IARC HANDBOOKS

ABSENCE OF EXCESS BODY FATNESS

VOLUME 16

This publication represents the views and expert opinions of an IARC Working Group on the Evaluation of Cancer-Preventive Interventions, which met in Lyon, 5–12 April 2016

LYON, FRANCE - 2018

IARC HANDBOOKS OF CANCER PREVENTION

International Agency for Research on Cancer

2.2.4 Cancer of the liver (hepatocellular carcinoma)

Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver (> 80% of primary liver cancers) and occurs predominantly in patients with underlying chronic liver disease or cirrhosis. Worldwide, liver cancer is among the most common causes of cancer death; the highest rates of liver cancer incidence and mortality occur in some areas in Asia and sub-Saharan Africa, as a result of chronic hepatitis infection (Jemal et al., 2014).

In 2001, the Working Group of the IARC Handbook on weight control and physical activity (IARC, 2002) concluded that the evidence of an association between avoidance of weight gain and liver cancer was *inadequate*. Since then, numerous individual cohort studies with at least 100 cases (Table 2.2.4a), case-control studies (Table 2.2.4b), and pooled and meta-analyses of cohort studies and case-control studies (<u>Table 2.2.4c</u>) have been published examining the association of anthropometric factors with liver cancer incidence and/or mortality. Notably, because chronic liver disease is among the most common risk factors for cancer of the liver, results from cohort studies of anthropometric factors in relation to liver cancer incidence and/ or mortality in patients with liver disease have also been included.

(a) Cohort studies

(i) Body weight and body mass index

Six cohort studies of BMI or weight in relation to risk of HCC specifically (<u>Samanic et al., 2006</u>; <u>Joshi et al., 2008</u>; <u>Ohishi et al., 2008</u>; <u>Borena et al., 2012</u>; <u>Loomba et al., 2013</u>; <u>Schlesinger et al., 2013</u>) have been published (<u>Table 2.2.4a</u>). Of these studies, four showed statistically significant positive associations and/or trends (<u>Samanic et al., 2012</u>; <u>Schlesinger et al., 2013</u>). In a large cohort of men in Sweden, a relative risk for BMI \ge 30 kg/m² versus BMI < 25 kg/m² of 3.13 (95% CI, 2.04–4.79) was reported (Samanic et al., 2006).

At least eight other studies have examined the association between BMI and liver cancer (hepatocellular and intrahepatic bile duct combined, or NOS) incidence and/or mortality (Table 2.2.4a). One study of Japanese men and women showed no evidence of association with increased incidence (Kuriyama et al., 2005) [the number of liver cancer cases in the highest categories of BMI was small or zero in both sexes, and therefore power was limited to detect an association]. Conversely, in the large Korea National Health Insurance Corporation Study, risk of liver cancer increased significantly for BMI \geq 30 kg/m² in men (relative risk [RR], 1.63; 95% CI, 1.27-2.10) and in women (RR, 1.39; 95% CI, 1.00–1.94), compared with the reference category of BMI of 23.0-24.9 kg/m². Significant $P_{\rm trend}$ values were found in both men and women (Jee et al., 2008). Strong positive associations were also observed in another prospective cohort study of BMI in relation to liver cancer incidence, a data linkage study in the United Kingdom where a 5 kg/m² increase in BMI was associated with a 19% increase in risk (95% CI, 1.12-1.27) (Bhaskaran et al., 2014).

In general, studies of BMI in relation to liver cancer mortality (Calle et al., 2003) or liver cancer incidence and mortality combined (Borena et al., 2012) showed strong positive associations. For example, in the Cancer Prevention Study II in the USA, there was a strong positive association between liver cancer mortality in men (RR, 4.52; 95% CI, 2.94–6.94 for BMI \geq 35 kg/m² vs 18.5–24.9 kg/m²; $P_{trend} < 0.001$), and to a lesser extent in women (RR, 1.68; 95% CI, 0.93–3.05 for BMI \geq 35 kg/m² vs 18.5–24.9 kg/m²; $P_{trend} < 0.04$) (Calle et al., 2003). In the Japan Collaborative Cohort Study, there was evidence of an association between higher BMI and liver cancer

mortality when men with liver disease were excluded (Li et al., 2013).

Associations of measures of body weight and liver cancer have been examined in at least six cohort studies of patients with cirrhosis, hepatitis infections, or other liver conditions. Of these studies, four showed statistically significant positive associations or trends between BMI and risk of HCC (N'Kontchou et al., 2006; Ioannou et al., 2007; Yu et al., 2008; Ohki et al., 2008). In the study with the largest number of HCC cases, the relative risk for BMI \geq 30 kg/m² versus BMI < 18.5 kg/m² was 3.10 (95% CI, 1.41-6.81) in Japanese men and women who were patients at a liver clinic (Ohki et al., 2008). Two studies of cirrhosis patients also showed statistically significant 2.5-2.8-fold higher risks of HCC for obese versus normalweight patients (<u>N'Kontchou et al., 2006; Ioannou</u> et al., 2007). The association was approximately of the same magnitude in a prospective study in Taiwan, China, of carriers of hepatitis B virus (HBV) (RR, 1.96; 95% CI, 0.72-5.38 for BMI \ge 30 kg/m² vs 18.5–24.9 kg/m²; $P_{\text{trend}} = 0.048$) [only 4 obese men developed HCC during follow-up] (<u>Yu et al., 2008</u>). A Japanese study of patients with hepatitis C virus (HCV) infection also found evidence of a borderline positive association when BMI was modelled as a continuous measure in women (RR per 1 kg/m² increase in BMI, 1.09; 95% CI, 0.99-1.19) but not in men (RR per 1 kg/m² increase in BMI, 1.01; 95% CI, 0.93-1.09) (Arano et al., 2011).

