ACROLEIN, CROTONALDEHYDE, AND ARECOLINE **VOLUME 128** This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 29 October–13 November 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS Table S1.5 Exposure assessment review and critique for mechanistic studies in humans exposed to acrolein | Reference and outcome | What was the study design? | What methods were used for the exposure assessment? | What was the definition of external exposure? | Was endogenous exposure defined? | Was the exposure defined well? | What route
of exposure
was
assessed? | How was the intensity of exposure assessed? | How was the duration of exposure assessed? | Was cumulative exposure assessed? | Was exposure assessed before outcome being ascertained? | What was the timing of exposure relative to the outcome? | Was there known exposure to any other carcinogens? | |--|---|--|--|--|---|---|--|--|--|---|---|--| | McDiarmid et al. (1991) Acrolein–DNA | Analytical study in 27 cancer patients versus untreated control group | CP treatment | CP dose (acrolein is
a principal
metabolite of CP) | No | Moderately well-
defined (controls for
smoking, but not | Oral | Lifetime and last month dose | Lifetime and last
month use of CP | No | No | NA | Yes, tobacco
smoke toxicants | | adducts | (n = 15) | | | | other exposures) | | | | | | | | | Nath et al. (1998) | Cross-sectional study. DNA from gingival tissues from 11 non- smokers and 12 smokers analysed for acrolein and crotonaldehyde adducts | d | Smokers and non-
smokers | Levels in non-
smokers | Self-reports, no
chemical confirmation
of smoking status | Inhalation
assumed | Adduct levels and
self-reports. No
analysis of this data
was provided | None | Adducts should
accumulate based
on the cell
lifespan and repair | Adduct levels
were outcome | NA | Tobacco smoke | | Acrolein-DNA
adducts | | | | | | | | | | | | | | Lee et al. (2014) Acrolein–DNA adducts | Analytical study in normal urothelial mucosa $(n = 19)$ and bladder tumour tissue samples $(n = 10)$ | Measurement of
Acrolein-DNA
adducts | No external exposure defined | No endogenous exposure defined | No definition of
exposure. Exposure
was based on
Acrolein–DNA
adducts only | Not
specified | Intensity of exposure was assessed using a one-off sample | No external
exposure was
considered, hence
no duration of
exposure | No | No | Unclear. Possible endogenous accumulation due to disease. It was not clear whether the exposure is a cause or a result of the bladder tumours | NR | | Zhang et al. (2007) | Analytical study in lung | Measurement of acrolein-DNA adducts | Self-reported
smoking history
with current
smoking confirmed
by urinary
biomarkers cotinine
and nicotine | No endogenous exposure defined | Moderately well
defined (history of
smoking, but not
other exposures;
acrolein-DNA
adducts
measurement) | Inhalation | Current and ex-
smoking combined
with intensity of
exposure assessed
using a one-off
sample | No, based on self-
reports of
smoking history | No | No | Exposure preceded outcome | Yes, tobacco | | Acrolein–DNA
adducts | tissue samples of current and ex-smokers ($n = 30$) | | | | | | | | | | | smoke toxicants | | Chen & Lin (2011) Acrolein–DNA adducts | Cross-sectional study of salivary DNA adduct levels in 27 volunteers. Demonstration study | Salivary DNA
adducts for acrolein
and crotonaldehyde
(among others) | None | No | | None | Adduct levels by individuals | NA | No | No outcome assessed | NA | Yes, 8 adducts
were measured | | Al-Rawithi et al.
