ACROLEIN, CROTONALDEHYDE, AND ARECOLINE **VOLUME 128** This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 29 October–13 November 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS Table S1.7 Exposure assessment review and critique for mechanistic studies in humans exposed to crotonaldehyde 45 human lungs | Reference and outcome | What was the study design? | What methods
were used for
the exposure
assessment? | What was the definition of external exposure? | Was
endogenous
exposure
defined? | Was the exposure defined well? | What route
of exposure
was
assessed? | How was the intensity of exposure assessed? | How was the
duration of
exposure
assessed? | Was
cumulative
exposure
assessed? | Was exposure assessed before outcome being ascertained? | What was
the timing of
exposure
relative to
the outcome? | Was there
known exposure
to any other
carcinogens? | |---|---|---|---|---|---|---|---|---|---|---|--|---| | Nath & Chung.
(1994)
DNA adducts in
human livers | Demonstration study;
spot samples of human
livers DNA (3 persons) | ³² P-Postlabelling
for DNA adducts
of crotonaldehyde
and acrolein | None | None | No exposure was defined | Unknown | Adduct levels,
but no
quantitation
provided | None | Adducts should accumulate until cell division in liver | No outcome assessed | NA | Unknown | | Nath et al.
(1996)
DNA adducts in
lymphocytes
and breast tissue | Demonstration study.
Cross-sectional study.
Blood lymphocyte
DNA obtained from 2
males and 2 females,
one of each sex was a
smoker. DNA also
obtained from breast
tissue of 3 women | ³² P-Postlabelling
for DNA adducts
of crotonaldehyde
and acrolein | No comparisons made by exposure | No | No | No | Adduct levels
but only the
range of all
samples
provided | None | None | No outcome assessed | NA | Unknown | | Nath et al.
(1998)
DNA adducts in
oral tissues | Cross-sectional. DNA
from gingival tissues
from 11 non-smokers
and 12 smokers
analysed for acrolein
and crotonaldehyde
adducts | ³² P-Postlabelling
for DNA adducts
of crotonaldehyde
and acrolein | Smokers of non-
smokers | Levels in non-
smokers | Self-reports, no
chemical
confirmation of
smoking status | Inhalation
assumed | Adduct levels
and self-
reports. No
analysis of
this data was
provided | None | Adducts should
accumulate
based on the
cell lifespan
and repair | Adduct levels were outcome | NA | Tobacco smoke | | Zhang et al.
(2006)
DNA adducts in
human livers
and lungs | Demonstration study.
Cross-sectional analysis | LC-MS analysis
of
crotonaldehyde-
derived DNA
adducts from 23
human livers and | None | No | No | None | Adduct levels | None | Adducts should
accumulate
based on the
cell lifespan
and repair | No outcome measured | NA | Unknown | Table S1.7 Exposure assessment review and critique for mechanistic studies in humans exposed to crotonaldehyde | Reference and outcome | What was the study design? | What methods
were used for
the exposure
assessment? | What was the definition of external exposure? | Was
endogenous
exposure
defined? | Was the exposure defined well? | What route
of exposure
was
assessed? | How was the intensity of exposure assessed? | How was the
duration of
exposure
assessed? | Was
cumulative
exposure
assessed? | Was exposure assessed before outcome being ascertained? | What was
the timing of
exposure
relative to
the outcome? | Was there
known exposure
to any other
carcinogens? | |--|--|---|---|---|--|--|--|---|--|--|--|---| | Alamil et al. (2020) DNA adducts in lymphocytes a smoker and a non-smoker | Demonstration study; 2 cross-sectional samples analysed. One smoker and one non-smoker: early method validation. Measured acrolein- and crotonaldehyde-derived DNA adducts | Smoking status
from banked
samples. No
confirmation
provided | Smoking status | Non-smoker
levels were
reported for
one person | No. Textual
reference to
30 cigarettes/day
for the smoker | Inhalation
assumed for
the smoker | Self-reports/? | DNA adducts
measured in
lymphocytic
DNA. Cells
have various
life spans.
Smoker was a
"current"
smoker
seeking to stop | No. See
previous
columns | The measurement was the outcome | The measurement was the outcome | Yes, tobacco
smoker | | Garcia et al.
(2013)
Alkylated DNA
bases in human
urine | Cross-sectional survey
(demonstration/early
stage validation study)
one urine sample
collected | Measured
propanylated dG
nucleosides
excreted in urine
in a densely
populated city
and a more rural
area | None measured. Air pollution? | No except that
levels of
alkylated bases
were lower in
the more rural
population | No | Inhalation
was
suggested
but route was
not
controlled | Higher levels
of alkylated
bases in urine | Considering that the bases are probably excreted daily and no sample time given, the samples integrated exposure over a short time period (day/days?) | No | No outcome
measures
were made in
either
population | NA | Acetaldehyde can form the same adducted base as crotonaldehyde. Results imputed to be related to high levels of vehicle exhaust | | Zhang et al. (2016) Urinary levels of propanated nucleosides | Demonstration study in 13 volunteers | HPLC-MS/MS | Non-smokers and
"not hard drinkers" | Non-smokers
and "not hard
drinkers" | No dietary or
other information
provided | Assumed to
be
endogenous.
Not
measured | Adducted
nucleoside
excreted into
the urine | Not assessed | No | No | Concurrent | Diet?
