
was associated with a higher risk of cancer of the 
colorectum, specifically rectal carcinoma. Risk of 
cancer of the colorectum also increased with the 
consumption of NDMA-containing meats (Zhu 
et al., 2014). Individuals with high-NDMA and 
low–vitamin E intake had a significantly higher 
risk than those with both low-NDMA and low–
vitamin E intake.

Intake of dietary nitrites and nitrosamines 
was positively associated with risk of cancer of the 
lower urinary tract in American men of Japanese 
ancestry (Wilkens et al., 1996). Consumption of 
processed meats, in particular bacon, sausage, 
and ham, was also significantly associated with 
an increased risk in American men of Japanese 
ancestry. Three food items accounted for all of 
the NOC intake: sausage (46%), bacon (33%), and 
luncheon meats (21%).

The association between nitrate, nitrite, and 
nitrosamine intake and glioma was examined 
by Michaud et al. (2009). Risk of glioma was not 
elevated among individuals in the highest intake 
category of nitrate, nitrite, or NDMA compared 
with those in the lowest intake category. In a 
population-based case–control study of glioma 
in adults, increased odds ratios were observed in 
males who consumed high levels of bacon, corned 
meats, apples, melons, and oil (Giles et al., 1994). 
Elevated odds ratio in men, but not women, were 
associated with the intake of NDMA.

4.5.6	Interactions between NOCs, haem iron, 
and HAAs

Haem in red meat stimulates the endoge-
nous production of NOCs. The effect of red meat 
and processed meat on endogenous nitrosation, 

as well as DNA damage (see Section 4.2), was 
investigated by Joosen et al. (2009). Faecal NOC 
concentrations in 5 males and 11 females on 
vegetarian diets were low (2.6 and 3.5 mmol/g, 
respectively), but significantly increased in those 
fed meat diets (preserved red meat, 175  ±  19 
nmol/g; red meat, 185  ±  22 nmol/g; P  =  0.75). 
The meat diets contained 420  g/day (males) or  
366  g/day (females) of meat. The nitrite-cured 
meat diet had the same effect as the fresh red meat 
diet on endogenous nitrosation, but increased 
faecal water–induced oxidative DNA damage.

A high–red meat diet (420 g/day) significantly 
increased nitrosyl iron and nitrosothiols in ileal 
and faecal samples compared with a vegetarian 
diet (Kuhnle et al., 2007). Faecal nitrosyl iron 
and haem were strongly correlated (r  =  0.776; 
P  <  0.0001), suggesting that nitrosyl haem is 
the main source of nitrosyl iron. Nitrosation 
of HAAs is depicted in Fig.  4.3 (Lakshmi 
et al., 2005b). Lakshmi et al. (2005a) demon-
strated hemin potentiation of NO-mediated 
nitrosation using the HAA IQ as a target and 
by monitoring the formation of 14C-2-nitroso- 
amino-3-methyl imidazo[4,5-f ]quinol ine 
(N-NO-IQ) by high-performance liquid chro-
matography. Faecal NOCs (Mirvish et al., 2003) 
and urinary nitrite and nitrate were increased 
in mice with dextran sulfate sodium–induced 
colitis, which was consistent with increased 
expression of inducible NO synthase and NO 
synthesis.

IQ and MeIQx can be converted to their 
corresponding N-nitrosamines, N-NO-IQ and 
2-nitrosoamino-3,8-dimethylimidazo[4,5-f ]
quinoxaline (N-NO-MeIQx) (Zenser et al., 2009). 
N-NO-IQ and N-NO-MeIQx have been shown 
to form several putative adducts in common with 
those formed by 2-hydroxyamino-3-methylimid- 
azo[4,5‑f]quinoline (N-OH-IQ) and 2-hydroxy-
amino-3,8-dimethylimidazo[4,5-f ]quinoxaline 
(N-OH-MeIQx). These N-nitrosamines might be 
alternatives to their hydroxylamine analogues, as 
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activated intermediates leading to the initiation 
of cancer of the colon in individuals with colitis.

