ACROLEIN, CROTONALDEHYDE, AND ARECOLINE **VOLUME 128** This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 29 October–13 November 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS Table S1.6 Exposure assessment review and critique for epidemiological studies of cancer in humans exposed to crotonaldehyde | Reference
and
outcome | What was the study design? | What methods
were used for
the exposure
assessment? | What was the definition of external exposure? | Was
endogenous
exposure
defined? | Was the
exposure
defined well? | What route
of exposure
was assessed? | How was the intensity of exposure assessed? | How was the duration of exposure assessed? | Was cumulative exposure assessed? | Was exposure
assessed before
outcome being
ascertained? | What was
the timing
of exposure
relative to
the
outcome? | Was there known exposure to any other carcinogens? | |--|--|---|--|---|---|--|---|--|---|--|---|---| | Bittersohl
(1975)
Cancer
(various
sites) | Cohort study (n = 220) | Employment records | Being currently
employed in
aldehyde factory | No | No. There were measurable airborne levels of crotonaldehyde (1–7 mg/m³) | Not specified,
but presumed
to be
inhalation | There was no exposure gradient | Employment records. 150 people were said to be employed > 20 years; but there was no discussion if their exposure (or outcome) was different than the 70 who were < 20 years | No. Except as noted to the left | No. They were reported concomitantly | Exposure
preceded
outcome | Yes, co-exposure
occurred by a mixture
of aldehydes | | Yuan et al.
(2012)
Lung cancer | Nested case—
control study
of lung cancer
in smokers | Measurement of
urinary
metabolites for
crotonaldehyde
(HMPMA) | Not clear
definition of
external exposure.
All cases and
controls were
smokers at the
time of
recruitment | No | Exposure of interest was urinary HMPMA. Presumably the main source of external exposure was smoking | Not specified | Information on
smoking intensity
and duration was
collected. Intensity
of internal
exposure was
assessed using a
one-off urine
sample | Information on
duration of smoking
was available | No cumulative information on crotonaldehyde exposure was available. Cumulative smoking data were available, but smoking was not the main exposure of interest | Yes, although the
analyses were
done after
identification of
cases and
controls, the urine
samples were
collected at
baseline of the
cohort | Exposure
preceded
outcome | Yes, tobacco smoke
toxicants; exposure to
PAH was assessed too | | Yuan et al.
(2014)
Lung cancer | Nested case—
control studies
of never
smokers with
lung cancer,
within
prospective
cohort study | Measurement of
urinary
metabolites for
crotonaldehyde
(HMPMA) | External exposure was not defined | No | Exposure of interest was urinary HMPMA. But it was not clear what the external source of exposure was | Not specified.
It was also not
clear what the
source of
exposure was | Intensity of
internal exposure
was assessed using
a one-off urine
sample (cross-
sectional analysis) | No external
exposure was
considered, hence no
duration of exposure | No | Yes, although the analyses were done after identification of cases and controls, the urine samples were collected at baseline of the cohort | Exposure
preceded
outcome | Not relevant as
industry was not
assessed. Study was of
never smokers, but
other exposures are
possible. Metabolites
of PAH was also
monitored | Table S1.6 Exposure assessment review and critique for epidemiological studies of cancer in humans exposed to crotonaldehyde | Reference
and
outcome | What was the study design? | What methods
were used for
the exposure
assessment? | What was the definition of external exposure? | Was
endogenous
exposure
defined? | Was the exposure defined well? | What route
of exposure
was assessed? | How was the intensity of exposure assessed? | How was the duration of exposure assessed? | Was cumulative exposure assessed? | Was exposure assessed before outcome being ascertained? | What was
the timing
of exposure
relative to
the
outcome? | Was there known exposure to any other carcinogens? | |--|---|---|---|--|---|--|---|--|-----------------------------------|---|---|--| | Grigoryan et
al. (2019)
Colorectal
cancer | Case—control
nested within
cohort (Italian
part of EPIC) | Untargeted
adductomics
using serum
samples
collected during
recruitment into
the cohort | No definition of external exposure | No predefined definition of exposure as this was an untargeted study of Cys34 adducts; 5 adducts (including for crotonaldehyd e) were present in higher levels in cases than in controls | No, this was an
untargeted,
agnostic study,
without prior
definition of
exposure | No | No intensity of exposure | No | No | Exposure was measured following case and control selection, but based on serum samples collected at recruitment in the cohort | Yes, serum
samples
were
collected at
recruitment | Information on lifestyle carcinogens was available (e.g. smoking, alcohol, meat consumption). None of these were linked to higher risk of colorectal cancer. Only BMI was linked to higher risk. | BMI, body mass index; EPIC, European Prospective Investigation into Cancer and Nutrition; HMPMA, N-acetyl-S-(3-hydroxy-1-methylpropyl)-L-cysteine; PAH, polycyclic aromatic hydrocarbon; ROS, reactive oxygen species. ## References Bittersohl G (1975). Epidemiological research on cancer risk by aldol and aliphatic aldehydes. Environ Qual Saf. 4:235–8. PMID:1193059 Grigoryan H, Schiffman C, Gunter MJ, Naccarati A, Polidoro S, Dagnino S, et al. (2019). Cys34 adductomics links colorectal cancer with the gut microbiota and redox biology. Cancer Res. 79(23):6024–31. https://doi.org/10.1158/0008-5472.CAN-19-1529 PMID:31641032 Yuan JM, Butler LM, Gao YT, Murphy SE, Carmella SG, Wang R, et al. (2014). Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis. 35(2):339–45. https://doi.org/10.1093/carcin/bgt352 PMID:24148823 Yuan JM, Gao YT, Wang R, Chen M, Carmella SG, Hecht SS (2012). Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis. 33(4):804–9. https://doi.org/10.1093/carcin/bgs026 PMID:22298640