Alcohol? | Table S1.7 Exposure assessment review and critique for mechanistic studies in humans exposed to crotonaldehyde | Reference and outcome | What was the study design? | What methods
were used for
the exposure
assessment? | What was the definition of external exposure? | Was
endogenous
exposure
defined? | Was the exposure defined well? | What route
of exposure
was
assessed? | How was the intensity of exposure assessed? | How was the duration of exposure assessed? | Was
cumulative
exposure
assessed? | Was exposure assessed before outcome being ascertained? | What was
the timing of
exposure
relative to
the outcome? | Was there
known exposure
to any other
carcinogens? | |---|---|---|---|---|--|---|--|---|--|---|--|---| | Grigoryan et al. (2019) Serum protein adducts | Case-control study with
a cross-sectional
analysis of exposure.
Samples taken at
recruitment Case status
defined before sampling | Measurement of
agents bound to a
specific amino
acid of serum
albumin | Data on smoking
status and alcohol
consumption were
taken along with
other physiological
and demographic
parameters | There was no difference in diet or other consumption variables between cases and controls. Cases had significantly higher BMI | NA | NA | Adduct levels | NA | NA | Appears
diagnosis
came first | Cases were identified and samples collected | Unknown | | Chen & Lin
(2009)
DNA adducts | Cross-sectional study of
placental DNA from 1
person and lymphocytic
DNA from 9 people.
Demonstration study | Measurement of
acrolein- and
crotonaldehyde-
derived DNA-
adduct levels by
HPLC-MS | None | Exposure
status of
participant not
known | No | NA | NA | NA | No | No outcome measured | NA | Acrolein | | Chen & Lin
(2011)
DNA adducts | Cross-sectional study of
salivary DNA-adduct
levels in 27 volunteers.
Demonstration study | Salivary DNA
adducts of
acrolein and
crotonaldehyde
(among others) | None | No | | None | Adduct levels
by individuals | NA | No | No outcome assessed | NA | Yes, 8 adducts
were measured | | Yang et al.
(1999)
DNA adducts | Analytic study in breast tissue from patients with breast cancer $(n = 18)$ | Measurement of
Cro-dG1 & 2 | No external exposure defined | Cro-dG1 & 2
assumed to
result from
endogenous
generation | No definition of
external exposure.
Exposure was
based on Cro-dG1
& 2 only | Not specified | Intensity of internal exposure was assessed using a one-off sample | No external
exposure was
considered,
hence no
duration of
exposure | No | No | Not available | NR | BMI, body mass index; HPLC, high-performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; HPLC-MS/MS, high-performance liquid chromatography-tandem mass spectrometry; NA, not applicable; NR, not reported. ## 4 ## References - Alamil H, Lechevrel M, Lagadu S, Galanti L, Dagher Z, Delépée R (2020). A validated UHPLC-MS/MS method for simultaneous quantification of 9 exocyclic DNA adducts induced by 8 aldehydes. J Pharm Biomed Anal. 179:113007. https://doi.org/10.1016/j.jpba.2019.113007 PMID:31796220 - Chen HJ, Lin WP (2009). Simultaneous quantification of 1,N²-propano-2′-deoxyguanosine adducts derived from acrolein and crotonaldehyde in human placenta and leukocytes by isotope dilution nanoflow LC nanospray ionization tandem mass spectrometry. Anal Chem. 81(23):9812–8. https://doi.org/10.1021/ac9019472 PMID:19899782 - Chen HJ, Lin WP (2011). Quantitative analysis of multiple exocyclic DNA adducts in human salivary DNA by stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry. Anal Chem. 83(22):8543–51. https://doi.org/10.1021/ac201874d PMID:21958347 - Garcia CC, Freitas FP, Sanchez AB, Di Mascio P, Medeiros MH (2013). Elevated α-methyl-γ-hydroxy-1,N²-propano-2′-deoxyguanosine levels in urinary samples from individuals exposed to urban air pollution. Chem Res Toxicol. 26(11):1602–4. https://doi.org/10.1021/tx400273q PMID:24168144 - Grigoryan H, Schiffman C, Gunter MJ, Naccarati A, Polidoro S, Dagnino S, et al. (2019). Cys34 adductomics links colorectal cancer with the gut microbiota and redox biology. Cancer Res. 79(23):6024–31. https://doi.org/10.1158/0008-5472.CAN-19-1529 PMID:31641032 - Nath RG, Chung FL (1994). Detection of exocyclic 1,N²-propanodeoxyguanosine adducts as common DNA lesions in rodents and humans. Proc Natl Acad Sci USA. 91(16):7491–5. https://doi.org/10.1073/pnas.91.16.7491 PMID:8052609 - Nath RG, Ocando JE, Chung FL (1996). Detection of $1,N^2$ -propanodeoxyguanosine adducts as potential endogenous DNA lesions in rodent and human tissues. Cancer Res. 56(3):452–6. PMID:8564951 - Nath RG, Ocando JE, Guttenplan JB, Chung FL (1998). 1,N²-propanodeoxyguanosine adducts: potential new biomarkers of smoking-induced DNA damage in human oral tissue. Cancer Res. 58(4):581–4. PMID:9485001 - Yang K, Fang JL, Li D, Chung FL, Hemminki K (1999). 32P-postlabelling with high-performance liquid chromatography for analysis of abundant DNA adducts in human tissues. IARC Sci Publ. 150(150):205–17. PMID:10626222 - Zhang N, Song Y, Zhang W, Wang H (2016). Detection of 1,N(2)-propano-2'-deoxyguanosine in human urine by stable isotope dilution UHPLC-MS/MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 1023-1024:68–71. https://doi.org/10.1016/j.jchromb.2016.04.029 PMID:27158096 - Zhang S, Villalta PW, Wang M, Hecht SS (2006). Analysis of crotonaldehyde- and acetaldehyde-derived 1,n(2)-propanodeoxyguanosine adducts in DNA from human tissues using liquid chromatography electrospray ionization tandem mass spectrometry. Chem Res Toxicol. 19(10):1386–92. https://doi.org/10.1021/tx060154d PMID:17040109