There have been numerous meta-analyses (Larsson & Wolk, 2007; Renehan et al., 2008; Chen et al., 2012; Rui et al., 2012; Tanaka et al., 2012; Wang et al., 2012; WCRF/AICR, 2015; Table 2.2.4c) and a large pooled analysis of 57 cohorts (Whitlock et al., 2009) on BMI and (primary) liver cancer incidence or mortality. Overall, these meta-analyses showed an increased risk of liver cancer in individuals with higher BMI independently of sex, geographical region, duration of follow-up, and potential confounders

such as alcohol consumption, cigarette smoking, or diabetes history. The largest meta-analysis, by <u>Chen et al. (2012)</u>, which included 26 prospective cohorts from Asia, Europe, and the USA, found a stronger risk of primary liver cancer in relation to higher BMI in patients with liver cirrhosis or HBV or HCV infection (n = 9 cohorts, summary RR, 1.73; 95% CI, 1.28-2.35) compared with the BMI-associated risk observed in the general population (n = 17 cohorts, summary RR, 1.36; 95% CI, 1.20–1.53) [the P value for difference was 0.15]. In the recent meta-analysis of the WCRF Continuous Update Project, a 5 kg/m² increase in BMI was associated with a 43% (95% CI, 1.19–1.70) increase in liver cancer incidence and a 13% (95% CI, 1.00–1.28) increase in liver cancer mortality based on 8 and 4 cohort studies, respectively, and the association was stronger in studies in Europe (summary RR, 1.59; 95% CI, 1.35–1.87) than in studies in Asia (summary RR, 1.18; 95% CI, 1.04–1.34) (WCRF/AICR, 2015).

(ii) Weight at different ages and weight change

Only a few cohort studies examined associations of BMI and/or weight at earlier ages or change in BMI or weight with risk of liver cancer. In the EPIC study, BMI at age 20 years was overall not associated with liver cancer mortality (Schlesinger et al., 2013). However, in that study there was a positive dose-response relationship between the average annual weight change from age 20 years to age at reporting and increased risk; the relative risk for each kilogram per year increase in weight of HCC was 3.51 (95% CI, 1.93-6.41), after adjustment for weight at age 20 years and other confounding factors. In a large Swedish occupational cohort, 6-year BMI change during adulthood in relation to liver cancer incidence was examined (Samanic et al., 2006). Although the results were somewhat suggestive of an increasing risk with increasing BMI gain, there were only 55 cases in total [and therefore statistical power was limited

to detect associations]. Similarly, in the Japan Collaborative Cohort Study, change in weight between age 20 years and baseline was not associated with liver cancer mortality in men or women, although some evidence for a trend could be observed in women (Li et al., 2013).

(iii) Waist circumference

A positive association between waist circumference and incidence of HCC was shown in the EPIC study, which was the only study to examine this association (<u>Schlesinger et al., 2013</u>). In that study, each increase of 5 cm in waist circumference was associated on average with a 25% (95% CI, 1.17–1.33) increase in risk in men and women combined.

(b) Case-control studies

A total of five case–control studies have been published since 2001 on the association of BMI with HCC in Canada, China, France, Italy, and the USA (<u>Table 2.2.4b</u>).

In the USA, a study of 622 cases and 660 population control subjects showed an increased risk of HCC for men and women with early adulthood (mid-20s to mid-40s) obesity (BMI $> 30 \text{ kg/m}^2$) compared with normal-weight individuals (men: OR, 2.3; 95% CI, 1.2-4.4; women: OR, 3.6; 95% CI, 1.5-8.9) (Hassan et al., 2015), but no association was found for recalled BMI in the mid-50s. A hospital-based case-control study in Italy also showed an increased risk for subjects with elevated recalled BMI at about age 30 years, but not for BMI 1 year before cancer diagnosis (or equivalent time frame for the controls) (Polesel et al., 2009), and a study in France also showed a direct association of HCC risk with recalled past obesity in patients with non-viral liver cirrhosis (Archambeaud et al., 2015). In contrast, a population-based case-control study in Canada showed no association between risk of liver cancer and self-reported BMI 1 year before diagnosis (Pan et al., 2004).

Finally, using waist circumference as a measure of adiposity, a large population-based case–control study with 3649 cases all aged 68 years or older identified through the Surveillance, Epidemiology, and End Results (SEER) Program of the United States National Cancer Institute, and with 195 953 population control subjects, showed a significantly increased risk of HCC in men with waist circumference greater than 40 inches (101 cm) and in women with waist circumference greater than 35 inches (89 cm), compared with men or women with a smaller waist circumference (OR, 1.93; 95% CI, 1.71–2.18) (Welzel et al., 2011).

Several of the above-mentioned studies considered HBV or HCV infection as a confounder or effect modifier for the association between BMI and risk of liver cancer. In the study in Italy (Polesel et al., 2009), HCC risk was significantly increased in obese subjects without HBV and HCV infection (OR, 3.5; 95% CI, 1.3–9.2; compared with BMI < 30 kg/m²) but not in subjects with HBV or HCV infection. The study by <u>Hassan et al. (2015)</u> in the USA showed a synergistic interaction between obesity and hepatitis virus infection, with highly increased risk in obese subjects with HBV or HCV infection.

Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates	Comments
Hepatocellular ca	rcinoma						
N'Kontchou et al. (2006) Cohort of patients with cirrhosis France 1994–2004	771 Men and women Incidence	НСС	BMI < 25 25-30 ≥ 30	220 total	1.0 2.0 (1.4–2.7) 2.8 (2.0–4.0)		Patients with alcohol or hepatitis C-related cirrhosis
Samanic et al. (2006) Swedish Construction Worker Cohort Sweden 1958–1999	362 552 Men Incidence	HCC	BMI 18.5-24.9 25-29.9 \geq 30 $[P_{trend}]$	73 90 31	1.45 (1.06–1.98)	Attained age, calendar year, smoking	Based on fewer than 30 incident cases, no significant associations for cholangiocarcinoma o the liver were found. No associations between BMI change and liver cancer overall observed (n = 469)
Ioannou et al. (2007) Cohort of cirrhosis patients in the Veterans Affairs facility USA 1994–2005	2126 Men and women Incidence	HCC ICD-9: 155.0	BMI 18.5-24.9 25-29 ≥ 30	15 45 40	2.8 (1.4-5.4)	Age, HCV infection, HBsAg, HBV core antibody, type 2 diabetes mellitus, platelet count	

Table 2.2.4a Cohort studies of measures of body fatness and cancer of the liver

Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates	Comments
Joshi et al. (2008) Korean male civil service workers cohort Republic of Korea 1999–2004	548 530 Men Mortality	HCC ICD-10: C22.0	BMI < 18.5 18.5-24.9 25-29.9 ≥ 30	989 total	1.00 1.38 (0.90–2.11) 0.98 (0.85–1.12) 1.08 (0.67–1.72)	Age, serum glucose, alcohol consumption, tobacco use, HBsAg	
Ohishi et al. (2008) Nested case– control in the Adult Health Study (atomic bomb survivors) Japan 1970–2002	868 Men and women Incidence	HCC	BMI 10 yr before diagnosis < 19.6 19.6–21.2 21.3–22.9 23–25 > 25 per 1 kg/m ² [<i>P</i> _{trend}]	38 33 36 49 54	1.31 (0.51–3.34) 1.24 (0.43–3.54) 1.00 2.51 (0.99–6.37) 4.57 (1.85–11.3) 1.12 (1.03–1.22) [0.01]	Hepatitis infection, alcohol consumption, smoking, coffee consumption, diabetes, radiation dose to liver	
Ohki et al. (2008) Hospital-based cohort of patients with chronic hepatitis C Tokyo, Japan 1994–2006	1431 Men and women Incidence	HCC	BMI < 18.5 18.5-24.9 25-29.9 ≥ 30	340 total	1.00 1.52 (0.93–2.47) 1.86 (1.09–3.16) 3.10 (1.41–6.81)	Age, sex, heavy alcohol consumption, diabetes mellitus, serum albumin concentration, total bilirubin concentration, ALT levels, prothrombin time activity, platelet counts, AFP concentration	
Yu et al. (2008) Cohort of male government employees (HBV carriers) Taiwan, China 1989–2005	2903 Men Incidence	НСС	BMI < 18.5 18.5-24.9 25-29.9 \geq 30 [$P_{\rm trend}$]	3 77 50 4	1.55 (0.49-4.93) 1.00 1.48 (1.04-2.12) 1.96 (0.72-5.38) [0.048]	Age, number of clinic visits, smoking, alcohol consumption, diabetes	

Table 2.2.4a	(continued)
--------------	-------------

Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates	Comments
Loomba et al. (2010) HBV-positive men part of the REVEAL-HBV cohort Taiwan, China 1991–2004	2260 Men Incidence	HCC	BMI per 1 kg/m² increase	136	1.00 (0.93–1.06)	Age, serum HBV DNA level, smoking, serum ALT level, HBeAg status, cirrhosis at baseline visit	Alcohol consumption-BMI interaction
<u>Arano et al.</u> (2011) Hospital-based cohort of	146 Men Incidence	HCC	BMI per 1 kg/m² increase	67	1.01 (0.93–1.09)	Age, alcohol consumption, serum biomarkers, platelet count, diabetes	
patients with hepatitis C Japan 1994–2009	179 Women Incidence	НСС	BMI per 1 kg/m² increase	55	1.09 (0.99–1.19)	Age, alcohol consumption, serum biomarkers, platelet count, diabetes	
Borena et al. (2012) Me-Can cohorts Austria, Norway, and Sweden 1972–2006, follow-up varied by cohort	578 700 Men and women Incidence and mortality	НСС	BMI, per unit SD	155 total	1.51 (1.29–1.77)	Age, cohort, year of birth, sex, smoking status	
Loomba et al. (2013) Population- based cohort of residents (7 townships) Taiwan, China 1991–2004	23 712 Men and women Incidence	НСС	BMI < 30 ≥ 30		1.00 1.47 (0.85–2.30)	Only univariate model available	A significant interaction was reported between alcohol drinkers (4 days per week for at least 1 yr) and BMI ≥ 30 kg/m ² , with a 7-fold increased risk of HCC

Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure cate	gories	Exposed cases		Relative risk (95% CI)	Covariates	Comments
Schlesinger et al. (2013) EPIC cohort 10 European countries 1992–2010	Men and women Incidence	HCC ICD-10: C22.0	< 24.93 24.93–27.8	Women: < 23.04 23.04-26.64 ≥ 26.65 \$		49 95 46 50 81 30 32 46 27	1.00 1.31 (0.84–2.05) 2.28 (1.50–3.45) [< 0.0001] 1.55 (1.31–1.83) 1.00 1.19 (0.78–1.80) 2.04 (1.36–3.06) [< 0.001] 1.18 (1.11–1.25) porting, tertiles 1.00 1.30 (0.77–2.19) 2.48 (1.49–4.13) [< 0.001] 3.51 (1.93–6.41) 1.00 1.45 (0.90–2.34) 2.60 (1.66–4.07) [< 0.0001] 1.25 (1.17–1.33)	Age, sex, study centre, education level, smoking, alcohol consumption, height Analysis of weight change also adjusted for weight at age 20 yr	Associations were lost when BMI analyses were further adjusted for WC No significant associations were observed with weight at age 20 yr, when comparing extreme tertiles ($P_{trend} = 0.95$)
Liver NOS Calle et al. (2003) Cancer Prevention Study II (CPS II) USA 1982–1998	404 576 Men Mortality	Liver	BMI 18.5-24.9 25-29.9 $30-34.9 \ge 35$ $[P_{trend}]$			296 78	1.00 1.13 (0.94–1.34) 1.90 (1.46–2.47) 4.52 (2.94–6.94) [< 0.001]	Age, education level, smoking, physical activity, alcohol consumption, marital status, race, aspirin use, consumption of fat and vegetables	

170

Table 2.2.4a	(
Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates	Comments
<u>Calle et al.</u> (2003) (cont.)	495 477 Women Mortality	Liver	BMI 18.5-24.9 25-29.9 30-34.9 ≥ 35 $[P_{trend}]$	96 37	1.00 1.02 (0.80–1.31) 1.40 (0.97–2.00) 1.68 (0.93–3.05) [0.04]	For women, also adjusted for HRT use	
Samanic et al. (2004) United States Veterans cohort USA 1969–1996	4 500 700 Men Incidence	Liver ICD-9: 155	Obesity Non-obese Obese Non-obese Obese	White men: 3612 322 Black men: 1168 38	1.00 1.44 (1.28–1.61) 1.00 0.68 (0.49–0.94)	Age, calendar year	Obesity defined as discharge diagnosis of obesity: ICD-8: 277; ICD-9: 278.0 Significantly differen risk in White men and Black men (P < 0.001)
Kuriyama et al. (2005) Population- based cohort in Miyagi Prefecture Japan 1984–1992	12 485 Men Incidence 15 054 Women Incidence	Liver ICD-9: 155.0–155.2 Liver ICD-9: 155.0–155.2	BMI 18.5-24.9 25.0-27.4 27.5-29.9 \geq 30 [P_{trend}] BMI 18.5-24.9 25.0-27.4 27.5-29.9 \geq 30 [P_{trend}]	9 5 - 220	1.00 0.80 (0.40–1.63) 1.14 (0.46–2.87) - [0.92] 1.00 1.30 (0.54–3.16) 0.91 (0.30–2.80) - [0.94]	Age, smoking, alcohol consumption, consumption of red meat, fruits and vegetables, and bean paste, type of health insurance; for women, also adjusted for menopausal status, parity, age at menarche, age at first pregnancy	
Jee et al. (2008) Cohort from National Health Insurance Corporation Republic of Korea 1992–2006	770 556 Men Incidence	Liver	BMI < 20.0 20.0-22.9 23.0-24.9 25.0-29.9 \geq 30.0 [P_{trend}]	3260 2463 2062	()	Age, smoking	

Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates	Comments
<u>Jee et al. (2008)</u> (cont.)	423 273 Women Incidence	Liver	BMI < 20.0 20.0-22.9 23.0-24.9 25.0-29.9 ≥ 30.0 $[P_{trend}]$	505 411 587	0.85 (0.67–1.06) 0.76 (0.64–0.91) 1.00 1.14 (1.97–1.35) 1.39 (1.00–1.94) [< 0.0001]	Age, smoking	
Whitlock et al. (2009) Pooled analysis of 57 cohort studies Europe, Japan, and USA Follow-up varied by cohort	894 576 Men and women Mortality	Liver ICD-9: 155	BMI For BMI 15–25 For BMI 25–50 For BMI 15–50	221	1.37 (0.87–2.15) 1.61 (1.26–2.05) 1.47 (1.26–1.71)	Study, sex, age, smoking	
Parr et al. (2010) Pooled analysis of 39 cohort studies Asia, Australia, and New Zealand 1961–1999, median follow- up 4 yr	326 387 Men and women Mortality	Liver ICD-9: 155 ICD-10: C22	BMI 12.0-18.4 18.5-24.9 25-29.99 \geq 30 per 5 kg/m ² [P_{trend}]	774	1.13 (0.78-1.64) 1.00 (0.89-1.13) 1.06 (0.83-1.36) 1.10 (0.63-1.91) 1.11 (0.94-1.31) [0.58]	Age, sex, smoking status	
Borena et al. (2012) Me-Can cohorts Austria, Norway, and Sweden 1972–2006, follow-up varied by cohort	578 700 Incidence and mortality	Liver, primary cancer ICD-7: 155.0	BMI, quintiles (mean) Q1 (20.7) Q2 (23.0) Q3 (24.7) Q4 (26.8) Q5 (31.3) [P _{trend}]	53	0.91 (0.55–1.51)	Age, smoking status, cohort, year of birth, sex	

Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates	Comments
Li et al. (2013) JACC cohort Japan 1988–2009	31 018 Men Mortality	Liver ICD-10: C22.0–22.9	BMI at baseline < 18.5 18.5–20.9 21–22.9 23–24.9 ≥ 25 $[P_{trend}]$ BMI at age 20 yr < 18.5 18.5–20.9 21–22.9 23–24.9 ≥ 25 $[P_{trend}]$ Weight change (kg), age ≤–10.0 –9.9 to –5.0 –4.9 to 4.9 5.0 to 9.9 ≥ 10.0	32 82 88 73 63 14 91 115 75 43 20 yr to baseline 27 76 124 55 56	$\begin{array}{c} 1.09 \ (0.81-1.48) \\ 1.00 \\ 1.04 \ (0.76-1.42) \\ 1.15 \ (0.83-1.60) \\ [0.37] \\ \hline \\ 0.74 \ (0.42-1.29) \\ 0.89 \ (0.68-1.18) \\ 1.00 \\ 0.92 \ (0.69-1.24) \\ 0.91 \ (0.64-1.31) \\ [0.54] \\ \hline \\ 0.68 \ (0.43-1.08) \\ 1.08 \ (0.80-1.46) \\ 1.00 \\ 1.06 \ (0.77-1.47) \end{array}$	Age, smoking status, alcohol consumption, physical activity, intake of coffee and fish, education level, area of residence, diabetes, gall bladder disease, blood transfusions, history of liver disease	In stratified analyses, significant associations were observed in men without liver disease $(P_{trend} = 0.03)$

Table 2.2.4a	(continued)						
Reference Cohort Location Follow-up period	Total no. of subjects Sex Incidence/ mortality	Organ site or cancer type (ICD code)	Exposure categories	Exposed cases	Relative risk (95% CI)	Covariates	Comments
<u>Li et al. (2013)</u> (cont.)	41 455 Women	Liver ICD-10:	BMI at baseline			Age, smoking status, alcohol	
(cont.)	Mortality	C22.0-22.9	< 18.5	8	0.74 (0.35–1.60)	consumption,	
	Mortanty	C22.0-22.9	18.5-20.9	36 42	1.08 (0.69–1.68) 1.00	physical activity,	
			21–22.9 23–24.9	42 41	1.00 1.16 (0.75–1.79)	intake of coffee and	
			≥ 25	41 62		fish, education level,	
			$[P_{\text{trend}}]$	02	[0.10]	area of residence,	
			BMI at age 20 yr		[0110]	diabetes, gall	
			< 18.5	11	0.98 (0.58-1.64)	bladder disease,	
			18.5–20.9	17	0.85 (0.58–1.04)	blood transfusions,	
			21-22.9	28	1.00	history of liver	
			23-24.9	13	0.91 (0.60–1.38)	disease	
			≥ 25	14			
			$[P_{trend}]$		[0.18]		
			Weight change (kg), age 2	0 yr to baseline			
			≤-10.0	10	0.68 (0.34-1.40)		
			-9.9 to -5.0	24	0.83 (0.51-1.35)		
			-4.9 to 4.9	62	1.00		
			5.0 to 9.9	46	1.31 (0.89–1.94)		
			≥ 10.0	47	· · · · ·		
			$[P_{\text{trend}}]$		[0.08]		
Bhaskaran et al.	5 243 978	Liver	BMI	1859 total		Age, sex, diabetes,	Similar association in
(2014) Clinical Practice Research Datalink United Kingdom 1987–2012	Men and women Incidence	ICD-10: C22	per 5 kg/m ² [P _{trend}]		1.19 (1.12–1.27) [< 0.0001]	smoking, alcohol consumption, socioeconomic status, calendar year	never-smokers only

AFP, α-fetoprotein; ALT, alanine aminotransferase; BMI, body mass index (in kg/m²); CI, confidence interval; EPIC, European Prospective Investigation into Cancer and Nutrition; HBeAg, hepatitis B envelope antigen; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; ICD, International Classification of Diseases; JACC, Japan Collaborative Cohort Study for Evaluation of Cancer Risk; Me-Can, Metabolic Syndrome and Cancer Project; NOS, not otherwise specified; SD, standard deviation; WC, waist circumference; yr, year or years

Reference Study location Period	Total number of cases Source of controls	Exposure categories	Exposed cases	Relative risk (95% CI)	Adjustment for confounding	Comments
<u>Pan et al.</u> (2004) Canada 1994–1997	Men: 225 Women: 84 Population	BMI 1 yr before diagnosis Men: < 25 25 - < 30 ≥ 30 $[P_{trend}]$ Women: < 25 25 - < 30 ≥ 30 $[P_{trend}]$	225 total 85 total	1.00 0.99 (0.72–1.38) 1.30 (0.85–1.97) [0.31] 1.00 0.61 (0.35–1.07) 0.94 (0.48–1.84) [0.40]	Age, geographical region, education level, smoking, physical activity, total calorie intake, total vegetable consumption, dietary fibre intake, multivitamin intake; for women, also adjusted for menopausal status, parity, age at menarche, age at end of first pregnancy	Self-reported BMI
Polesel et al. (2009) Italy 1999–2003	185 Hospital	BMI 1 yr before interview < 25 25 - < 30 ≥ 30 5 kg/m^2 increase BMI at age 30 yr < 25 ≥ 25 5 kg/m^2 increase BMI increase from age 30 yr < 1 1 - < 4 ≥ 4	71 76 38 109 69	1.0 (0.5–1.9)	Centre, sex, age, education, drinking status, lifetime maximal alcohol consumption, smoking status, cigarettes smoked per day, HBsAg and/or anti-HCV positivity	BMI calculated from self-reported weights and heights
<u>Welzel et al.</u> (<u>2011)</u> USA 1993–2005	3649 Population	WC (≥ 40 inches [101 cm] in men, ≥ 35 inches [89 cm] in women)	308 total	1.93 (1.71–2.18)	Age, sex, race, geographical location, Medicare/Medicaid dual enrolment	
Archambeaud et al. (2015) France 2007–2010	200 Hospital	Maximum BMI < 30 ≥ 30	125 total	1.00 1.56 (1.02–2.37)	Sex, age, diabetes, smoking (past or present)	