(1998)
Urinary excretion
and
pharmacokinetics of
acrolein | Analytical study in bone-
marrow transplant
patients receiving CP
(n = 16) | CP treatment | CP dose (acrolein is
a principal
metabolite of CP) | Endogenous
exposure not
considered | No, external exposure not considered | i.v. | CP dose | Total CP dose
during treatment
period | No | No | Exposure preceded outcome | No | | Takamoto et al. | Analytical study in patients receiving CP and $IP(n = 19)$ | | P and IP treatment CP/IP dose (acrolein is a principal metabolite of CP and IP) | Endogenous
exposure not
considered | No, external exposure not considered | i.v. | CP/IP dose | Total dose during treatment period | No | No | Exposure preceded outcome | No | | (2004)
Urinary excretion of
acrolein | | | | | | | | | | | | | | Wang et al. (2019) | Analytical study in consumers of fried foods $(n = 19)$ | acrolein–DNA in buccal cells and | A in foods from three commercial fast | No | No. No specific data
about food
consumption reported,
including no data on
acrolein content of
foods. Non smoking
participants only | Oral | One single meal of | Duration not
considered in
study (single
exposure study) | No | Unclear. Food intake not reported | Exposure preceded outcome | No | | Detoxification
metabolites | | | | | | | fast food | | | | | | | Ruenz et al. (2019) Detoxification metabolites | Duplicate diet studies (a) in non-smoking volunteers under defined | Measurement of urinary metabolites | Different phases of controlled diet with or without heat- | Background
exposure assumed
as being | Yes. Consideration of
all known external
acrolein exposures | Oral | Controlled diet of heat processed foods | Two phases of
heat-processed
food consumption | Total diet
exposure,
smoking and | Yes | Exposure preceded outcome | No | Table S1.5 Exposure assessment review and critique for mechanistic studies in humans exposed to acrolein smokers versus non- smokers | Reference and outcome | What was the study design? | What methods were used for the exposure assessment? | What was the definition of external exposure? | Was endogenous exposure defined? | Was the exposure defined well? | What route
of exposure
was
assessed? | How was the intensity of exposure assessed? | How was the
duration of
exposure
assessed? | Was cumulative exposure assessed? | Was
exposure
assessed
before
outcome
being
ascertained? | What was the timing of exposure relative to the outcome? | Was there known exposure to any other carcinogens? | |---|--|---|---|---|--|---|---|--|---|---|--|--| | | living conditions ($n = 14$); and (b) in non-smoking volunteers on unrestricted ($n = 10$) or vegan diet ($n = 10$) under free living conditions | | processed food items. Questionnaires about potential sources of non-dietary exposure such as open fire, tobacco smoke. Smoking status confirmed by tobacco biomarkers | endogenous,
specifically in the
group at controlled
environment absent
of known external
exposures | | | | followed by
washout periods | environmental
exposure
excluded | | | | | Yang et al. (2019)
Acrolein–DNA
adducts | Analytical study in lung DNA of non-smokers $(n = 18)$ and smokers $(n = 19)$ | Measurement of
Acrolein-DNA
adducts | Self-reported
smoking status | No | Moderately well-
defined (control for
smoking, but not
other exposures) | Inhalation | Intensity not assessed | Duration not assessed | No | No | Exposure preceded outcome | Yes, tobacco smoke toxicants | | Liu et al. (2005)
Acrolein-DNA
adducts | Analytical study in brain DNA ($n = 13$) | Measurement of acrolein-DNA adducts | No external exposure defined | No | No definition of
exposure. Exposure
was based on
acrolein-DNA
adducts only | None | Intensity not assessed | Duration not assessed | No | No | No exposure assessment | No | | Zhang et al. (2011)
Acrolein-DNA
adducts | Analytical study in
leukocyte DNA from 25
smokers and 25 non-
smokers | Measurement of acrolein-DNA adducts | Self-reported
smoking status | No | Moderately well-
defined (control for
smoking, but not
other exposures) | Inhalation | Intensity not assessed | Duration not assessed | No | No | Exposure preceded outcome | Yes, tobacco
smoke toxicants | | Chung et al. (2012)
Acrolein-DNA
adducts | Analytical study in lung DNA $(n = 5)$ | Measurement of acrolein adducts | No external exposure defined | No | No definition of
exposure. Exposure
was based on acrolein
adducts only | None | Intensity not assessed | Duration not assessed | No | No | No exposure assessment | No | | Yin et al. (2013)
Acrolein-DNA
adducts | Analytical study in leukocytes $(n = 5)$ | Measurement of
Acrolein adducts | No external exposure defined | No | No definition of
exposure. Exposure
was based on
Acrolein adducts only | None | Intensity not assessed | Duration not assessed | No | No | No exposure assessment | No | | Alamil et al. (2020)
Acrolein-DNA
adducts | Demonstration study; 2
cross sectional samples
analysed. One smoker and
one non-smoker: early
method validation.
Measured acrolein and
crotonaldehyde DNA
adducts | Smoking status from
banked samples No
confirmation provided | Smoking status | Non-smoker levels
were reported for
one person | No. Textual reference
to 30 cigarettes per
day for the smoker | Inhalation
assumed for
the smoker | Self reports | DNA adducts
measured in
lymphocytic
DNA. Cells have
various life spans.