4.5.7	Other components

The following subsections address compo-
nents or contaminants of red meat or processed 
meat not considered elsewhere in Section 4.5.

(a)	 Advanced glycation end products

AGEPs form by Maillard reaction after the 
initial binding of aldehydes with amines or 
amides in, among other places, heated foods. 

Within proteins, high molecular-mass AGEPs 
are formed whereas reactions among small mole-
cules yield low-molecular-mass AGEPs. Some of 
these compounds interact with specific pro- or 
anti-inflammatory receptors. In observational 
studies, dietary AGEPs were strongly associated 
with late complications in diabetes (e.g., Poulsen 
et al., 2013).

Levels of representative AGEPs are similar in 
certain cheeses, fried eggs, cereal products, and 
broiled steak (Uribarri et al., 2010). Monitoring of 
representative AGEPs in 19 healthy, overweight 

Fig. 4.3 Nitrosation of heterocyclic aromatic amines
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Reprinted with permission from Lakshmi et al. (2005a). Hemin potentiates nitric oxide-mediated nitrosation of 2-amino-3-methylimidazo[4,5-f ]
quinoline (IQ) to 2-nitrosoamino-3-methylimidazo[4,5-f ]quinoline. Chem Res Toxicol, 18(3):528–35. doi:10.1021/tx049792r PMID:15777093. 
Copyright (2005) American Chemical Society
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individuals who were fed meals of identical 
ingredients, prepared by either roasting or 
steaming, indicated that AGEPs may affect post-
prandial ghrelin, oxidative stress, and glucose 
responses (Poulsen et al., 2014). In a prospective 
case–control study of cancer of the colorectum, 
higher prediagnostic levels of the serum-soluble 
receptor for AGEPs were associated with a lower 
risk of cancer of the colorectum in male smokers; 
no specific relationship with any dietary constit-
uent was reported (Jiao et al., 2011).

(b)	 N-Glycolylneuraminic acid

Neu5Gc is a predominant sialic acid on most 
mammalian cells. Humans are genetically defi-
cient in Neu5Gc production, and the compound 
is metabolically incorporated into human tissue 
from dietary sources, particularly red meat. 
Neu5Gc is thus detectable on the surface of 
human epithelia and endothelia, and in higher 
amounts in malignant tissues. This xeno-autoan-
tigen can react with circulating anti-Neu5Gc 
antibodies in humans. The compound has been 
proposed as a cancer biomarker (Samraj et al., 
2014). Among the evidence for its role in tumour 
progression, Hedlund et al. (2008) reported that 
murine tumours expressing human-like levels 
of Neu5Gc showed accelerated growth in synge-
neic mice with a human-like Neu5Gc deficiency, 
which coincided with the induction of anti-
Neu5Gc antibodies and increased infiltration of 
inflammatory cells.

Samraj et al. (2015) employed what was 
described as an improved method to survey 
foods for Neu5Gc. They showed that Neu5Gc 
was highly and selectively enriched in red meat. 
In the study, Neu5Gc-deficient mice, immunized 
against Neu5Gc and fed bioavailable Neu5Gc 
from porcine saliva, developed a much higher 
incidence of hepatocellular carcinoma than three 
groups of variously identified control mice.

(c)	 Proposed oncogenic bovine virus

Noting the cancer incidence in Asian commu-
nities known to consume undercooked beef, zur 
Hausen (2012) hypothesized that the presence of 
one or more thermoresistant, potentially onco-
genic bovine viruses contaminates beef prepara-
tions and contributes to development of cancer 
of the colorectum. The same, or comparable, 
factors were proposed to be transmitted by the 
consumption of milk products (zur Hausen & 
de Villiers, 2015). [The Working Group took 
note of the lack of supporting evidence for this 
hypothesis.]
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