Table 2.2.4b Case-control studies of measures of body fatness and hepatocellular carcinoma

Reference Study location Period	Total number of cases Source of controls	Exposure categories	Exposed cases	Relative risk (95% CI)	Adjustment for confounding	Comments
Period Hassan et al. (2015) USA 2004–2013	Source of controls Men: 473 Women: 149 Population	Normal weight (reference) Overweight at different ages Mid-20s Mid-30s Mid-40s Mid-50s Mid-20s Mid-20s Mid-50s Obesity at different ages Mid-20s Mid-30s Mid-40s Mid-20s Mid-20s Mid-50s Obesity in early adulthood (mid-20s to mid-40s)	Men: 124 172 174 170 Women: 11 19 29 35 Men: 33 58 101 104 Women: 13 15 26 30 Men: 192	$\begin{array}{c} 1.5 \ (0.9-2.3) \\ 1.3 \ (0.9-2.1) \\ 0.9 \ (0.6-1.4) \\ 0.5 \ (0.3-0.9) \\ 2.4 \ (0.9-3.0) \\ 1.2 \ (0.5-2.6) \\ 0.8 \ (0.4-1.6) \\ 0.9 \ (0.5-1.7) \\ \hline \\ 1.8 \ (0.8-4.1) \\ 3.1 \ (1.6-6) \\ 2.2 \ (1.2-4) \\ 0.8 \ (0.4-1.4) \\ \hline \\ 5.2 \ (1.6-7.2) \\ 3.3 \ (1.3-8.6) \\ 2.1 \ (1.1-4.5) \\ 1.2 \ (0.5-2.5) \\ 2.3 \ (1.2-4.4) \end{array}$	Sex, age, ethnicity, education level, HCV, HBV, alcohol consumption, cigarette smoking, history of diabetes, physical activity, family history of cancer	BMI calculated from self-reported weights and heights at different ages; overweight and obesity defined as BMI 24–29.9 and BMI ≥ 30, respectively
		(200 to mid 100)	Women:	3.6 (1.5-8.9)		

BMI, body mass index (in kg/m²); CI, confidence interval; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HCV, hepatitis C virus; WC, waist circumference

Reference	Total number of studies Total number of cases	Organ site	Exposure categories	Relative risk (95% CI)	Adjustment for confounding	Comments
<u>Larsson & Wolk</u> (2007)	11 cohort studies (7 on overweight with 5037 cases, and 10 on obesity with 6042 cases)	Liver	BMI Overweight vs normal Obese vs normal	1.17 (1.02–1.34) 1.89 (1.51–2.36)	Age and other covariates depending on study (calendar year, sex, race, diabetes, education, marital status, smoking, physical activity, diet, family history of cancer, alcohol consumption, occupational group, aspirin use, estrogen replacement therapy in women)	The relative risk for obesity compared with normal BMI was stronger in men than in women
<u>Renehan et al.</u> (2008)	4 cohort studies in men and 1 in women 2070	Liver	BMI per 5 kg/m² increase	Men: 1.24 (0.95–1.62) Women: 1.07 (0.55–2.08)	NR	Results are from random-effects models. Substantial heterogeneity was observed (I ² = 83.1% in men)
<u>Chen et al.</u> (2012)	26 prospective cohort studies 25 337	Liver (primary cancer)	BMI < 25 25-29.9 ≥ 30 BMI < 25 25-29.9 ≥ 30 BMI < 25 25-29.9 ≥ 30	All: 1.00 1.48 (1.31–1.67) 1.83 (1.59–2.11) Men: 1.00 1.42 (1.22–1.65) 1.91 (1.51–2.41) Women: 1.00 1.18 (1.08–1.30) 1.55 (1.30–1.85)	Age (all studies), and most of the studies included alcohol consumption, HBV and/or HCV infection, diabetes mellitus	Significant heterogeneity in the overall analyses, and in analyses in men; effects significantly different in men vs women; associations independent of geographical location, alcohol consumption, diabetes, or HBV/HCV infections
<u>Rui et al. (2012)</u>	8 cohort studies in men and women 11 616	Liver	BMI 18.5-24.9 25-30 ≥ 30	1.00 1.13 (1.05–1.21) 2.09 (1.72–2.45)	NR	Associations remained significant after excluding 3 studies on cirrhosis cohorts

Table 2.2.4c Meta-analyses of measures of body fatness and cancer of the liver

Reference	Total number of studies Total number of cases	Organ site	Exposure categories	Relative risk (95% CI)	Adjustment for confounding	Comments
<u>Tanaka et al.</u> (2012)	9 cohort studies and 3 case–control studies NR	Liver	BMI per 1 kg/m² increase	1.13 (1.07–1.20)	Different adjustment factors depending on study (hepatitis, alcohol consumption, diabetes, smoking)	Study restricted to Japanese populations Overweight/obese individuals showed a 74% increased risk compared with those with normal weight
<u>Wang et al.</u> (2012)	21 prospective cohort studies (11 in men and 5 in women) 17 624	Liver (primary cancer)	BMI per 5 kg/m² increase	All: 1.39 (1.25–1.55) Men: 1.26 (1.11–1.44) Women: 1.18 (1.08–1.29)	Age (all studies). Other covariates, depending on study	Significant heterogeneity among studies was observed. Non-linear association was reported, with a steeper increase in risk from BMI > 32 kg/m ²
WCRF/AICR (2015)	12 studies Men and women Incidence and mortality 14 311	Liver	BMI per 5 kg/m²	1.30 (1.16–1.46)		Heterogeneity between studies; non-linear associations; similar risks in men and women; associations
	8 studies Men and women Incidence 11 530	Liver	BMI per 5 kg/m²	1.43 (1.19–1.70)		stronger for incidence than for mortality, and for European vs Asian studies
	4 studies Men and women Mortality 2543	Liver	BMI per 5 kg/m²	1.13 (1.00–1.28)		
	8 studies Men Incidence and mortality 11 180	Liver	BMI per 5 kg/m²	1.21 (1.02–1.44)		