Smoker was a
"current" smoker
seeking to stop | No. See previous columns. | The measurement was the outcome | The measurement was the outcome | Yes. Tobacco
smoker | | Nath & Chung
(1994)
Acrolein-DNA
adducts | Demonstration study.
Spot samples of human
livers DNA (3 people) | ³² P-Postlabelling for
DNA adducts of
crotonaldehyde and
acrolein | None | None | No exposure was defined | Unknown | Adduct levels, but no quantitation provided | None | Adducts should
accumulate until
cell division in
liver | No outcome assessed | NA | Unknown | | Weng et al. (2018)
Acrolein-DNA
adducts | Analytical study in buccal cells ($n = 33$ versus $n = 17$) and lung tissues ($n = 41$ versus $n = 13$) of | Measurement of
acrolein-DNA
adducts in buccal cells
and lung tissues | Self-reported smoking status | No | Moderately well-
defined (controls for
smoking, but not
other exposures) | Inhalation | Intensity not assessed | Duration not assessed | No | No | Exposure preceded outcome | Yes, tobacco
smoke toxicants | Table S1.5 Exposure assessment review and critique for mechanistic studies in humans exposed to acrolein | Reference and outcome | What was the study design? | What methods were used for the exposure assessment? | What was the definition of external exposure? | Was endogenous exposure defined? | Was the exposure defined well? | What route
of exposure
was
assessed? | How was the intensity of exposure assessed? | How was the
duration of
exposure
assessed? | Was cumulative exposure assessed? | Was exposure assessed before outcome being ascertained? | What was the timing of exposure relative to the outcome? | Was there
known
exposure to
any other
carcinogens? | |---|--|---|---|----------------------------------|--|---|---|---|-----------------------------------|---|--|--| | Bessette et al. (2009) Acrolein–DNA adducts | Analytical study in buccal cells $(n = 6)$ of tobacco smokers of > 20 cigarettes per day on a noncontrolled diet | Measurement of
acrolein-DNA
adducts in buccal cells | Self-reported smoking status | No | Moderately well-
defined (control for
smoking, but not
other exposures) | Inhalation | > 20 cigarettes per
day | Duration not assessed | No | No | Exposure preceded outcome | Yes, tobacco
smoke toxicants | | Fu et al. (2018) Acrolein-DNA adducts | Analytical study in liver samples of HCC patients $(n = 90 \text{ and } n = 45)$ | Measurement of acrolein–DNA adducts in liver samples | None | No | No definition of
exposure. Exposure
was based on
Acrolein adducts only | None | Intensity not assessed | Duration not assessed | No | No | NA | Unknown | CEMA, N-acetyl-S-(carboxyethyl)-L-cysteine; CP, cyclophosphamide; HCC, hepatocellular carcinoma; HPMA, N-acetyl-S-(3-hydroxypropyl)-L-cysteine; i.v., intravenous; IP, ifosphamide; NA, not available. ## References - Al-Rawithi S, El-Yazigi A, Ernst P, Al-Fiar F, Nicholls PJ (1998). Urinary excretion and pharmacokinetics of acrolein and its parent drug cyclophosphamide in bone marrow transplant patients. Bone Marrow Transplant. 22(5):485–90. https://doi.org/10.1038/sj.bmt.1701355 PMID:9733272 - Alamil H, Lechevrel M, Lagadu S, Galanti L, Dagher Z, Delépée R (2020). A validated UHPLC-MS/MS method for simultaneous quantification of 9 exocyclic DNA adducts induced by 8 aldehydes. J Pharm Biomed Anal. 179:113007. https://doi.org/10.1016/j.jpba.2019.113007 PMID:31796220 - Bessette EE, Goodenough AK, Langouët S, Yasa I, Kozekov ID, Spivack SD, et al. (2009). Screening for DNA adducts by data-dependent constant neutral loss-triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer. Anal Chem. 81(2):809–19. https://doi.org/10.1021/ac802096p PMID:19086795 - Chen HJ, Lin WP (2011). Quantitative analysis of multiple exocyclic DNA adducts in human salivary DNA by stable isotope dilution nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry. Anal Chem. 83(22):8543–51. https://doi.org/10.1021/ac201874d PMID:21958347 - Chung FL, Wu MY, Basudan A, Dyba M, Nath RG (2012). Regioselective formation of acrolein-derived cyclic 1,N(2)-propanodeoxyguanosine adducts mediated by amino acids, proteins, and cell lysates. Chem Res Toxicol. 