Reference	Total number of studies Total number of cases	Organ site	Exposure categories	Relative risk (95% CI)	Adjustment for confounding	Comments
WCRF/AICR (2015) (cont.)	4 studies Women Incidence and mortality 2337	Liver	BMI per 5 kg/m²	1.21 (1.10–1.33)		
	Meta-analysis of European studies: 4 studies Men and women Incidence and mortality 588	Liver	BMI per 5 kg/m²	1.59 (1.35–1.87)		
	Meta-analysis of Asian studies: 7 studies Men and women Incidence and mortality 12 520	Liver	BMI per 5 kg/m²	1.18 (1.04–1.34)		

BMI, body mass index (in kg/m²); CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis C virus; NR, not reported; WCRF/AICR, World Cancer Research Fund/American Institute for Cancer Research

References

- Arano T, Nakagawa H, Tateishi R, Ikeda H, Uchino K, Enooku K, et al. (2011). Serum level of adiponectin and the risk of liver cancer development in chronic hepatitis C patients. *Int J Cancer*, 129(9):2226–35. doi:<u>10.1002/</u> <u>ijc.25861</u> PMID:<u>21170963</u>
- Archambeaud I, Auble H, Nahon P, Planche L, Fallot G, Faroux R, et al. (2015). Risk factors for hepatocellular carcinoma in Caucasian patients with non-viral cirrhosis: the importance of prior obesity. *Liver Int*, 35(7):1872–6. doi:10.1111/liv.12767 PMID:25522809
- Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L (2014). Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. *Lancet*, 384(9945):755–65. doi:10.1016/S0140-6736(14)60892-8 PMID:25129328
- Borena W, Strohmaier S, Lukanova A, Bjørge T, Lindkvist B, Hallmans G, et al. (2012). Metabolic risk factors and primary liver cancer in a prospective study of 578,700 adults. *Int J Cancer*, 131(1):193–200. doi:10.1002/ ijc.26338 PMID:21805476
- Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. *N Engl J Med*, 348(17):1625–38. doi:<u>10.1056/NEJMoa021423</u> PMID:<u>12711737</u>
- Chen Y, Wang X, Wang J, Yan Z, Luo J (2012). Excess body weight and the risk of primary liver cancer: an updated meta-analysis of prospective studies. *Eur J Cancer*, 48(14):2137–45. doi:<u>10.1016/j.ejca.2012.02.063</u> PMID:<u>22446023</u>
- Hassan MM, Abdel-Wahab R, Kaseb A, Shalaby A, Phan AT, El-Serag HB, et al. (2015). Obesity early in adulthood increases risk but does not affect outcomes of hepatocellular carcinoma. *Gastroenterology*, 149(1):119–29. doi:10.1053/j.gastro.2015.03.044 PMID:25836985
- IARC (2002). Weight control and physical activity. Lyon, France: IARC Press (IARC Handbooks of Cancer Prevention, Vol. 6). Available from: <u>http://publications.</u> <u>iarc.fr/376</u>.
- Ioannou GN, Splan MF, Weiss NS, McDonald GB, Beretta L, Lee SP (2007). Incidence and predictors of hepatocellular carcinoma in patients with cirrhosis. *Clin Gastroenterol Hepatol*, 5(8):938–45, 945.e1–4. doi:10.1016/j.cgh.2007.02.039 PMID:17509946
- Jee SH, Yun JE, Park EJ, Cho ER, Park IS, Sull JW, et al. (2008). Body mass index and cancer risk in Korean men and women. *Int J Cancer*, 123(8):1892–6. doi:10.1002/ ijc.23719 PMID:18651571
- Jemal A, Vineis P, Bray F, Torre L, Forman D, editors (2014). The cancer atlas. 2nd ed. Atlanta (GA), USA: American Cancer Society. Available from: <u>http://www. cancer.org/canceratlas</u>.

- Joshi S, Song YM, Kim TH, Cho SI (2008). Socio-economic status and the risk of liver cancer mortality: a prospective study in Korean men. *Public Health*, 122(11):1144– 51. doi:10.1016/j.puhe.2008.04.003 PMID:18793784
- Kuriyama S, Tsubono Y, Hozawa A, Shimazu T, Suzuki Y, Koizumi Y, et al. (2005). Obesity and risk of cancer in Japan. *Int J Cancer*, 113(1):148–57. doi:<u>10.1002/ijc.20529</u> PMID:<u>15386435</u>
- Larsson SC, Wolk A (2007). Overweight, obesity and risk of liver cancer: a meta-analysis of cohort studies. *Br J Cancer*, 97(7):1005–8. PMID:<u>17700568</u>
- Li Y, Yatsuya H, Yamagishi K, Wakai K, Tamakoshi A, Iso H (2013). Body mass index and weight change during adulthood are associated with increased mortality from liver cancer: the JACC Study. *J Epidemiol*, 23(3):219–26. doi:<u>10.2188/jea.JE20120199</u> PMID:<u>23604063</u>
- Loomba R, Yang HI, Su J, Brenner D, Barrett-Connor E, Iloeje U, et al. (2013). Synergism between obesity and alcohol in increasing the risk of hepatocellular carcinoma: a prospective cohort study. *Am J Epidemiol*, 177(4):333–42. doi:<u>10.1093/aje/kws252</u> PMID:<u>23355498</u>
- Loomba R, Yang HI, Su J, Brenner D, Iloeje U, Chen CJ (2010). Obesity and alcohol synergize to increase the risk of incident hepatocellular carcinoma in men. *Clin Gastroenterol Hepatol*, 8(10):891–8, 898.e1–2. doi:10.1016/j.cgh.2010.06.027 PMID:20621202
- N'Kontchou G, Paries J, Htar MT, Ganne-Carrie N, Costentin L, Grando-Lemaire V, et al. (2006). Risk factors for hepatocellular carcinoma in patients with alcoholic or viral C cirrhosis. *Clin Gastroenterol Hepatol*, 4(8):1062–8. doi:10.1016/j.cgh.2006.05.013 PMID:16844421
- Ohishi W, Fujiwara S, Cologne JB, Suzuki G, Akahoshi M, Nishi N, et al. (2008). Risk factors for hepatocellular carcinoma in a Japanese population: a nested case-control study. *Cancer Epidemiol Biomarkers Prev*, 17(4):846–54. doi:10.1158/1055-9965.EPI-07-2806 PMID:18398026
- Ohki T, Tateishi R, Sato T, Masuzaki R, Imamura J, Goto T, et al. (2008). Obesity is an independent risk factor for hepatocellular carcinoma development in chronic hepatitis C patients. *Clin Gastroenterol Hepatol*, 6(4):459–64. doi:<u>10.1016/j.cgh.2008.02.012</u> PMID:<u>18387499</u>
- Pan SY, Johnson KC, Ugnat AM, Wen SW, Mao Y; Canadian Cancer Registries Epidemiology Research Group (2004). Association of obesity and cancer risk in Canada. *Am J Epidemiol*, 159(3):259–68. doi:<u>10.1093/</u> <u>aje/kwh041</u> PMID:<u>14742286</u>
- Parr CL, Batty GD, Lam TH, Barzi F, Fang X, Ho SC, et al.; Asia-Pacific Cohort Studies Collaboration (2010). Body-mass index and cancer mortality in the Asia-Pacific Cohort Studies Collaboration: pooled analyses of 424,519 participants. *Lancet Oncol*, 11(8):741–52. doi:10.1016/S1470-2045(10)70141-8 PMID:20594911

- Polesel J, Zucchetto A, Montella M, Dal Maso L, Crispo A, La Vecchia C, et al. (2009). The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol, 20(2):353–7. doi:<u>10.1093/annonc/ mdn565</u> PMID:<u>18723550</u>
- Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008). Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. *Lancet*, 371(9612):569–78. doi:10.1016/S0140-6736(08)60269-X PMID:18280327
- Rui R, Lou J, Zou L, Zhong R, Wang J, Xia D, et al. (2012). Excess body mass index and risk of liver cancer: a nonlinear dose-response meta-analysis of prospective studies. *PLoS One*, 7(9):e44522. doi:<u>10.1371/journal.</u> <u>pone.0044522</u> PMID:<u>23028553</u>
- Samanic C, Chow WH, Gridley G, Jarvholm B, Fraumeni JF Jr (2006). Relation of body mass index to cancer risk in 362,552 Swedish men. *Cancer Causes Control*, 17(7):901–9. doi:<u>10.1007/s10552-006-0023-9</u> PMID:<u>16841257</u>
- Samanic C, Gridley G, Chow WH, Lubin J, Hoover RN, Fraumeni JF Jr (2004). Obesity and cancer risk among white and black United States veterans. *Cancer Causes Control*, 15(1):35–43. doi:<u>10.1023/B:-</u> <u>CACO.0000016573.79453.ba</u> PMID:<u>14970733</u>
- Schlesinger S, Aleksandrova K, Pischon T, Fedirko V, Jenab M, Trepo E, et al. (2013). Abdominal obesity, weight gain during adulthood and risk of liver and biliary tract cancer in a European cohort. *Int J Cancer*, 132(3):645–57. doi:10.1002/ijc.27645 PMID:22618881
- Tanaka K, Tsuji I, Tamakoshi A, Matsuo K, Ito H, Wakai K, et al.; Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan (2012). Obesity and liver cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol, 42(3):212–21. doi:10.1093/jjco/hyr198 PMID:22241822
- Wang Y, Wang B, Shen F, Fan J, Cao H (2012). Body mass index and risk of primary liver cancer: a meta-analysis of prospective studies. *Oncologist*, 17(11):1461–8. doi:10.1634/theoncologist.2012-0066 PMID:22956536
- WCRF/AICR (2015). Continuous Update Project Report. Diet, nutrition, physical activity and liver cancer. Available from: <u>http://wcrf.org/sites/default/files/</u> Liver-Cancer-2015-Report.pdf.
- Welzel TM, Graubard BI, Zeuzem S, El-Serag HB, Davila JA, McGlynn KA (2011). Metabolic syndrome increases the risk of primary liver cancer in the United States: a population-based case-control study. *Hepatology*, 54(2):463–71. doi:10.1002/hep.24397 PMID:21538440
- Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al.; Prospective Studies Collaboration (2009). Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. *Lancet*, 373(9669):1083–96. doi:10.1016/S0140-6736(09)60318-4 PMID:19299006

Yu MW, Shih WL, Lin CL, Liu CJ, Jian JW, Tsai KS, et al. (2008). Body-mass index and progression of hepatitis B: a population-based cohort study in men. J Clin Oncol, 26(34):5576–82. doi:10.1200/JCO.2008.16.1075 PMID:18955457