25(9):1921–8. https://doi.org/10.1021/tx3002252 PMID:22853434 - Fu Y, Silverstein S, McCutcheon JN, Dyba M, Nath RG, Aggarwal M, et al. (2018). An endogenous DNA adduct as a prognostic biomarker for hepatocarcinogenesis and its prevention by Theaphenon E in mice. Hepatology. 67(1):159–70. https://doi.org/10.1002/hep.29380 PMID:28718980 - Lee HW, Wang HT, Weng MW, Hu Y, Chen WS, Chou D, et al. (2014). Acrolein- and 4-aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget. 5(11):3526–40. https://doi.org/10.18632/oncotarget.1954 PMID:24939871 - Liu X, Lovell MA, Lynn BC (2005). Development of a method for quantification of acrolein-deoxyguanosine adducts in DNA using isotope dilution-capillary LC/MS/MS and its application to human brain tissue. Anal Chem. 77(18):5982–9. https://doi.org/10.1021/ac050624t PMID:16159131 - McDiarmid MA, Iype PT, Kolodner K, Jacobson-Kram D, Strickland PT (1991). Evidence for acrolein-modified DNA in peripheral blood leukocytes of cancer patients treated with cyclophosphamide. Mutat Res. 248(1):93–9. https://doi.org/10.1016/0027-5107(91)90091-2 PMID:2030715 - Nath RG, Chung FL (1994). Detection of exocyclic 1,N2-propanodeoxyguanosine adducts as common DNA lesions in rodents and humans. Proc Natl Acad Sci USA. 91(16):7491–5. https://doi.org/10.1073/pnas.91.16.7491 PMID:8052609 - Nath RG, Ocando JE, Guttenplan JB, Chung FL (1998). 1,N2-propanodeoxyguanosine adducts: potential new biomarkers of smoking-induced DNA damage in human oral tissue. Cancer Res. 58(4):581-4. PMID:9485001 - Ruenz M, Goerke K, Bakuradze T, Abraham K, Lampen A, Eisenbrand G, et al. (2019). Sustained human background exposure to acrolein evidenced by monitoring urinary exposure biomarkers. Mol Nutr Food Res. 63(24):e1900849. https://doi.org/10.1002/mnfr.201900849 PMID:31752044 - Takamoto S, Sakura N, Namera A, Yashiki M (2004). Monitoring of urinary acrolein concentration in patients receiving cyclophosphamide. J Chromatogr B Analyt Technol Biomed Life Sci. 806(1):59–63. https://doi.org/10.1016/j.jchromb.2004.02.008 PMID:15149612 - Wang TW, Liu JH, Tsou HH, Liu TY, Wang HT (2019). Identification of acrolein metabolites in human buccal cells, blood, and urine after consumption of commercial fried food. Food Sci Nutr. 7(5):1668–76. https://doi.org/10.1002/fsn3.1001 PMID:31139379 - Weng MW, Lee HW, Park SH, Hu Y, Wang HT, Chen LC, et al. (2018). Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci USA. 115(27):E6152–61. https://doi.org/10.1073/pnas.1804869115 PMID:29915082 - Yang J, Balbo S, Villalta PW, Hecht SS (2019). Analysis of acrolein-derived 1,N²-propanodeoxyguanosine adducts in human lung DNA from smokers. Chem Res Toxicol. 32(2):318–25. https://doi.org/10.1021/acs.chemrestox.8b00326 PMID:30644728 - Yin R, Liu S, Zhao C, Lu M, Tang MS, Wang H (2013). An ammonium bicarbonate-enhanced stable isotope dilution UHPLC-MS/MS method for sensitive and accurate quantification of acrolein-DNA adducts in human leukocytes. Anal Chem. 85(6):3190–7. https://doi.org/10.1021/ac3034695 PMID:23431959 - Zhang S, Balbo S, Wang M, Hecht SS (2011). Analysis of acrolein-derived 1,N2-propanodeoxyguanosine adducts in human leukocyte DNA from smokers and nonsmokers. Chem Res Toxicol. 24(1):119–24. https://doi.org/10.1021/tx100321y PMID:21090699 - Zhang S, Villalta PW, Wang M, Hecht SS (2007). Detection and quantitation of acrolein-derived 1,N2-propanodeoxyguanosine adducts in human lung by liquid chromatography-electrospray ionization-tandem mass spectrometry. Chem Res Toxicol. 20(4):565–71. https://doi.org/10.1021/tx700023z PMID:17385896